TY - JOUR A1 - Horstmann, Marie-Therese A1 - Bialonski, Stephan A1 - Noenning, Nina A1 - Mai, Heinke A1 - Prusseit, Jens A1 - Wellmer, Jörg A1 - Hinrichs, Hermann A1 - Lehnertz, Klaus T1 - State dependent properties of epileptic brain networks: Comparative graph–theoretical analyses of simultaneously recorded EEG and MEG JF - Clinical Neurophysiology N2 - Objective To investigate whether functional brain networks of epilepsy patients treated with antiepileptic medication differ from networks of healthy controls even during the seizure-free interval. Methods We applied different rules to construct binary and weighted networks from EEG and MEG data recorded under a resting-state eyes-open and eyes-closed condition from 21 epilepsy patients and 23 healthy controls. The average shortest path length and the clustering coefficient served as global statistical network characteristics. Results Independent on the behavioral condition, epileptic brains exhibited a more regular functional network structure. Similarly, the eyes-closed condition was characterized by a more regular functional network structure in both groups. The amount of network reorganization due to behavioral state changes was similar in both groups. Consistent findings could be achieved for networks derived from EEG but hardly from MEG recordings, and network construction rules had a rather strong impact on our findings. Conclusions Despite the locality of the investigated processes epileptic brain networks differ in their global characteristics from non-epileptic brain networks. Further methodological developments are necessary to improve the characterization of disturbed and normal functional networks. Significance An increased regularity and a diminished modulation capability appear characteristic of epileptic brain networks. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.clinph.2009.10.013 SN - 1388-2457 VL - 121 IS - 2 SP - 172 EP - 185 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lehnertz, Klaus A1 - Mormann, Florian A1 - Osterhage, Hannes A1 - Andy, Müller A1 - Prusseit, Jens A1 - Chernihovskyi, Anton A1 - Staniek, Matthäus A1 - Krug, Dieter A1 - Bialonski, Stephan A1 - Elger, Christian E. T1 - State-of-the-art of seizure prediction JF - Journal of Clinical Neurophysiology Y1 - 2007 U6 - http://dx.doi.org/10.1097/WNP.0b013e3180336f16 SN - 1537-1603 VL - 24 IS - 2 SP - 147 EP - 153 ER - TY - JOUR A1 - Lehnertz, Klaus A1 - Bialonski, Stephan A1 - Horstmann, Marie-Therese A1 - Krug, Dieter A1 - Rothkegel, Alexander A1 - Staniek, Matthäus A1 - Wagner, Tobias T1 - Synchronization phenomena in human epileptic brain networks JF - Journal of neuroscience methods Y1 - 2009 U6 - http://dx.doi.org/10.1016/j.jneumeth.2009.05.015 SN - 0165-0270 VL - 183 IS - 1 SP - 42 EP - 48 ER - TY - JOUR A1 - Geier, Christian A1 - Lehnertz, Klaus A1 - Bialonski, Stephan T1 - Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing JF - Frontiers in Human Neuroscience Y1 - 2015 U6 - http://dx.doi.org/10.3389/fnhum.2015.00462 SN - 1662-5161 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bialonski, Stephan A1 - Wendler, Martin A1 - Lehnertz, Klaus T1 - Unraveling spurious properties of interaction networks with tailored random networks JF - Plos one N2 - We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. Y1 - 2011 U6 - http://dx.doi.org/10.1371/journal.pone.0022826 VL - 6 IS - 8 PB - Plos CY - San Francisco ER -