TY - JOUR A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard A1 - Stobbe, P. T1 - Computational fluid flow of porous resic ceramic filtering modules and optimization of the channel edge form geometry JF - Proceedings : April 14 - 18, 2008, Leipzig, Germany / hosted by VDI, Society for Chemical and Process Engineering . Vol 2 Y1 - 2008 N1 - Verein Deutscher Ingenieure ; World Filtration Congress ; (10 : ; 2008.04.14-18 : ; Leipzig) ; WFC ; (10 : ; 2008.04.14-18 : ; Leipzig) SP - 300 EP - 304 PB - Filtech Exhibitions CY - Meerbusch ER - TY - JOUR A1 - Mykoniou, Konstantin A1 - Butenweg, Christoph A1 - Holtschoppen, Britta A1 - Klinkel, Sven T1 - Seismic response analysis of adjacent liquid-storage tanks JF - Earthquake engineering and structural dynamics N2 - A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank-liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross-interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell-liquid-soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. KW - liquid-structure interaction KW - seismic response KW - impulsive effects KW - liquid-storage tank KW - structure-soil-structure interaction Y1 - 2016 U6 - https://doi.org/10.1002/eqe.2726 SN - 1096-9845 (E-Journal); 0098-8847 (Print) VL - 45 IS - 11 SP - 1779 EP - 1796 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Taddei, Francesca A1 - Butenweg, Christoph A1 - Klinkel, S. T1 - Parametric investigation of the soil-structure interaction effects on the dynamic behaviour of a shallow foundation supported wind turbine considering a layered soil JF - Wind energy : an international journal for progress and applications in wind power conversion technology Y1 - 2015 U6 - https://doi.org/10.1002/we.1703 SN - 1099-1824 (E-Journal); 1095-4244 (Print) VL - Volume 18 IS - Issue 3 SP - 399 EP - 417 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Holler, S. A1 - Butenweg, Christoph A1 - Noh, S.-Y. A1 - Meskouris, Konstantin T1 - Computational model of textile-reinforced concrete structures JF - Computers & structures : an international journal Y1 - 2004 U6 - https://doi.org/10.1016/j.compstruc.2004.03.076 SN - 1879-2243 (E-Journal); 0045-7949 (Print) VL - Volume 82 IS - Issues 23-26 SP - 1971 EP - 1979 ER - TY - JOUR A1 - Mistler, Michael A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Modelling methods of historic masonry buildings under seismic excitation JF - Journal of seismology Y1 - 2006 U6 - https://doi.org/10.1007/s10950-006-9033-z SN - 1383-4649 (Print) ; 1573-157X (E-Journal) VL - Volume 10 IS - No. 4 SP - 497 EP - 510 ER - TY - JOUR A1 - Mistler, Michael A1 - Anthoine, A. A1 - Butenweg, Christoph T1 - In-plane and out-of-plane homogenisation of masonry JF - Computers & structures Y1 - 2007 U6 - https://doi.org/10.1016/j.compstruc.2006.08.087 SN - 1879-2243 (E-Journal); 0045-7949 (Print) VL - Volume 85 IS - Issues 17-18 SP - 1321 EP - 1330 ER - TY - JOUR A1 - Rossi, Leonardo A1 - Parisi, Davide A1 - Casari, Chiara A1 - Montanari, Luca A1 - Ruggieri, Gabriella A1 - Holtschoppen, Britta A1 - Butenweg, Christoph T1 - Empirical Data about Direct Economic Consequences of Emilia-Romagna 2012 Earthquake on Long-Span-Beam Buildings JF - Earthquake Spectra Y1 - 2019 U6 - https://doi.org/10.1193/100118EQS224DP SN - 1944-8201 VL - 35 IS - 4 SP - 1979 EP - 2001 ER - TY - JOUR A1 - Rossi, Leonardo A1 - Holtschoppen, Britta A1 - Butenweg, Christoph T1 - Official data on the economic consequences of the 2012 Emilia-Romagna earthquake: a first analysis of database SFINGE JF - Bulletin of Earthquake Engineering Y1 - 2019 U6 - https://doi.org/10.1007%2Fs10518-019-00655-8 VL - 17 IS - 9 SP - 4855 EP - 4884 PB - Springer CY - Berlin ER - TY - JOUR A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sesov, Vlatko A1 - Cvetanovska, Julijana A1 - Gjorgiev, Igor T1 - Numerical simulation of geotechnical problems by coupled finite and infinite elements JF - Journal of civil engineering and architecture Y1 - 2013 SN - 1934-7359 (E-Journal) VL - 7 IS - 1 SP - 68 EP - 77 PB - David Publishing CY - Libertyville ER - TY - JOUR A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Bolender, Katrin A1 - Grunendahl, Arno T1 - A muscle controlled finite-element model of laryngeal abduction and adduction JF - Computer methods in biomechanics and biomedical engineering Y1 - 2007 SN - 1476-8259 (E-Journal); 1025-5842 (Print) VL - Volume 10 IS - Issue 5 SP - 377 EP - 388 ER - TY - JOUR A1 - Rochefort, E. de A1 - Verver, M. A1 - Grunendahl, A. A1 - Mooi, H. A1 - Butenweg, Christoph T1 - Detailed modelling of the lumbar spine for investigations of low back pain JF - SAE transactions : papers presented at Society and Section meetings / Society of Automotive Engineers Y1 - 2005 SN - 0096-736X VL - Volume 114 IS - Part 7 SP - 788 EP - 796 ER - TY - JOUR A1 - Holtschoppen, Britta A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Seismic design of non-structural components in industrial facilities JF - International journal of engineering under uncertainty Y1 - 2009 SN - 0975-4806 VL - Volume 1 SP - 1 EP - 13 ER - TY - JOUR A1 - Rossi, Leonardo A1 - Stupazzini, Marco A1 - Parisi, Davide A1 - Holtschoppen, Britta A1 - Ruggieri, Gabriella A1 - Butenweg, Christoph T1 - Empirical fragility functions and loss curves for long-span-beam buildings based on the 2012 Emilia-Romagna earthquake official database JF - Bulletin of Earthquake Engineering N2 - The 2012 Emilia-Romagna earthquake, that mainly struck the homonymous Italian region provoking 28 casualties and damage to thousands of structures and infrastructures, is an exceptional source of information to question, investigate, and challenge the validity of seismic fragility functions and loss curves from an empirical standpoint. Among the most recent seismic events taking place in Europe, that of Emilia-Romagna is quite likely one of the best documented, not only in terms of experienced damages, but also for what concerns occurred losses and necessary reconstruction costs. In fact, in order to manage the compensations in a fair way both to citizens and business owners, soon after the seismic sequence, the regional administrative authority started (1) collecting damage and consequence-related data, (2) evaluating information sources and (3) taking care of the cross-checking of various reports. A specific database—so-called Sistema Informativo Gestione Europa (SFINGE)—was devoted to damaged business activities. As a result, 7 years after the seismic events, scientists can rely on a one-of-a-kind, vast and consistent database, containing information about (among other things): (1) buildings’ location and dimensions, (2) occurred structural damages, (3) experienced direct economic losses and (4) related reconstruction costs. The present work is focused on a specific data subset of SFINGE, whose elements are Long-Span-Beam buildings (mostly precast) deployed for business activities in industry, trade or agriculture. With the available set of data, empirical fragility functions, cost and loss ratio curves are elaborated, that may be included within existing Performance Based Earthquake Engineering assessment toolkits. KW - Empirical fragility functions KW - Empirical consequence curves KW - Precast buildings KW - Emilia-Romagna earthquake KW - PBEE Y1 - 2019 U6 - https://doi.org/10.1007/s10518-019-00759-1 SN - 1573-1456 VL - 18 SP - 1693 EP - 1721 PB - Springer Nature ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Kubalski, Thomas A1 - Klinkel, Sven T1 - Masonry infilled reinforced concrete frames under horizontal loading T1 - Stahlbetonrahmen mit Ausfachungen aus Mauerwerk unter horizontalen Belastungen JF - Mauerwerk N2 - The behaviour of infilled reinforced concrete frames under horizontal load has been widely investigated, both experimentally and numerically. Since experimental tests represent large investments, numerical simulations offer an efficient approach for a more comprehensive analysis. When RC frames with masonry infill walls are subjected to horizontal loading, their behaviour is highly non-linear after a certain limit, which makes their analysis quite difficult. The non-linear behaviour results from the complex inelastic material properties of the concrete, infill wall and conditions at the wall-frame interface. In order to investigate this non-linear behaviour in detail, a finite element model using a micro modelling approach is developed, which is able to predict the complex non-linear behaviour resulting from the different materials and their interaction. Concrete and bricks are represented by a non-linear material model, while each reinforcement bar is represented as an individual part installed in the concrete part and behaving elasto-plastically. Each brick is modelled individually and connected taking into account the non-linearity of a brick mortar interface. The same approach is followed using two finite element software packages and the results are compared with the experimental results. The numerical models show a good agreement with the experiments in predicting the overall behaviour, but also very good matching for strength capacity and drift. The results emphasize the quality and the valuable contribution of the numerical models for use in parametric studies, which are needed for the derivation of design recommendations for infilled frame structures. Y1 - 2016 U6 - https://doi.org/10.1002/dama.201600703 SN - 1437-1022 VL - 20 IS - 4 SP - 305 EP - 312 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Kinkel, Sven T1 - Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading JF - Soil Dynamics and Earthquake Engineering N2 - In recent years, many onshore wind turbines are erected in seismic active regions and on soils with poor load bearing capacity, where pile grids are inevitable to transfer the loads into the ground. In this contribution, a realistic multi pile grid is designed to analyze the dynamics of a wind turbine tower including frequency dependent soil-structure-interaction. It turns out that different foundations on varying soil configurations heavily influence the vibration response. While the vibration amplitude is mostly attenuated, certain unfavorable combinations of structure and soil parameters lead to amplification in the range of the system's natural frequencies. This testifies the need for overall dynamic analysis in the assessment of the dynamic stability and the holistic frequency tuning of the turbines. Y1 - 2018 U6 - https://doi.org/10.1016/j.soildyn.2018.03.009 SN - 0267-7261 VL - 109 SP - 299 EP - 311 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Cacciatore, Pamela A1 - Boesen, Niklas T1 - Investigation of the seismic performance of modern masonry buildings during the Emilia Romagna earthquake series T1 - Untersuchungen des seismischen Verhaltens von modernen Mauerwerksbauten während der Erdbebenserie in der Emilia Romagna JF - Mauerwerk N2 - The article presents the investigation of the seismic behaviour of a modern URM building located in the municipality of Finale Emilia in province of Modena, Northern Italy. The building is situated in the centre of the series of the 2012 Northern Italy earthquakes and has not suffered any damage during the earthquake series in 2012. The observed earthquake resistance of the building is compared with predicted resistances based on linear and nonlinear design approaches according to Eurocode. Furthermore, probabilistic analyses based on nonlinear calculation models taking into account scattering of the most relevant input parameters are carried out to identify their influence to the results and to derive fragility curves. Y1 - 2018 U6 - https://doi.org/10.1002/dama.201800013 SN - 1437-1022 VL - 22 IS - 4 SP - 238 EP - 250 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Salatic, Ratko T1 - Experimental results of reinforced concrete frames with masonry infills under combined quasi-static in-plane and out-of-plane seismic loading JF - Bulletin of Earthquake Engineering Y1 - 2019 U6 - https://doi.org/10.1007/s10518-019-00602-7 SN - 1573-1456 VL - 17 SP - 3397 EP - 3422 PB - Springer CY - Berlin ER - TY - JOUR A1 - Klein, Michel A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines JF - Procedia Engineering Y1 - 2017 U6 - https://doi.org/10.1016/j.proeng.2017.09.325 SN - 1877-7058 VL - 199 SP - 3218 EP - 3223 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative decoupling system for the seismic protection of masonry infill walls in reinforced concrete frames JF - Engineering Structures Y1 - 2019 U6 - https://doi.org/10.1016/j.engstruct.2019.109435 SN - 0141-0296 VL - 197 IS - Article 109435 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Göttsche, Joachim A1 - Alexopoulos, Spiros A1 - Dümmler, Andreas A1 - Maddineni, S. K. T1 - Multi-Mirror Array Calculations With Optical Error N2 - The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles. KW - solar process heat KW - concentrating collector KW - raytracing KW - point-focussing system Y1 - 2019 SP - 1 EP - 6 ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - https://doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Heinrichs, Uwe A1 - Kozerke, Sebastian A1 - Utting, Jane A1 - Kob, Malte A1 - Butenweg, Christoph A1 - Boesiger, Peter A1 - Niendorf, Thoralf T1 - Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope JF - Investigative Radiology KW - phonocardiogram KW - electrocardiogram KW - cardiac gating KW - high field MR imaging KW - cardiovascular MR imaging Y1 - 2009 U6 - https://doi.org/10.1097/RLI.0b013e3181b4c15e SN - 1536-0210 (online) SN - 0020-9996 (gedruckt) VL - 44 IS - 9 SP - 539 EP - 547 PB - Lippincott Williams & Wilkins ; (via Ovid) CY - Philadelphia, Pa ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - https://doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - https://doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sattler, Johannes Christoph A1 - Röger, Marc A1 - Schwarzbözl, Peter A1 - Buck, Reiner A1 - Macke, Ansgar A1 - Raeder, Christian A1 - Göttsche, Joachim T1 - Review of heliostat calibration and tracking control methods JF - Solar Energy N2 - Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun’s position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented. Y1 - 2020 U6 - https://doi.org/10.1016/j.solener.2020.06.030 VL - 207 SP - 110 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Geimer, Konstantin A1 - Sauerborn, Markus A1 - Hoffschmidt, Bernhard A1 - Schmitz, Mark A1 - Göttsche, Joachim T1 - Test Facility for Absorber Specimens of Solar Tower Power Plants JF - Advances in Science and Technology. 74 (2010) Y1 - 2010 N1 - 5th Forum on New Materials : CIMTEC 2010, Montecatini Terme, Italy 13-18 June 2010. Part C SP - 266 EP - 271 ER - TY - JOUR A1 - Rupp, Matthias A1 - Handschuh, Nils A1 - Rieke, Christian A1 - Kuperjans, Isabel T1 - Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany JF - Applied Energy Y1 - 2019 U6 - https://doi.org/10.1016/j.apenergy.2019.01.059 SN - 0306-2619 VL - 237 SP - 618 EP - 634 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Pohen, Gino D. A1 - Dicke, Max D. A1 - Paulsen, Svea A1 - Krafft, Simone A1 - Zang, Joachim W. A1 - Fonseca-Zang, Warde A. da A1 - Leite, Athaydes A1 - Kuperjans, Isabel T1 - Challenges and prospects of biogas from energy cane as supplement to bioethanol production JF - Agronomy N2 - Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production. Y1 - 2020 U6 - https://doi.org/10.3390/agronomy10060821 SN - 2073-4395 VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Block, Simon A1 - Viebahn, Peter A1 - Jungbluth, Christian T1 - Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045 JF - Frontiers in Climate N2 - Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called “low-temperature” DAC process, which might be more advantageous for Germany than the “high-temperature” one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167–353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40% of the city of Cologne‘s water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125–138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161–176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable. KW - rollout KW - economics KW - Germany KW - negative emissions KW - carbon dioxide removal KW - climate neutrality KW - DAC KW - direct air capture Y1 - 2024 U6 - https://doi.org/10.3389/fclim.2024.1353939 SN - 2624-9553 VL - 6 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - https://doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kahmann, Stephanie L. A1 - Rausch, Valentin A1 - Plümer, Jonathan A1 - Müller, Lars P. A1 - Pieper, Martin A1 - Wegmann, Kilian T1 - The automized fracture edge detection and generation of three-dimensional fracture probability heat maps JF - Medical Engineering & Physics N2 - With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1–2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further. KW - Fracture classification KW - Shoulder KW - Probability distribution mapping KW - Morphing KW - Imaging Y1 - 2022 SN - 1350-4533 VL - 2022 IS - 110 PB - Elsevier CY - Amsterdam ER -