TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - CHAP A1 - Quitter, Julius A1 - Marino, Matthew A1 - Bauschat, J.-Michael T1 - Highly Non-Planar Aircraft Configurations: Estimation of Flight Mechanical Derivatives Using Low-Order Methods T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. June 17–21, 2019 Phoenix, Arizona, USA. Volume 4A: Combustion, Fuels, and Emissions Y1 - 2019 SN - 978-0-7918-5861-5 U6 - http://dx.doi.org/10.1115/GT2019-90095 ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Uto, Takahiro A1 - Uchiyama, Yuta A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-129 SP - 1 EP - 6 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-013 ER - TY - CHAP A1 - Striegan, Constantin J. D. A1 - Struth, Benjamin A1 - Dickhoff, Jens A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Bohn, Dieter T1 - Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan. Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGCT-2019-147 SP - 1 EP - 9 ER - TY - CHAP A1 - Otten, D. A1 - Schmidt, M. A1 - Weber, Tobias T1 - Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations T2 - SAMPE Europe Conference 16 Liege Y1 - 2016 SN - 978-1-5108-3800-0 SP - 570 EP - 577 ER - TY - CHAP A1 - Weber, Tobias A1 - Tellis, Jane J. A1 - Duhovic, Miro T1 - Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation T2 - ECCM 17, 17th European Conference on Composite Materials, München, DE, Jun 26-30, 2016 Y1 - 2016 SN - 978-3-00-053387-7 SP - 1 EP - 7 ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21–25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - http://dx.doi.org/10.1115/GT2020-16328 N1 - Paper No. GT2020-16328, V04BT04A069 PB - American Society of Mechanical Engineers (ASME) ER - TY - CHAP A1 - Bergmann, Kevin A1 - Gräbener, Josefine A1 - Wild, Dominik A1 - Ulfers, H. A1 - Czupalla, Markus T1 - Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material T2 - International Conference on Environmental Systems N2 - The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status. Y1 - 2019 N1 - 49th International Conference on Environmental Systems, 7-11 July 2019, Boston, Massachusetts ; ICES-2019-72 SP - 1 EP - 14 ER - TY - CHAP A1 - Adams, Moritz A1 - Losekamm, Martin J. A1 - Czupalla, Markus T1 - Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station T2 - International Conference on Environmental Systems Y1 - 2020 N1 - The proceedings for the 2020 International Conference on Environmental Systems, ICES-2020-179 SP - 1 EP - 10 ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - http://dx.doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - CHAP A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Schartner, Karl-Heinz T1 - Flight times to the heliopause using a combination of solar and radioisotope electric propulsion T2 - 32nd International Electric Propulsion Conference N2 - We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks’ parameter set. Based on a parameter space study, in which the number of thrust units, the unit’s specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere’s “nose". KW - low-thrust trajectory optimization KW - heliosphere KW - ion propulsion Y1 - 2011 N1 - IEPC-2011-051 32nd International Electric Propulsion Conference,September 11–15, 2011 Wiesbaden, Germany SP - 1 EP - 12 ER - TY - CHAP A1 - Borggräfe, Andreas A1 - Dachwald, Bernd T1 - Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients T2 - 2nd International Symposium on Solar Sailing N2 - Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail’s distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model. Y1 - 2010 N1 - 2nd International Symposium on Solar Sailing, ISSS 2010, 2010-07-20 - 2010-07-22. New York City College of Technology of the City University of New York, USA SP - 1 EP - 6 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska A1 - Kishimoto, Tsuyoshi A1 - Okada, Koichi T1 - Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions N2 - The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration. KW - NOx emissions KW - hydrogen KW - combustor KW - gas turbine Y1 - 2021 U6 - http://dx.doi.org/10.1115/GT2021-58926 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-58926, V03AT04A025 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Head-on impact deflection of NEAs: a case study for 99942 Apophis T2 - Planetary Defense Conference 2007 N2 - Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value Y1 - 2007 N1 - Planetary Defense Conference 2007, Wahington D.C., USA, 05-08 March 2007 SP - 1 EP - 12 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Riemann, Johannes A1 - Spröwitz, Tom A1 - Tardivel, Simon T1 - Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization T2 - 5th IAA Planetary Defense Conference KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - asteroid sample return Y1 - 2017 N1 - 5th IAA Planetary Defense Conference – PDC 2017 15-19 May 2017, Tokyo, Japan ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd T1 - Solar sails for near-term advanced scientific deep space missions T2 - Proceedings of the 8th International Workshop on Combustion and Propulsion N2 - Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN – comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission. KW - solar sail KW - low-thrust KW - near-Earth asteroid KW - sample return KW - solar system Y1 - 2003 N1 - Proceedings of the 8th International Workshop on Combustion and Propulsion. Pozzuoli, Italy, 16 - 21 June 2002. ER - TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Häusler, Bernd T1 - Performance requirements for near-term interplanetary solar sailcraft missions T2 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century N2 - Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions. Y1 - 2002 N1 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century, Versailles, France, 14-16 May 2002 ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - CHAP A1 - Spurmann, Jörn A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Löb, Horst A1 - Schartner, Karl-Heinz T1 - Interplanetary trajectory optimization for a sep mission to Saturn T2 - 60th International Astronautical Congress 2009 N2 - The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general. KW - Spacecraft KW - Reusable Rocket Engines KW - Hybrid Propellants Y1 - 2009 SN - 9781615679089 N1 - 60th International Astronautical Congress 2009 (IAC 2009) Held 12-16 October 2009, Daejeon, Republic of Korea. SP - 5234 EP - 5248 ER - TY - CHAP A1 - Loeb, Horst Wolfgang A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - SEP-Sample return from a main belt asteroid T2 - 30th International Electric Propulsion Conference N2 - By DLR-contact, sample return missions to the large main-belt asteroid “19, Fortuna” have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP. Y1 - 2007 SP - 1 EP - 11 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mengali, Giovanni A1 - Quarta, Alessandro A A1 - Macdonald, Malcolm A1 - McInnes, Colin R T1 - Optical solar sail degradation modelling T2 - 1st International Symposium on Solar Sailing N2 - We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Y1 - 2007 N1 - 1st International Symposium on Solar Sailing 27–29 June 2007, Herrsching, Germany SP - 1 EP - 27 ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER - TY - CHAP A1 - Seefeldt, Patric A1 - Bauer, Waldemar A1 - Dachwald, Bernd A1 - Grundmann, Jan Thimo A1 - Straubel, Marco A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Zander, Martin E. T1 - Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power T2 - 4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 N1 - IAA-PDC-15-P-20 ER - TY - CHAP A1 - Dachwald, Bernd T1 - Radiation pressure force model for an ideal laser-enhanced solar sail T2 - 4th International Symposium on Solar Sailing N2 - The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a “traditional” solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail’s propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible. Y1 - 2017 N1 - 4th International Symposium on Solar Sailing 17-20 January 2017, Kyōto, Japan SP - 1 EP - 5 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska T1 - Numerical investigation of micromix hydrogen flames at different combustor pressure levels T2 - Proceedings of the International Conference on Power Engineering 2021 N2 - This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range. KW - Gas turbine combustion KW - Hydrogen KW - NOx emissions KW - Flame temperature KW - Flame residence time Y1 - 2021 N1 - Proceedings of the International Conference on Power Engineering 2021 (ICOPE-2021). October 17 - 21, 2021. Kobe, Japan (Online) ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - http://dx.doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail performance requirements for missions to the outer solar system and beyond T2 - 55th International Astronautical Congress 2004 N2 - Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system. Y1 - 2004 U6 - http://dx.doi.org/10.2514/6.IAC-04-S.P.11 N1 - 55th International Astronautical Congress 2004 - Vancouver, Canada SP - 1 EP - 9 ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - The 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021) was organized by Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, on 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - The 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021) was organized by Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, on 23 November 2021. SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham T1 - ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia T2 - Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management N2 - The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - European Framework and South East Asia KW - Technology Transfer KW - Capacity Building Higher Education KW - Malaysian Automotive Industry Y1 - 2020 SN - 978-1-7923-6123-4 SN - 2169-8767 N1 - 2nd African International Conference on Industrial Engineering and Operations Management; Harare, Zimbabwe, December 7-10, 2020 SP - 2970 EP - 2972 PB - IEOM Society International CY - Southfield ER - TY - CHAP A1 - Kreyer, Jörg A1 - Esch, Thomas T1 - Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles T2 - European GT Conference 2017 N2 - Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas Y1 - 2017 N1 - European GT Conference 2017, 9.-10. Oktober 2017, Frankfurt a.M. ER - TY - CHAP A1 - Kemper, Hans A1 - Hellenbroich, Gereon A1 - Esch, Thomas T1 - Concept of an innovative passenger-car hybrid drive for European driving conditions T2 - Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig N2 - The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 % savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition. Y1 - 2009 SN - 978-3-937655-20-8 SP - 264 EP - 287 PB - Gesamtzentrum für Verkehr (GZVB) CY - Braunschweig ER - TY - CHAP A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Peter ED - Bartz, Wilfried J. T1 - Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship T2 - Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009 N2 - The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 % v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security. Y1 - 2009 SN - 978-3-924813-75-8 SP - 237 EP - 244 PB - Technische Akademie Esslingen (TAE) CY - Ostfildern ER - TY - CHAP A1 - Weiss, Alexander A1 - Abanteriba, Sylvester A1 - Esch, Thomas T1 - Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow T2 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B N2 - Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations. Y1 - 2007 SN - 0-7918-4288-6 U6 - http://dx.doi.org/10.1115/FEDSM2007-37387 N1 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007 SP - 1861 EP - 1871 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Huth, Thomas A1 - Elsen, Olaf A1 - Hartwig, Christoph A1 - Esch, Thomas T1 - Innovative modular valve trains for 2015 - logistic benefits by EMVT T2 - IFAC Proceedings Volumes, Volume 39, Issue 3 N2 - In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary. Y1 - 2006 U6 - http://dx.doi.org/10.3182/20060517-3-FR-2903.00172 N1 - Part of special issue "12th IFAC Symposium on Information Control Problems in Manufacturing" SP - 315 EP - 320 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - CHAP A1 - Havermann, Marc A1 - Seiler, F. A1 - Henning, P. ED - Dillmann, Andreas ED - Heller, Gerd ED - Klaas, Michael ED - Kreplin, Hans-Peter ED - Nitsche, Wolfgang ED - Schröder, Wolfgang T1 - Shock Tunnel Experiments and CFD Simulation of Lateral Jet Interaction in Hypersonic Flows T2 - New Results in Numerical and Experimental Fluid Mechanics VII; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany 2008 Y1 - 2010 SN - 9783642142437 U6 - http://dx.doi.org/10.1007/978-3-642-14243-7_45 N1 - Notes on numerical fluid mechanics and multidisciplinary design 112 SP - 365 EP - 372 PB - Springer CY - Berlin ER -