TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Chico Caminos, Ricardo Alexander A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Erpicum, Sebastien A1 - Peltier, Yann A1 - Dewals, Benjamin T1 - Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling JF - Journal of Hydro-environment Research N2 - Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models). KW - coherent structures KW - hydraulic modelling KW - model performance KW - Proper Orthogonal Decomposition KW - Q-criterion Y1 - 2022 U6 - https://doi.org/10.1016/j.jher.2022.03.002 SN - 1570-6443 IS - In Press PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 3261 EP - 3270 ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - https://doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Atti, Vikrama A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Dutta, Siddharth A1 - Kioutsioukis, Ioannis T1 - DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook T2 - SolarPACES 2022 conference proceedings N2 - This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut Jülich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 % based on the tested days. The result fulfils SIJ’s aim to achieve a reliability of around 70 %, but SIJ aims to still improve the DNI forecast quality. KW - Direct normal irradiance forecast KW - DNI forecast KW - Parabolic trough collector KW - PTC KW - Thermal Energy Storage Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.731 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Schneider, Iesse Peer A1 - Angele, Florian A1 - Atti, Vikrama A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Development of heliostat field calibration methods: Theory and experimental test results T2 - SolarPACES 2022 conference proceedings N2 - In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut Jülich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy. KW - Heliostat Field Calibration KW - Unmanned aerial vehicle KW - UAV KW - Quadrocopter KW - Camera system Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.678 SN - 2751-9899 (online) N1 - SolarPACES 2022: 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER - TY - JOUR A1 - Schulte-Tigges, Joschua A1 - Förster, Marco A1 - Nikolovski, Gjorgji A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Kaszner, Daniel A1 - Matheis, Dominik A1 - Walter, Thomas T1 - Benchmarking of various LiDAR sensors for use in self-driving vehicles in real-world environments JF - Sensors N2 - Abstract In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon, Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro. The idea was to test the sensors in different typical scenarios that were defined with real-world use cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this, we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was mounted on the vehicle which was driving toward the detection target. We tested all mentioned LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets, and discuss their usefulness for deployment in self-driving cars. KW - Lidar KW - Benchmark KW - Self-driving Y1 - 2022 U6 - https://doi.org/10.3390/s22197146 SN - 1424-8220 N1 - This article belongs to the Special Issue "Sensor Fusion for Vehicles Navigation and Robotic Systems" VL - 22 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Colombo, Daniele A1 - Drira, Slah A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis JF - International Journal for Numerical Methods in Engineering N2 - Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element. KW - distorted element KW - ES-FEM KW - FS-FEM KW - non-simplex S-FEM elements KW - S-FEM Y1 - 2022 U6 - https://doi.org/10.1002/nme.7126 SN - 1097-0207 VL - 124 IS - 2 SP - 402 EP - 433 PB - Wiley CY - Chichester ER - TY - CHAP A1 - Hinke, Christian A1 - Vervier, Luisa A1 - Brauner, Philipp A1 - Schneider, Sebastian A1 - Steuer-Dankert, Linda A1 - Ziefle, Martina A1 - Leicht-Scholten, Carmen T1 - Capability configuration in next generation manufacturing T2 - Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models N2 - Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today’s world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students. Y1 - 2022 SN - 978-3-031-07733-3 U6 - https://doi.org/10.1007/978-3-031-07734-0_6 SP - 95 EP - 106 PB - Springer CY - Cham ER - TY - JOUR A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Ansal, Atilla T1 - Latest findings on the behaviour factor q for the seismic design of URM buildings JF - Bulletin of Earthquake Engineering N2 - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20–0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0–3.0 are proposed. KW - Unreinforced masonry buildings KW - Modern constructions KW - Seismic design KW - Linear elastic analysis KW - Behaviour factor q Y1 - 2022 U6 - https://doi.org/10.1007/s10518-022-01419-7 SN - 1573-1456 SN - 1570-761X VL - 20 IS - 11 SP - 5797 EP - 5848 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Allal, D. A1 - Bannister, R. A1 - Buisman, K. A1 - Capriglione, D. A1 - Di Capua, G. A1 - García-Patrón, M. A1 - Gatzweiler, Thomas A1 - Gellersen, F. A1 - Harzheim, Thomas A1 - Heuermann, Holger A1 - Hoffmann, J. A1 - Izbrodin, A. A1 - Kuhlmann, K. A1 - Lahbacha, K. A1 - Maffucci, A. A1 - Miele, G. A1 - Mubarak, F. A1 - Salter, M. A1 - Pham, T.D. A1 - Sayegh, A. A1 - Singh, D. A1 - Stein, F. A1 - Zeier, M. T1 - RF measurements for future communication applications: an overview T2 - 2022 IEEE International Symposium on Measurements & Networking (M&N) N2 - In this paper research activities developed within the FutureCom project are presented. The project, funded by the European Metrology Programme for Innovation and Research (EMPIR), aims at evaluating and characterizing: (i) active devices, (ii) signal- and power integrity of field programmable gate array (FPGA) circuits, (iii) operational performance of electronic circuits in real-world and harsh environments (e.g. below and above ambient temperatures and at different levels of humidity), (iv) passive inter-modulation (PIM) in communication systems considering different values of temperature and humidity corresponding to the typical operating conditions that we can experience in real-world scenarios. An overview of the FutureCom project is provided here, then the research activities are described. KW - FPGA KW - signal integrity KW - power integrity KW - passive inter-modulation KW - metrological characterization Y1 - 2022 SN - 978-1-6654-8362-9 SN - 978-1-6654-8363-6 U6 - https://doi.org/10.1109/MN55117.2022.9887740 SN - 2639-5061 SN - 2639-507X N1 - 2022 IEEE International Symposium on Measurements & Networking (M&N), 18-20 July 2022, Padua, Italy. SP - 1 EP - 6 PB - IEEE ER - TY - JOUR A1 - Peere, Wouter A1 - Blanke, Tobias ED - Vernon, Chris T1 - GHEtool: An open-source tool for borefield sizing in Python JF - Journal of Open Source Software N2 - GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool. KW - geothermal KW - energy KW - borefields KW - sizing Y1 - 2022 U6 - https://doi.org/10.21105/joss.04406 SN - 2475-9066 VL - 7 IS - 76 SP - 1 EP - 4, 4406 ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Nouri, Bijan A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation T2 - SolarPACES 2022 conference proceedings N2 - Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted. KW - Process prediction KW - DNI forecasting KW - Nowcasting KW - Uncertainty analysis KW - Molten salt receiver system, Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.675 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES 2022 conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - https://doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Striebing, Clemens A1 - Müller, Jörg A1 - Schraudner, Martina A1 - Gewinner, Irina Valerie A1 - Guerrero Morales, Patricia A1 - Hochfeld, Katharina A1 - Hoffman, Shekinah A1 - Kmec, Julie A. A1 - Nguyen, Huu Minh A1 - Schneider, Jannick A1 - Sheridan, Jennifer A1 - Steuer-Dankert, Linda A1 - Trimble O'Connor, Lindsey A1 - Vandevelde-Rougale, Agnès T1 - Promoting diversity and combatting discrimination in research organizations: a practitioner’s guide T2 - Diversity and discrimination in research organizations N2 - The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on “Diversity and Discrimination in Research Organizations.” KW - Inclusive work climate KW - lessons learned KW - policy recommendations KW - recommendations for actions KW - bullying Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221012 SP - 421 EP - 442 PB - Emerald Publishing Limited CY - Bingley ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Perceiving diversity : an explorative approach in a complex research organization. T2 - Diversity and discrimination in research organizations N2 - Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; López, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff. KW - Diversity management KW - Organizational culture KW - Change management KW - Psychological concepts KW - Perception Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221010 SP - 365 EP - 392 PB - Emerald Publishing Limited CY - Bingley ER - TY - GEN A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemes A1 - Chen, Qian A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Sustrate, Anna-Marie A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Performance data of an ice-melting probe from field tests in two different ice environments N2 - This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters). KW - Ocean Worlds KW - Icy Moons KW - Cryobot KW - Analogue Environments KW - Melting Efficiency KW - Melting Performance KW - Melting Probe KW - Ice Melting Y1 - 2022 U6 - https://doi.org/10.5281/zenodo.6094866 N1 - Forschungsdaten zu "Field-test performance of an ice-melting probe in a terrestrial analogue environment" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10889) ER - TY - CHAP A1 - Chico Caminos, Ricardo Alexander A1 - Schmitz, Pascal A1 - Atti, Vikrama A1 - Mahdi, Zahra A1 - Teixeira Boura, Cristiano José A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf A1 - Hilger, Patrick A1 - Dieckmann, Simon T1 - Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method T2 - SOLARPACES 2020 N2 - The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called “micro heliostat”. Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. KW - Concentrated solar power KW - Electricity generation KW - Measuring instruments KW - Heliostats KW - Global change Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086262 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Mertens, Alexander A1 - Brauner, Philipp A1 - Baier, Ralph A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kordtomeikel, Frauke A1 - Liehner, Gian Luca A1 - Pütz, Sebastian A1 - Rodermann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Michael, Judith ED - Pfeiffer, Jérôme ED - Wortmann, Andreas T1 - Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows T2 - Modellierung 2022 Satellite Events N2 - The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production. KW - human digital shadow KW - cyber physical production system KW - human factors Y1 - 2022 U6 - https://doi.org/10.18420/modellierung2022ws-018 N1 - Modellierung 2022, 27. Juni - 01. Juli 2022, Hamburg, Deutschland SP - 147 EP - 149 PB - GI Gesellschaft für Informatik CY - Bonn ER - TY - GEN A1 - Varriale, Ludovica A1 - Kuka, Katrin A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Use of a green biomass in a biorefinery platform T2 - Chemie Ingenieur Technik N2 - The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255095 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwager, Christian A1 - Flesch, Robert A1 - Schwarzbözl, Peter A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José T1 - Advanced two phase flow model for transient molten salt receiver system simulation JF - Solar Energy N2 - In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. KW - Molten salt solar tower KW - Molten salt receiver system KW - Dynamic simulation KW - Two-phase modelling KW - Transient flux distribution Y1 - 2022 U6 - https://doi.org/10.1016/j.solener.2021.12.065 SN - 0038-092X (print) SN - 1471-1257 (online) VL - 232 SP - 362 EP - 375 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Braun, Lena A1 - Krafft, Simone A1 - Tippkötter, Nils T1 - Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid T2 - Chemie Ingenieur Technik N2 - A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255308 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Bongaerts, Johannes A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor JF - Chemosensors N2 - Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution. Y1 - 2022 U6 - https://doi.org/10.3390/chemosensors10060218 SN - 2227-9040 N1 - This article belongs to the Special Issue "Nanostructured Devices for Biochemical Sensing" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bhattarai, Aroj A1 - May, Charlotte Anabell A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Layer-specific damage modeling of porcine large intestine under biaxial tension JF - Bioengineering N2 - The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads. KW - biaxial tensile experiment KW - anisotropy KW - hyperelastic KW - constitutive modeling KW - damage Y1 - 2022 U6 - https://doi.org/10.3390/bioengineering9100528 SN - 2306-5354 N1 - Der Artikel gehört zum Sonderheft "Computational Biomechanics" VL - 9 IS - 10, Early Access SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Büsgen, André A1 - Klöser, Lars A1 - Kohl, Philipp A1 - Schmidts, Oliver A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - Exploratory analysis of chat-based black market profiles with natural language processing T2 - Proceedings of the 11th International Conference on Data Science, Technology and Applications N2 - Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods. KW - Clustering KW - Natural Language Processing KW - Information Extraction KW - Profile Extraction KW - Text Mining Y1 - 2022 SN - 978-989-758-583-8 U6 - https://doi.org/10.5220/0011271400003269 SN - 2184-285X N1 - 11th International Conference on Data Science, Technology and Applications DATA - Volume 1, 83-94, 2022, Lisbon, Portugal SP - 83 EP - 94 ER - TY - CHAP A1 - Ostkotte, Sebastian A1 - Peters, Constantin A1 - Hüning, Felix A1 - Bragard, Michael T1 - Design, implementation and verification of an rotational incremental position encoder based on the magnetic Wiegand effect T2 - 2022 ELEKTRO (ELEKTRO) N2 - This paper covers the use of the magnetic Wiegand effect to design an innovative incremental encoder. First, a theoretical design is given, followed by an estimation of the achievable accuracy and an optimization in open-loop operation. Finally, a successful experimental verification is presented. For this purpose, a permanent magnet synchronous machine is controlled in a field-oriented manner, using the angle information of the prototype. KW - Position Encoder KW - Rotational Encoder KW - Wiegand Effect KW - Angle Sensor KW - Incremental Encoder Y1 - 2022 SN - 978-1-6654-6726-1 SN - 978-1-6654-6727-8 U6 - https://doi.org/10.1109/ELEKTRO53996.2022.9803477 SN - 2691-0616 N1 - 2022 ELEKTRO (ELEKTRO), 23-26 Mai 2022, Krakow, Poland. PB - IEEE ER - TY - JOUR A1 - Mandekar, Swati A1 - Holland, Abigail A1 - Thielen, Moritz A1 - Behbahani, Mehdi A1 - Melnykowycz, Mark T1 - Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG JF - Sensors N2 - Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG. KW - in-ear EEG KW - correlation KW - forehead EEG KW - impedance spectroscopy KW - biopotential electrodes Y1 - 2022 U6 - https://doi.org/10.3390/s22041568 SN - 1424-8220 VL - 22 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives JF - Journal of Number Theory KW - Drinfeld modules KW - Periods KW - t-modules KW - Transcendence KW - Higher derivations Y1 - 2022 U6 - https://doi.org/10.1016/j.jnt.2022.01.006 SN - 0022-314X VL - 240 SP - 145 EP - 162 PB - Elsevier CY - Orlando, Fla. ER - TY - CHAP A1 - Amir, Malik A1 - Bauckhage, Christian A1 - Chircu, Alina A1 - Czarnecki, Christian A1 - Knopf, Christian A1 - Piatkowski, Nico A1 - Sultanow, Eldar T1 - What can we expect from quantum (digital) twins? T2 - Wirtschaftsinformatik 2022 Proceedings N2 - Digital twins enable the modeling and simulation of real-world entities (objects, processes or systems), resulting in improvements in the associated value chains. The emerging field of quantum computing holds tremendous promise forevolving this virtualization towards Quantum (Digital) Twins (QDT) and ultimately Quantum Twins (QT). The quantum (digital) twin concept is not a contradiction in terms - but instead describes a hybrid approach that can be implemented using the technologies available today by combining classicalcomputing and digital twin concepts with quantum processing. This paperpresents the status quo of research and practice on quantum (digital) twins. It alsodiscuses their potential to create competitive advantage through real-timesimulation of highly complex, interconnected entities that helps companies better address changes in their environment and differentiate their products andservices. KW - Artificial Intelligence KW - Digital Twin Evolution KW - Machine Learning KW - Quantum Computing KW - Quantum Machine Learning Y1 - 2022 N1 - 17. Internationale Tagung Wirtschaftsinformatik, 21. – 23. Februar 2022, Nürnberg (online) SP - 1 EP - 14 PB - AIS Electronic Library (AISeL) ER - TY - JOUR A1 - Philipp, Mohr A1 - Efthimiou, Nikos A1 - Pagano, Fiammetta A1 - Kratochwil, Nicolaus A1 - Pizzichemi, Marco A1 - Tsoumpas, Charalampos A1 - Auffray, Etiennette A1 - Ziemons, Karl T1 - Image reconstruction analysis for positron emission tomography with heterostructured scintillators JF - IEEE Transactions on Radiation and Plasma Medical Sciences N2 - The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0×3.1×15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100 μm thick plastic layers and 52% for 50 μm, the CTR distribution improved to 204±49 ps and 220±41 ps respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On a NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast to noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses. KW - TOF PET KW - Heterostructure KW - Metascintillator KW - Multiple TOF kernels KW - Image Reconstruction Y1 - 2022 U6 - https://doi.org/10.1109/TRPMS.2022.3208615 SN - 2469-7311 SN - 2469-7303 VL - 7 IS - 1 SP - 41 EP - 51 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Baringhaus, Ludwig A1 - Gaigall, Daniel T1 - A goodness-of-fit test for the compound Poisson exponential model JF - Journal of Multivariate Analysis N2 - On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed. KW - Bootstrapping KW - Collective risk model Y1 - 2022 U6 - https://doi.org/10.1016/j.jmva.2022.105154 SN - 0047-259X SN - 1095-7243 VL - 195 IS - Article 105154 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Evans, Benjamin A1 - Braun, Sebastian A1 - Ulmer, Jessica A1 - Wollert, Jörg T1 - AAS implementations - current problems and solutions T2 - 20th International Conference on Mechatronics - Mechatronika (ME) N2 - The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field. KW - Industry 4.0 KW - Multi-agent Systems KW - Digital Twin KW - Asset Administration Shell Y1 - 2022 SN - 978-1-6654-1040-3 U6 - https://doi.org/10.1109/ME54704.2022.9982933 N1 - 20th International Conference on Mechatronics - Mechatronika (ME), 07-09 December 2022, Pilsen, Czech Republic PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Löken, Michael A1 - Hüning, Felix T1 - Wiegand-effect-powered wireless IoT sensor node T2 - ITG-Fb. 303: Sensoren und Messsysteme N2 - In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases. Y1 - 2022 SN - 978-3-8007-5835-7 N1 - Sensoren und Messsysteme - 21. ITG/GMA-Fachtagung, 10.05.2022 - 11.05.2022 in Nürnberg SP - 255 EP - 260 PB - VDE Verlag GmbH CY - Berlin ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results JF - International Journal of Human-Computer Studies N2 - Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence. KW - Gamification KW - Virtual reality KW - Assembly KW - User study KW - Level system Y1 - 2022 U6 - https://doi.org/10.1016/j.ijhcs.2022.102854 SN - 1071-5819 VL - 165 IS - Art. No. 102854 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schuba, Marko A1 - Höfken, Hans-Wilhelm A1 - Linzbach, Sophie T1 - An ICS Honeynet for Detecting and Analyzing Cyberattacks in Industrial Plants T2 - 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET) N2 - Cybersecurity of Industrial Control Systems (ICS) is an important issue, as ICS incidents may have a direct impact on safety of people or the environment. At the same time the awareness and knowledge about cybersecurity, particularly in the context of ICS, is alarmingly low. Industrial honeypots offer a cheap and easy to implement way to raise cybersecurity awareness and to educate ICS staff about typical attack patterns. When integrated in a productive network, industrial honeypots may not only reveal attackers early but may also distract them from the actual important systems of the network. Implementing multiple honeypots as a honeynet, the systems can be used to emulate or simulate a whole Industrial Control System. This paper describes a network of honeypots emulating HTTP, SNMP, S7communication and the Modbus protocol using Conpot, IMUNES and SNAP7. The nodes mimic SIMATIC S7 programmable logic controllers (PLCs) which are widely used across the globe. The deployed honeypots' features will be compared with the features of real SIMATIC S7 PLCs. Furthermore, the honeynet has been made publicly available for ten days and occurring cyberattacks have been analyzed KW - Conpot KW - honeypot KW - honeynet KW - ICS KW - cybersecurity Y1 - 2022 SN - 978-1-6654-4231-2 SN - 978-1-6654-4232-9 U6 - https://doi.org/10.1109/ICECET52533.2021.9698746 N1 - 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). 09-10 December 2021. Cape Town, South Africa. PB - IEEE ER - TY - JOUR A1 - Malinowski, Daniel A1 - Fournier, Yvan A1 - Horbach, Andreas A1 - Frick, Michael A1 - Magliani, Mirko A1 - Kalverkamp, Sebastian A1 - Hildinger, Martin A1 - Spillner, Jan A1 - Behbahani, Mehdi A1 - Hima, Flutura T1 - Computational fluid dynamics analysis of endoluminal aortic perfusion JF - Perfusion N2 - Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80% for the blood coming from the heart and to 100% for the blood leaving the cannula. 50% and 90% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation. KW - computational fluid dynamics analysis KW - simulation KW - endoluminal KW - aortic perfusion KW - extracorporeal membrane oxygenation Y1 - 2022 U6 - https://doi.org/10.1177/02676591221099809 SN - 1477-111X VL - 0 IS - 0 SP - 1 EP - 8 PB - Sage CY - London ER - TY - JOUR A1 - Lenz, Maximilian A1 - Kahmann, Stephanie Lucina A1 - Behbahani, Mehdi A1 - Pennig, Lenhard A1 - Hackl, Michael A1 - Leschinger, Tim A1 - Müller, Lars Peter A1 - Wegmann, Kilian T1 - Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation JF - Archives of Orthopaedic and Trauma Surgery N2 - Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer’s classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education. KW - Proximal humerus fracture KW - Biomechanical simulation KW - Fracture configuration KW - Fracture simulation KW - Rotator cuff Y1 - 2022 U6 - https://doi.org/10.1007/s00402-022-04471-9 SN - 1434-3916 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Chloé, Radermacher A1 - Malyaran, Hanna A1 - Craveiro, Rogerio Bastos A1 - Peglow, Sarah A1 - Behbahani, Mehdi A1 - Pufe, Thomas A1 - Wolf, Michael A1 - Neuss, Sabine T1 - Mechanical loading on cementoblasts: a mini review JF - Osteologie N2 - Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments. KW - Cementoblast KW - Compression KW - Tension KW - Mechanotransduction KW - Forces Y1 - 2022 U6 - https://doi.org/10.1055/a-1826-0777 SN - 1019-1291 VL - 31 IS - 2 SP - 111 EP - 118 PB - Thieme CY - Stuttgart ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - 10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link T2 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS) N2 - The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies. KW - 10BASE-T1L KW - Ethernet KW - Field device KW - Sensors KW - IO-Link Y1 - 2022 SN - 978-1-6654-1086-1 SN - 978-1-6654-1087-8 U6 - https://doi.org/10.1109/WFCS53837.2022.9779176 N1 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), 27-29 April 2022, Pavia, Italy PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - https://doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems, Jun 29, 2022 - Jul 01, 2022, Lugano, Switzerland VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - https://doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems, Jun 29, 2022 - Jul 01, 2022, Lugano, Switzerland VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Emhardt, Selina N. A1 - Jarodzka, Halszka A1 - Brand-Gruwel, Saskia A1 - Drumm, Christian A1 - Niehorster, Diederick C. A1 - van Gog, Tamara T1 - What is my teacher talking about? Effects of displaying the teacher’s gaze and mouse cursor cues in video lectures on students’ learning JF - Journal of Cognitive Psychology N2 - Eye movement modelling examples (EMME) are instructional videos that display a teacher’s eye movements as “gaze cursor” (e.g. a moving dot) superimposed on the learning task. This study investigated if previous findings on the beneficial effects of EMME would extend to online lecture videos and compared the effects of displaying the teacher’s gaze cursor with displaying the more traditional mouse cursor as a tool to guide learners’ attention. Novices (N = 124) studied a pre-recorded video lecture on how to model business processes in a 2 (mouse cursor absent/present) × 2 (gaze cursor absent/present) between-subjects design. Unexpectedly, we did not find significant effects of the presence of gaze or mouse cursors on mental effort and learning. However, participants who watched videos with the gaze cursor found it easier to follow the teacher. Overall, participants responded positively to the gaze cursor, especially when the mouse cursor was not displayed in the video. KW - Instructional design KW - eye movement modelling examples KW - video learning Y1 - 2022 U6 - https://doi.org/10.1080/20445911.2022.2080831 SN - 2044-5911 SP - 1 EP - 19 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Vahidpour, Farnoosh A1 - Guthman, Eric A1 - Arreola, Julia A1 - Alghazali, Yousef H. M. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform JF - Foods N2 - In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry. KW - spore kill rate KW - sterility KW - aseptic parameters KW - multi-sensing platform KW - gaseous hydrogen peroxide Y1 - 2022 U6 - https://doi.org/10.3390/foods11050660 SN - 2304-8158 N1 - This article belongs to the Special Issue "Sensors and Biosensors Application for Food Industries" VL - 11 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Schmidt, Simon A1 - Stelter, Jonathan K. A1 - Wittrich, Marco A1 - Quick, Harald H. A1 - Bitz, Andreas A1 - Ladd, Mark E. T1 - Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose JF - NMR in Biomedicine N2 - In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil. KW - body imaging at 7 T MRI KW - thermal dose KW - tissue temperature KW - transmit antenna arrays Y1 - 2022 U6 - https://doi.org/10.1002/nbm.4656 SN - 0952-3480 (Print) SN - 1099-1492 (Online) VL - 35 IS - 5 SP - 1 EP - 17 PB - Wiley ER - TY - JOUR A1 - Penner, Crystal A1 - Usherovich, Samuel A1 - Niedermeier, Jana A1 - Bélanger-Champagne, Camille A1 - Trinczek, Michael A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Organic Scintillator-Fibre Sensors for Proton Therapy Dosimetry: SCSF-3HF and EJ-260 JF - electronics N2 - In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as potentially in vivo monitoring is needed to minimize dose from secondary neutrons. Two 3 mm long, 1 mm diameter organic scintillators were tested for candidacy to be used in a proton–neutron discrimination detector. The SCSF-3HF (1500) scintillating fibre (Kuraray Co. Chiyoda-ku, Tokyo, Japan) and EJ-260 plastic scintillator (Eljen Technology, Sweetwater, TX, USA) were irradiated at the TRIUMF Neutron Facility and the Proton Therapy Research Centre. In the proton beam, we compared the raw Bragg peak and spread-out Bragg peak response to the industry standard Markus chamber detector. Both scintillator sensors exhibited quenching at high LET in the Bragg peak, presenting a peak-to-entrance ratio of 2.59 for the EJ-260 and 2.63 for the SCSF-3HF fibre, compared to 3.70 for the Markus chamber. The SCSF-3HF sensor demonstrated 1.3 times the sensitivity to protons and 3 times the sensitivity to neutrons as compared to the EJ-260 sensor. Combined with our equations relating neutron and proton contributions to dose during proton irradiations, and the application of Birks’ quenching correction, these fibres provide valid candidates for inexpensive and replicable proton-neutron discrimination detectors Y1 - 2022 U6 - https://doi.org/10.3390/electronics12010011 SN - 2079-9292 N1 - This article belongs to the Special Issue "Applications of Optical Fiber Sensors" VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vahidpour, Farnoosh A1 - Alghazali, Yousef A1 - Akca, Sevilay A1 - Hommes, Gregor A1 - Schöning, Michael Josef T1 - An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol JF - Chemosensors N2 - This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs’ capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry. Y1 - 2022 U6 - https://doi.org/10.3390/chemosensors10060202 SN - 2227-9040 N1 - This article belongs to the Special Issue "Bioinspired Chemical Sensors and Micro-Nano Devices" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER -