TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit T2 - 25th International Symposium on Space Flight Dynamics ISSFD N2 - Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail KW - Solar sail KW - Gossamer structures KW - Attitude dynamics KW - Orbital dynamics Y1 - 2015 N1 - 25th International Symposium on Space Flight Dynamics ISSFD October 19 – 23, 2015, Munich, Germany https://issfd.org/2015/ SP - 1 EP - 15 ER - TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit T2 - 25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany Y1 - 2015 ER - TY - JOUR A1 - Wilson, Thomas L A1 - Blome, Hans-Joachim A1 - LaFave, Norman T1 - Astrophysical Cosmology Using a Lunar Ligo JF - Engineering, construction, and operations in space V : proceedings of the Fifth International Conference on Space '96, Albuquerque, New Mexico, June 1-6, 1996 / sponsored by Aerospace Division of the American Society of Civil Engineers ... [et al.]; edite Y1 - 1996 SN - 0-7844-0177-2 SP - 861 EP - 863 PB - The Society CY - New York ER - TY - JOUR A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - Assessment of structural mechanical effects related to torsional deformations of propellers JF - CEAS Aeronautical Journal N2 - Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension–twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension–twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller’s stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material. KW - Lifting propeller KW - Extension–twist coupling KW - Trapeze effect KW - Centrifugal twisting moment Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00737-7 SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Felix Möhren PB - Springer CY - Wien ER - TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - https://doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saretzki, Charlotte A1 - Bergmann, Ole A1 - Dahmann, Peter A1 - Janser, Frank A1 - Keimer, Jona A1 - Machado, Patricia A1 - Morrison, Audry A1 - Page, Henry A1 - Pluta, Emil A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Are small airplanes safe with regards to COVID-19 transmission? JF - Journal of Travel Medicine Y1 - 2021 U6 - https://doi.org/10.1093/jtm/taab105 SN - 1708-8305 VL - 28 IS - 7 PB - Oxford University Press CY - Oxford ER - TY - BOOK A1 - Havermann, Marc A1 - Haertig, J. A1 - Rey, C. A1 - George, A. T1 - Application of particle image velocimetry to high-speed supersonic flows in a shock tunnel : 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 8 - 11, 2002; Schwerpunkt 0 / Institut Franco-Allemand de Recherches de Saint-Louis. Havermann, M. ... Y1 - 2002 N1 - Publication / Institut Franco-Allemand de Recherches de Saint-Louis ; 640 PB - ISL CY - Saint-Louis ER - TY - BOOK A1 - Mertens, Josef A1 - Velden, Alexander van der A1 - Kelm, Roland A1 - Kokan, David T1 - Application of MDO to large subsonic transport aircraft Y1 - 2000 N1 - Aerospace Sciences Meeting and Exhibit <38, 2000, Reno, NV> ; (AIAA Paper ; 00-0844) PB - American Institute of Aeronautics and Astronautics CY - Reston, Va. ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Kazari, Masahide A1 - Funke, Harald A1 - Keinz, Jan A1 - Kusterer, Karsten A1 - Haj Ayed, Anis T1 - Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design T2 - Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan Y1 - 2015 SN - 978-4-89111-008-6 N1 - IGTC15-0238 SP - 141 EP - 146 ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Uto, Takahiro A1 - Uchiyama, Yuta A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-129 SP - 1 EP - 6 ER - TY - CHAP A1 - Gehler, M. A1 - Ober-Blöbaum, S. A1 - Dachwald, Bernd T1 - Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies T2 - Procceedings of the 60th International Astronautical Congress N2 - Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments. KW - Spacecraft Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 SP - 1360 EP - 1371 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmitz, Günter A1 - Spicher, U. A1 - Kollmeier, H.P. T1 - Application of a New Optical-Fiber Technique for Flame Propagation Diagnostics in IC Engines Y1 - 1988 N1 - SAE- Paper-No.: 881637, 1988 SAE International Fuels and Lubricants Meeting and Exposition, Portland, October 10-13, 1988 ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Analysis of the static and dynamic aero-structural response of an elastic swept wing model by direct aeroelastic simulation T2 - ICAS 2006 proceedings : 25th Congress of the International Council of the Aeronautical Sciences ; Hamburg, Germany, 3 - 8 September, 2006 : 25th International Congress of Aeronautical Sciences Y1 - 2006 SN - 0-9533991-7-6 SP - Paper No. 2006-10.3.3 PB - Optimage CY - Edinburgh ER - TY - CHAP A1 - Borggrafe, Andreas A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Analysis of interplanetary solar sail trajectories with attitude dynamics T2 - Dynamics and Control of Space Systems 2012 N2 - We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system. Y1 - 2012 SN - 978-0-87703-587-9 SP - 1553 EP - 1569 PB - Univelt Inc CY - San Diego ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications JF - International Journal of Hydrogen Energy Y1 - 2019 U6 - https://doi.org/10.1016/j.ijhydene.2019.01.161 SN - 0360-3199 VL - 44 IS - 13 SP - 6978 EP - 6990 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - An Interstellar – Heliopause mission using a combination of solar/radioisotope electric propulsion T2 - Presented at the 32nd International Electric Propulsion Conference N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter “RIT-22”ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter “RIT-10” ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our “InTrance” method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification. Y1 - 2011 N1 - 32nd International Electric Propulsion Conference, 11-15 September. Wiesbaden, Germany SP - 1 EP - 7 ER - TY - JOUR A1 - Weber, Tobias A1 - Englhard, Markus A1 - Arent, Jan-Christoph A1 - Hausmann, Joachim T1 - An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates JF - Journal of Composite Materials Y1 - 2019 U6 - https://doi.org/10.1177/0021998319846556 SN - 1530-793X VL - 53 IS - 26-27 SP - 3757 EP - 3773 ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - JOUR A1 - Schael, S. A1 - Atanasyan, A. A1 - Berdugo, J. A1 - Bretz, T. A1 - Czupalla, Markus A1 - Dachwald, Bernd A1 - Doetinchem, P. von A1 - Duranti, M. A1 - Gast, H. A1 - Karpinski, W. A1 - Kirn, T. A1 - Lübelsmeyer, K. A1 - Maña, C. A1 - Marrocchesi, P.S. A1 - Mertsch, P. A1 - Moskalenko, I.V. A1 - Schervan, T. A1 - Schluse, M. A1 - Schröder, K.-U. A1 - Schultz von Dratzig, A. A1 - Senatore, C. A1 - Spies, L. A1 - Wakely, S.P. A1 - Wlochal, M. A1 - Uglietti, D. A1 - Zimmermann, J. T1 - AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2 JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Y1 - 2019 U6 - https://doi.org/10.1016/j.nima.2019.162561 SN - 0168-9002 VL - 944 IS - 162561 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Wolff, Nino A1 - Seefeldt, Patric A1 - Bauer, Wolfgang A1 - Fiebig, Christopher A1 - Gerding, Patrick A1 - Parow-Souchon, Kai A1 - Pongs, Anna A1 - Reiffenrath, Matti A1 - Ziemann, Thomas T1 - Alternative application of solar sail technology T2 - Advances in solar sailing N2 - The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. The focus of this paper is the development of a drag sail based on solar sail technology that could contribute to a reduction of space debris in low Earth orbits. The drag sail design and its connections to solar sail development, a first test on a sounding rocket, as well as the ongoing integration of the drag sail into a triple CubeSat is presented. Y1 - 2014 SN - 978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book) U6 - https://doi.org/10.1007/978-3-642-34907-2_23 SP - 351 EP - 365 PB - Springer CY - Berlin ER - TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives JF - Journal of Number Theory KW - Drinfeld modules KW - Periods KW - t-modules KW - Transcendence KW - Higher derivations Y1 - 2022 U6 - https://doi.org/10.1016/j.jnt.2022.01.006 SN - 0022-314X VL - 240 SP - 145 EP - 162 PB - Elsevier CY - Orlando, Fla. ER - TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives KW - Drinfeld modules KW - t-modules KW - Transcendence KW - Hyperdifferentials Y1 - 2021 N1 - Zweitveröffentlichung. Verlagsveröffentlichung: https://doi.org/10.1016/j.jnt.2022.01.006 SP - 1 EP - 12 ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Airfoil drag at low-to-medium reynolds numbers: A novel estimation method JF - AIAA Journal N2 - This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar–turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage. Y1 - 2020 U6 - https://doi.org/10.2514/1.J058983 SN - 1533-385X VL - 58 IS - 7 SP - 2791 EP - 2805 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Ballmann, Josef A1 - Boucke, Alexander A1 - Braun, Carsten T1 - Aeroelastic sensitivity in the transonic regime T2 - Symposium Transsonicum IV : proceedings of the IUTAM symposium held in Göttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73 Y1 - 2003 SN - 978-94-010-3998-7 SP - 225 EP - 236 PB - Kluwer Academic CY - Dordrecht ER - TY - JOUR A1 - Gerhardt, Hans Joachim A1 - Kramer, C. T1 - Aerodynamsiche RA-Optimierung JF - Zentralblatt fuer Industriebau. 31 (1985), H. 5 Y1 - 1985 SN - 0044-4227 SP - 358 EP - 362 ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Aerodynamic multi point design challenge T2 - New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - In the chapter “Son of Concorde, a Technology Challenge” one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration. KW - Drag Reduction KW - Pitching Moment KW - Leading Edge Vortex KW - Wave Drag KW - Variable Geometry Y1 - 1997 SN - 3-2118-2815-X U6 - https://doi.org/10.1007/978-3-7091-2658-5_4 SP - 53 EP - 67 PB - Springer CY - Wien [u.a.] ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach JF - SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021 Y1 - 2021 U6 - https://doi.org/10.2514/6.2021-1535 SP - 1 EP - 12 PB - AIAA CY - Reston, Va. ER - TY - GEN A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Tegtmeyer, Philipp A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode T2 - AIAA SCITECH 2022 Forum N2 - This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed. Y1 - 2021 U6 - https://doi.org/10.2514/6.2022-0546 N1 - AIAA SCITECH 2022 Forum, January 3-7, 2022, San Diego, CA & Virtual PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane N2 - This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4. Y1 - 2020 U6 - https://doi.org/10.25967/530170 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online PB - DGLR CY - Bonn ER - TY - CHAP A1 - Otten, D. A1 - Schmid, M. A1 - Weber, Tobias T1 - Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization T2 - Proceedings of SAMPE Europe Conference, Amiens , France Y1 - 2015 ER - TY - CHAP A1 - Otten, D. A1 - Schmidt, M. A1 - Weber, Tobias T1 - Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations T2 - SAMPE Europe Conference 16 Liege Y1 - 2016 SN - 978-1-5108-3800-0 SP - 570 EP - 577 ER - TY - JOUR A1 - Weber, Tobias A1 - Ruff-Stahl, Hans-Joachim K. T1 - Advances in Composite Manufacturing of Helicopter Parts JF - International Journal of Aviation, Aeronautics, and Aerospace Y1 - 2017 U6 - https://doi.org/10.15394/ijaaa.2017.1153 SN - 2374-6793 VL - 4 IS - 1 ER - TY - CHAP A1 - Nowack, N. A1 - Röth, Thilo A1 - Bührig-Polaczek, A. A1 - Klaus, G. ED - Hirsch, Jürgen T1 - Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures T2 - Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11] Y1 - 2008 SN - 978-3-527-32367-8 IS - 2 SP - 2374 EP - 2381 ER - TY - JOUR A1 - Schulze, Sven A1 - Feyerl, Günter A1 - Pischinger, Stefan T1 - Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions JF - Energies N2 - To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks. KW - Energy management strategies KW - ECMS KW - CO2 emission reduction targets KW - Driving cycle recognition KW - Predictive battery discharge Y1 - 2023 U6 - https://doi.org/10.3390/en16135171 SN - 1996-1073 N1 - The article belongs to the Special Issue "Energy Management Strategies of Electrified Vehicles toward the Real-World Driving". VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mertens, Josef A1 - Henke, Rolf T1 - Adaptive technologies for future civil air transport JF - Air & Space Europe. 3 (2001), H. 3-4 Y1 - 2001 SN - 1247-5793 SP - 80 EP - 82 ER - TY - CHAP A1 - Schulze, Sven A1 - Mühleisen, M. A1 - Feyerl, Günter T1 - Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology T2 - 18. Internationales Stuttgarter Symposium. Proceedings Y1 - 2018 U6 - https://doi.org/10.1007/978-3-658-21194-3 SP - 75 EP - 89 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Mertens, Josef A1 - Klevenhusen, K. D. A1 - Jakob, H. T1 - Accurate Transonic Wave Drag Prediction Using Simple Physical Models JF - AIAA-Journal. 25 (1987), H. 6 Y1 - 1987 SN - 0001-1452 SP - 799 EP - 805 ER - TY - CHAP A1 - Schirra, Julian A1 - Bauschat, J.-Michael A1 - Watmuff, J.H. T1 - Accurate induced drag prediction for highly non-planar lifting systems T2 - 19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia N2 - The impact of wake model effects is investigated for two highly non-planar lifting systems. Dependent on the geometrical arrangement of the configuration, the wake model shape is found to considerably affect the estimation. Particularly at higher angles of attack, an accurate estimation based on the common linear wake model approaches is involved. Y1 - 2014 ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - INPR A1 - Schmülling, Max A1 - Gützlaff, Joel A1 - Czupalla, Markus T1 - A thermal simulation environment for moving objects on the lunar surface N2 - This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented. KW - Dynamic modeling KW - Thermal analysis KW - ESATAN-TMS KW - Lunar Surface KW - Thermal Model Y1 - 2024 U6 - https://doi.org/10.21203/rs.3.rs-3902363/v1 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ball, Andrew J. A1 - Ulamec, Stephan A1 - Price, Michael E. T1 - A small mission for in situ exploration of a primitive binary near-Earth asteroid / Ball, Andrew J. ; Ulamec, Stephan ; Dachwald, Bernd ; Price, Michael E. ; [u.a.] JF - Advances in Space Research. 43 (2009), H. 2 Y1 - 2009 SN - 0273-1177 SP - 317 EP - 324 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft T2 - Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea Y1 - 2017 ER - TY - CHAP A1 - Schirra, Julian A1 - Watmuff, Jon A1 - Bauschat, J.-Michael T1 - A relative assessment of existing potential-methodologies to accurately estimate the induced drag of highly non-planar lifting systems T2 - Advanced aero concepts, design and operations : Applied Aerodynamics Conference : July 22 -24, 2014, Bristol, UK Y1 - 2014 SP - 1 EP - 13 ER - TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalil, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 SN - 2169-3536 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SP - 1 EP - 12 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalili, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SN - 2169-3536 VL - 8 IS - Art. 9108222 SP - 111381 EP - 111393 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Bagheri, Mohsen A1 - Schleupen, Josef A1 - Dahmann, Peter A1 - Kallweit, Stephan T1 - A multi-functional device applying for the safe maintenance at high-altitude on wind turbines T2 - 20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015 Y1 - 2015 SP - 1 EP - 6 ER - TY - JOUR A1 - Dittus, H. A1 - Turyshev, S. G. A1 - Dachwald, Bernd A1 - Blome, Hans-Joachim T1 - A Mission to Explore the Pioneer Anomaly JF - Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588) Y1 - 2005 SN - 9290928999 N1 - ISBN der CD-ROM-Ausg.: 9290928999 ; Symposium Trends in Space Science and Cosmic Vision 2020 <2005, Noordwijk> ; ESLAB symposium <39,2005, Noordwijk> ; European Space Laboratory ; Report Number: LA-UR-05-4907 ; The Pioneer Explorer Collaboration SP - 3 EP - 10 PB - ESA Publ. Div. CY - Noordwijk ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER -