TY - JOUR A1 - Bühler, Yves A1 - Christen, Marc A1 - Kowalski, Julia A1 - Bartelt, Perry T1 - Sensitivity of snow avalanche simulations to digital elevation model quality and resolution JF - Annals of Glaciology N2 - Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations. KW - snow KW - avalanche Y1 - 2011 SN - 1727-5644 VL - 52 IS - 58 SP - 72 EP - 80 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Scholz, Christina A1 - Romagnoli, Daniele A1 - Dachwald, Bernd A1 - Theil, Stephan T1 - Performance analysis of an attitude control system for solar sails using sliding masses JF - Advances in Space Research Y1 - 2011 SN - 0273-1177 VL - 48 IS - 11 SP - 1822 EP - 1835 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Funke, Harald A1 - Recker, E. A1 - Bosschaerts, W. A1 - Boonen, Q. A1 - Börner, Sebastian T1 - Parametrical study of the „Micromix“ hydrogen combustion principle JF - 10th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, ISAIF10-049, Brussels, Belgium, 4-7 July 2011 Y1 - 2011 ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Hendrick, P. A1 - Recker, E. T1 - Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine T2 - Progress in Propulsion Physics. Vol. 2 Y1 - 2011 SN - 978-2-7598-0673-7 SP - 475 EP - 486 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Dachwald, Bernd A1 - Wurm, Patrick T1 - Mission analysis and performance comparison for an Advanced Solar Photon Thruster JF - Advances in Space Research Y1 - 2011 SN - 0273-1177 VL - 48 IS - 11 SP - 1858 EP - 1868 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Thenent, N. E. A1 - Dahmann, Peter T1 - Increasing aircraft design flexibility ‐ The development of a hydrostatic transmission for gliders with self‐launching capability T2 - Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband Y1 - 2011 SN - 978-3-9321-8274-7 SP - 865 EP - 883 PB - Dt. Gesellschaft für Luft- und Raumfahrt CY - Bonn ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Thenent, N. E. A1 - Dahmann, Peter T1 - Hydrostatic propeller drive T2 - Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1 Y1 - 2011 SN - 978-952-15-2517-9 SP - 217 EP - 227 CY - Tampere ER - TY - CHAP A1 - Olaru, Alexandra Maria A1 - Kowalski, Julia A1 - Sethi, Vaishali A1 - Blümich, Bernhard T1 - Fluid Transport in Porous Media probed by Relaxation-Exchange NMR T2 - 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec. Y1 - 2011 N1 - H12B-07; American Geophysical Union ER - TY - CHAP A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Schartner, Karl-Heinz T1 - Flight times to the heliopause using a combination of solar and radioisotope electric propulsion T2 - 32nd International Electric Propulsion Conference N2 - We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks’ parameter set. Based on a parameter space study, in which the number of thrust units, the unit’s specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere’s “nose". KW - low-thrust trajectory optimization KW - heliosphere KW - ion propulsion Y1 - 2011 N1 - IEPC-2011-051 32nd International Electric Propulsion Conference,September 11–15, 2011 Wiesbaden, Germany SP - 1 EP - 12 ER - TY - JOUR A1 - Funke, Harald A1 - Börner, Sebastian A1 - Krebs, W. A1 - Wolf, E. T1 - Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications JF - ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011 Y1 - 2011 N1 - GT2011-45305 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Development and testing of a subsurface probe for detection of life in deep ice : [abstract] N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). KW - Eisschicht KW - Sonde KW - subsurface probe KW - subsurface ice research Y1 - 2011 ER - TY - JOUR A1 - Robinson, A. E. A1 - Funke, Harald A1 - Hendrick, P. T1 - Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fueled µ-Scale Gas Turbine JF - Journal of engineering for gas turbines and power Y1 - 2011 SN - 1528-8919 VL - 133 IS - 8 PB - ASME CY - New York ER - TY - JOUR A1 - Funke, Harald A1 - Börner, Sebastian A1 - Falk, F. A1 - Hendrick, P. T1 - Control system modifications and their effects on the operation of a hydrogen-fueled Auxiliary Power Unit JF - XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2. Y1 - 2011 SN - 9781618391803 N1 - 20th International Symposium on Air Breathing Engines 2011 : (ISABE 2011) : Gothenburg, Sweden, 12-16 September, 2011. SP - 929 EP - 938 PB - American Institute of Aeronautics and Astronautics CY - Reston, VA ER - TY - JOUR A1 - Esch, Thomas A1 - Funke, Harald A1 - Roosen, Peter A1 - Jarolimek, Ulrich T1 - Biogenic Vehicle Fuels in General Aviation Aircrafts JF - MTZ worldwide. 72 (2011), H. 1 Y1 - 2011 N1 - recherchierbar für Angehörige der FH Aachen SP - 38 EP - 43 PB - Springer Automotive Media CY - Wiesbaden ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - An Interstellar – Heliopause mission using a combination of solar/radioisotope electric propulsion T2 - Presented at the 32nd International Electric Propulsion Conference N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter “RIT-22”ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter “RIT-10” ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our “InTrance” method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification. Y1 - 2011 N1 - 32nd International Electric Propulsion Conference, 11-15 September. Wiesbaden, Germany SP - 1 EP - 7 ER -