TY - JOUR A1 - Poghossian, Arshak A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane JF - Chemical Communications N2 - Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C5CC01362C VL - 51 SP - 6564 EP - 6567 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Katz, Evgeny A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics JF - Analytical and Bioanalytical Chemistry N2 - The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Y1 - 2017 U6 - http://dx.doi.org/10.1007/s00216-016-0079-7 SN - 1618-2650 VL - 409 SP - 81 EP - 94 PB - Springer CY - Berlin ER - TY - JOUR A1 - Turek, M. A1 - Keusgen, M. A1 - Poghossian, Arshak A1 - Mulchandani, A. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - Enzyme-modified electrolyte-insulator-semiconductor sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 82 EP - 85 ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - http://dx.doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Beging, Stefan A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Hataihimakul, Sudkanung A1 - Busch, H. A1 - Baldsiefen, G. A1 - Laube, N. A1 - Kleinen, L. A1 - Hosseiny, R. T1 - Feldeffektbasierender Ca2+-sensitiver Sensor für den Einsatz im Nativurin zur Bestimmung des Harnsteinbildungsrisikos JF - Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. März 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik Y1 - 2008 SN - 978-3-18-092011-5 N1 - VDI-Berichte ; 2011 ; Sensoren und Messsysteme 2008, 14. GMA/ITG-Fachtagung, VDI/VDE- Gesellschaft Mess- und Automatisierungstechnik, + CD-ROM, Ludwigsburg, DE, 11.-12. Mar, 2008 SP - 775 EP - 782 PB - VDI-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Christiaens, P. A1 - Williams, O. A. A1 - Wagner, P. A1 - Haenen, K. T1 - Feldeffektsensor auf nanokristalliner Diamantbasis JF - Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. März 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik Y1 - 2008 SN - 978-3-18-092011-5 N1 - VDI-Berichte ; 2011 ; Sensoren und Messsysteme 2008, 14. GMA/ITG-Fachtagung, VDI/VDE- Gesellschaft Mess- und Automatisierungstechnik, + CD-ROM, Ludwigsburg, DE, 11.-12. Mar, 2008 SP - 549 EP - 558 PB - VDI-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Schultze, J. W. A1 - Lüth, H. T1 - Field-effect based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical paramters JF - Proceedings of SPIE. 4576 (2002) Y1 - 2002 SP - 149 EP - 159 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Rolka, David A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-effect biosensor using virus particles as scaffolds for enzyme immobilization JF - Biosensors and Bioelectronics N2 - A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.03.036 SN - 0956-5663 VL - 110 SP - 168 EP - 174 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Beging, Stefan A1 - Mlynek, Daniela A1 - Hataihimakul, Sudkanung A1 - Poghossian, Arshak A1 - Baldsiefen, Gerhard A1 - Busch, Heinz A1 - Laube, Norbert A1 - Kleinen, Lisa A1 - Schöning, Michael Josef T1 - Field-effect calcium sensor for the determination of the risk of urinary stone formation JF - Sensors and Actuators B: Chemical. 144 (2010), H. 2 Y1 - 2010 N1 - 22nd International Conference on Eurosensors - Dresden, Germany, 7-10 September 2008 ; Eurosensors ; (22, 2008, Dresden) SP - 374 EP - 379 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Karschuck, Tobias A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments JF - Biosensors N2 - Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C–V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C–V curves and the ConCap signals was also studied experimentally on Al–p-Si–SiO₂ EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles. KW - aminooctanethiol KW - nanoparticle coverage KW - capacitive model KW - gold nanoparticles KW - field-effect sensor KW - electrolyte-insulator-semiconductor capacitors Y1 - 2022 U6 - http://dx.doi.org/10.3390/bios12050334 SN - 2079-6374 N1 - This article belongs to the Special Issue "Biosensors in Nanotechnology" VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect devices for detecting cellular signals JF - Seminars in Cell & Developmental Biology. 20 (2009), H. 1 Y1 - 2009 SN - 1096-3634 SP - 41 EP - 48 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Weil, M. H. A1 - Bäcker, Matthias A1 - Mayer, D. A1 - Schöning, Michael Josef T1 - Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing JF - Procedia Engineering N2 - Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.136 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 273 EP - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gun, Jenny A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Katz, Evgeny T1 - Field-Effect Nanoparticle-Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species JF - Electroanalysis. 20 (2008), H. 16 Y1 - 2008 SN - 1521-4109 SP - 1748 EP - 1753 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Ingebrandt, S. A1 - Poghossian, Arshak A1 - Zhang, Y. A1 - Moritz, W. A1 - Schöning, Michael Josef T1 - Field-effect nanoplate capacitive pH sensor based on SOI structure JF - Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009 Y1 - 2009 SP - 55 EP - 58 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Sakkari, M. A1 - Kassab, T. A1 - Han, Y. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules JF - Sensors and Actuators B: Chemical. 118 (2006), H. 1-2 Y1 - 2006 SN - 0925-4005 N1 - Eurosensors XIX - Eurosensors XIX - The 19th European Conference on Solid-State Transducers SP - 163 EP - 170 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Molinnus, Denise A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers JF - Frontiers in Plant Science N2 - Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases. Y1 - 2020 U6 - http://dx.doi.org/10.3389/fpls.2020.598103 VL - 11 IS - Article 598103 SP - 1 EP - 14 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Amberger, F. A1 - Mayer, D. A1 - Han, Y. A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect sensors with charged macromolecules: Characterisation by capacitance–voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods JF - Biosensors and Bioelectronics. 22 (2007), H. 9-10 Y1 - 2007 SN - 0956-5663 N1 - Selected Papers from the Ninth World Congress On Biosensors. Toronto, Canada 10 - 12 May 2006, Alice X. J . Tang SP - 2100 EP - 2107 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Flow-velocity microsensors based on semiconductor field-effect structures JF - Sensors. 3 (2003), H. 7 Y1 - 2003 SN - 1424-8220 SP - 202 EP - 212 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Biselli, Manfred A1 - Selmer, Thorsten A1 - Öhlschläger, Peter A1 - Baumann, Marcus A1 - Förster, Arnold A1 - Poghossian, Arshak T1 - Forschung „zwischen“ den Disziplinen: das Institut für Nano- und Biotechnologien JF - Analytik news : das Online-Labormagazin für Labor und Analytik N2 - "Biologie trifft Mikroelektronik", das Motto des Instituts für Nano- und Biotechnologien (INB) an der FH Aachen, unterstreicht die zunehmende Bedeutung interdisziplinär geprägter Forschungsaktivitäten. Der thematische Zusammenschluss grundständiger Disziplinen, wie die Physik, Elektrotechnik, Chemie, Biologie sowie die Materialwissenschaften, lässt neue Forschungsgebiete entstehen, ein herausragendes Beispiel hierfür ist die Nanotechnologie: Hier werden neue Werkstoffe und Materialien entwickelt, einzelne Nanopartikel oder Moleküle und deren Wechselwirkung untersucht oder Schichtstrukturen im Nanometerbereich aufgebaut, die neue und vorher nicht bekannte Eigenschaften hervorbringen. Vor diesem Hintergrund bündelt das im Jahre 2006 gegründete INB die an der FH Aachen vorhandenen Kompetenzen von derzeit insgesamt sieben Laboratorien auf den Gebieten der Halbleitertechnik und Nanoelektronik, Nanostrukturen und DNA-Sensorik, der Chemo- und Biosensorik, der Enzymtechnologie, der Mikrobiologie und Pflanzenbiotechnologie, der Zellkulturtechnik, sowie der Roten Biotechnologie synergetisch. In der Nano- und Biotechnologie steckt außergewöhnliches Potenzial! Nicht zuletzt deshalb stellen sich die Forscher der Herausforderung, in diesem Bereich gemeinsam zu forschen und Schnittstellen zu nutzen, um so bei der Gestaltung neuartiger Ideen und Produkte mitzuwirken, die zukünftig unser alltägliches Leben verändern werden. Im Folgenden werden die verschiedenen Forschungsbereiche kurz zusammenfassend vorgestellt und vorhandene Interaktionen anhand von exemplarisch ausgewählten, aktuellen Forschungsprojekten skizziert. Y1 - 2012 VL - Publ. online PB - Dr. Beyer Internet-Beratung CY - Ober-Ramstadt ER - TY - JOUR A1 - Poghossian, Arshak A1 - Wagner, Holger A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of (bio-)chemical sensors on wafer level JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 835 EP - 838 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Wagner, Holger A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of (bio-)chemical sensors on wafer level JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 169 EP - 173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kloock, Joachim P. A1 - Poghossian, Arshak A1 - Schumacher, K. A1 - Rosenkranz, C. A1 - Schultze, J. W. A1 - Müller-Veggian, Mattea A1 - Schöning, Michael Josef T1 - Funktionsprüfung und Charakterisierung von ionensensitiven Feldeffekttransistoren (ISFETs) auf Waferebene mittels Mikrotropfenzelle für den zukünftigen Einsatz in der Sensorproduktion JF - Sensoren und Messsysteme 2006 : Vorträge der 13. ITG/GMA-Fachtagung vom 13. bis 14. März 2006 in Freiburg/Breisgau / Veranst.: Informationstechnische Gesellschaft im VDE (ITG) ; VDE/VDI-Gesellschaft Mess- und Automatisierungstechnik (GMA). Wiss. Tagungsleitung: L. M. Reindl Y1 - 2006 SN - 3-8007-2939-3 N1 - Fachtagung Sensoren und Messsysteme <13, 2006, Freiburg, Breisgau> SP - 257 EP - 260 PB - VDE-Verl. CY - Berlin ER - TY - JOUR A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Mayer, Dirk A1 - Schöning, Michael Josef T1 - Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids JF - Nanoscale Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR05987E SN - 2040-3372 (E-Journal); 2040-3364 (Print) SP - 1023 EP - 1031 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Karschuck, Tobias A1 - Kaulen, Corinna A1 - Poghossian, Arshak A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules JF - Electrochemical Science Advances N2 - The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies. KW - polystyrene sulfonate KW - gold nanoparticles KW - field-effect sensor KW - detection of charged macromolecules KW - capacitive EIS sensor Y1 - 2021 U6 - http://dx.doi.org/10.1002/elsa.202100179 SN - 0938-5193 VL - 2 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wagner, Torsten A1 - Maris, Rob J. A1 - Ackermann, Hans-Josef A1 - Otto, Ralph A1 - Beging, Stefan A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations JF - Sensors and Actuators B: Chemical . 127 (2007), H. 1 Y1 - 2007 SN - 0925-4005 SP - 217 EP - 223 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Mai, D.-T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef T1 - Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 423 EP - 428 ER - TY - JOUR A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers JF - Physica Status Solidi (A) N2 - Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200941 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 905 EP - 910 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Rolka, David A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Integration of a capacitive EIS sensor into a FIA system for pH and penicillin determination JF - Sensors. 4 (2004) Y1 - 2004 SN - 1424-8220 SP - 84 EP - 94 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Malzahn, K. A1 - Abouzar, Maryam H. A1 - Mehndiratta, P. A1 - Katz, E. A1 - Schöning, Michael Josef T1 - Integration of biomolecular logic gates with field-effect transducers JF - Electrochimica Acta. 56 (2011), H. 26 Y1 - 2011 SN - 0013-4686 SP - 9661 EP - 9665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Krämer, Melina A1 - Abouzar, Maryam H. A1 - Pita, Marcos A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 682 EP - 685 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mourzina, Y. A1 - Mai, T. A1 - Poghossian, Arshak A1 - Ermolenko, Y. A1 - Yoshinobu, T. A1 - Vlasov, Y. A1 - Iwasaki, H. A1 - Schöning, Michael Josef T1 - K+-selective field-effect sensors as transducers for bioelectronic applications JF - Electrochimica Acta. 48 (2003), H. 20-22 Y1 - 2003 SN - 0013-4686 SP - 3333 EP - 3339 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef T1 - Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation JF - Applied Physics A: Materials Science & Processing. 87 (2007), H. 3 Y1 - 2007 SN - 0947-8396 N1 - Special Issue “From Surface Science to Nanoscale Devices” SP - 517 EP - 524 ER - TY - JOUR A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies JF - Procedia Engineering N2 - Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride). KW - LAPS KW - lable-free detection KW - DNA hybridization KW - field-effect sensor Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.647 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 755 EP - 758 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Schöning, Michael Josef T1 - Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer JF - Nanoscale N2 - A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent–voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07225A VL - 14 IS - 7 SP - 6143 EP - 6150 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors T1 - Markierungsfreie Detektion doppelsträngiger DNA Moleküle mit Hilfe von Polyelektrolyt-modifizierten kapazitiven Feldeffekt-Sensoren JF - tm - Technisches Messen N2 - In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA. Y1 - 2017 U6 - http://dx.doi.org/10.1515/teme-2017-0015 VL - 84 IS - 10 SP - 628 EP - 634 PB - De Gruyter CY - Oldenbourg ER - TY - JOUR A1 - Ingebrandt, S. A1 - Han, Y. A1 - Nakamura, F. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Offenhäusser, A. T1 - Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors JF - Biosensors and Bioelectronics. 22 (2007), H. 12 Y1 - 2007 SN - 0956-5663 SP - 2834 EP - 2840 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Scheja, Sabrina A1 - Jessing, Max A1 - Metzger-Boddien, Christoph A1 - Keusgen, Michael A1 - Poghossian, Arshak T1 - Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities JF - Proceedings N2 - Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed. Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1080719 SN - 2504-3900 N1 - This article belongs to the Proceedings of "Proceedings of the 5th International Symposium on Sensor Science (I3S 2017)" VL - 1 IS - 8 SP - Artikel 719 PB - MDPI CY - Basel ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Pedraza, A. M. A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Label-free DNA hybridization and denaturation detection by means of field-effect nanoplate SOI capacitors functionalized with gold nanoparticles JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Proc. Eurosensors XXIV, September 5–8, 2010, Linz, Austria SP - 918 EP - 921 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Cherstvy, Andrey G. A1 - Pedraza, Angela M. A1 - Ingebrandt, Sven A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling JF - Physica Status Solidi (a) N2 - Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100710 SN - 1862-6319 VL - 209 SP - 925 EP - 934 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips JF - Physica status solidi A : Applications and materials science N2 - A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent–voltage (I–V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I–V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330442 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1423 EP - 1428 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules with field-effect devices for clinical applications JF - Electroanalysis N2 - Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elan.201400073 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 6 SP - 1197 EP - 1213 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors JF - Journal of Physical Chemistry C. 113 (2009), H. 33 Y1 - 2009 SN - 1932-7455 SP - 14765 EP - 14770 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - JOUR A1 - Gasparyan, F. V. A1 - Poghossian, Arshak A1 - Vitusevich, S. A. A1 - Petrychuk, M. V. A1 - Sydoruk, V. A. A1 - Surmalyan, A. V. A1 - Siqueira, J. R. A1 - Oliveira, O. N. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Low Frequency Noise In Electrolyte-Gate Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - Noise and fluctuations : 20th International Conference on Noise and Fluctuations, ICNF 2009, Pisa, Italy, 14 - 19 June 2009 / ed. Massimo Macucci; Giovanni Basso Y1 - 2009 SN - 9780735406650 N1 - AIP conference proceedings ; 1129 ; International Conference on Noise and Fluctuations ; (20, 2009, Pisa) SP - 133 EP - 136 PB - American Inst. of Physics CY - Melville, NY ER - TY - JOUR A1 - Gasparyan, Ferdinand V. A1 - Poghossian, Arshak A1 - Vitusevich, Svetlana A. A1 - Petrychuk, Mykhaylo V. A1 - Sydoruk, Viktor A. A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Offenhäusser, Andreas A1 - Schöning, Michael Josef T1 - Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - IEEE Sensors Journal. 11 (2011), H. 1 Y1 - 2011 SN - 1530-437X SP - 142 EP - 149 PB - IEEE CY - New York ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Han, Yinhua A1 - Offenhäusser, Andreas A1 - Ingebrandt, Sven T1 - Markierungsfreie DNA-Detektion mit Silizium-Feldeffekt-Sensoren – Messeffekte oder Artefakte? JF - tm - Technisches Messen . 74 (2007), H. 9 Y1 - 2007 SN - 0171-8096 SP - 466 EP - 476 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Schultze, Joachim W. T1 - Measuring seven parameters by two ISFET modules in a microcell set-up JF - Int. Journal of Computational Engineering Science. 4 (2003), H. 2 Y1 - 2003 SN - 1465-8763 SP - 257 EP - 260 ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Raue, Markus A1 - Schusser, Sebastian A1 - Jeitner, C. A1 - Breuer, L. A1 - Wagner, P. A1 - Poghossian, Arshak A1 - Förster, Arnold A1 - Mang, Thomas A1 - Schöning, Michael Josef T1 - Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films JF - Physica Status Solidi (a) N2 - Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3–12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100763 SN - 1862-6319 VL - 209 IS - 5 SP - 839 EP - 845 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Leinhos, Marcel A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Micromachined multi-parameter sensor chip for the control of polymer-degradation medium JF - Physica Status Solidi (A) : special issue on engineering and functional interfaces N2 - It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330364 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1346 EP - 1351 PB - Wiley-VCH CY - Weinheim ER -