TY - JOUR A1 - Alnemer, Momin Sami Mohammad A1 - Kotliar, Konstantin A1 - Neuhaus, Valentin A1 - Pape, Hans-Christoph A1 - Ciritsis, Bernhard D. T1 - Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model JF - Cost Effectiveness and Resource Allocation N2 - Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare & Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10% fracture risk reduction, model A costs between $8,850 and $46,940 per quality-adjusted life-year ($/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side’s prophylaxis, the patient’s age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between $11,000/QALY and $74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks. KW - Hip fractures KW - Prevention KW - Geriatric KW - Cost-effectiveness KW - Prophylaxis Y1 - 2023 U6 - https://doi.org/10.1186/s12962-023-00482-4 SN - 1478-7547 N1 - Corresponding author: Momin S. Alnemer IS - 21, Article number: 77 PB - Springer Nature ER - TY - JOUR A1 - Kuchler, Timon A1 - Günthner, Roman A1 - Ribeiro, Andrea A1 - Hausinger, Renate A1 - Streese, Lukas A1 - Wöhnl, Anna A1 - Kesseler, Veronika A1 - Negele, Johanna A1 - Assali, Tarek A1 - Carbajo-Lozoya, Javier A1 - Lech, Maciej A1 - Adorjan, Kristina A1 - Stubbe, Hans Christian A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Haller, Berhard A1 - Heemann, Uwe A1 - Schmaderer, Christoph T1 - Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation N2 - Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42% ± 1.77% vs. 4.64% ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5–190.2] vs. 189.1 [179.4–197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8–0.9] vs. 0.88 [0.8–0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = − 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management. KW - Endothelial dysfunction KW - Long COVID KW - Post-COVID-19 syndrome KW - retinal microvasculature Y1 - 2023 U6 - https://doi.org/10.1007/s10456-023-09885-6 N1 - Corresponding author: Christoph Schmaderer VL - 26 SP - 547 EP - 563 PB - Springer Nature CY - Dordrecht ER - TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - https://doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER - TY - JOUR A1 - Laarmann, Lukas A1 - Thoma, Andreas A1 - Misch, Philipp A1 - Röth, Thilo A1 - Braun, Carsten A1 - Watkins, Simon A1 - Fard, Mohammad T1 - Automotive safety approach for future eVTOL vehicles JF - CEAS Aeronautical Journal N2 - The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL’s crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented. KW - eVTOL development KW - eVTOL safety KW - Crashworthiness KW - Automotive safety approach KW - Full-vehicle crash test Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00655-0 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Lukas Laarmann PB - Springer Nature ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Vladova, Gergana A1 - Ullrich, André A1 - Sultanow, Eldar A1 - Tobolla, Marinho A1 - Sebrak, Sebastian A1 - Czarnecki, Christian A1 - Brockmann, Carsten T1 - Visual analytics for knowledge management T2 - INFORMATIK 2023 - Designing Futures: Zukünfte gestalten N2 - The management of knowledge in organizations considers both established long-term processes and cooperation in agile project teams. Since knowledge can be both tacit and explicit, its transfer from the individual to the organizational knowledge base poses a challenge in organizations. This challenge increases when the fluctuation of knowledge carriers is exceptionally high. Especially in large projects in which external consultants are involved, there is a risk that critical, company-relevant knowledge generated in the project will leave the company with the external knowledge carrier and thus be lost. In this paper, we show the advantages of an early warning system for knowledge management to avoid this loss. In particular, the potential of visual analytics in the context of knowledge management systems is presented and discussed. We present a project for the development of a business-critical software system and discuss the first implementations and results. Y1 - 2023 SN - 978-3-88579-731-9 U6 - https://doi.org/10.18420/inf2023_187 SN - 1617-5468 N1 - INFORMATIK 2023, 26. - 29. September 2023, Berlin SP - 1851 EP - 1870 PB - GI - Gesellschaft für Informatik CY - Bonn ER - TY - CHAP A1 - Schult, Prince Garcia A1 - Losse, Ann-Kathrin A1 - Czarnecki, Christian A1 - Sultanow, Eldar T1 - Proposing a Framework to address the Sustainable Development Goals T2 - EnviroInfo 2023 N2 - Reducing poverty, protecting the planet, and improving life on earth for everyone are the essential goals of the "2030 Agenda for Sustainable Development"committed by the United Nations (UN). Achieving those goals will require technological innovation as well as their implementation in almost all areas of our business and day-to-day life. This paper proposes a high-level framework that collects and structures different uses cases addressing the goals defined by the UN. Hence, it contributes to the discussion by proposing technical innovations that can be used to achieve those goals. As an example, the goal "Climate Actionïs discussed in detail by describing use cases related to tackling biodiversity loss in order to conservate ecosystems. Y1 - 2023 SN - 978-3-88579-736-4 U6 - https://doi.org/10.18420/env2023-022 SN - 1617-5468 N1 - EnviroInfo 2023, 11. - 23. October 2023, Garching, Germany SP - 243 EP - 249 PB - GI - Gesellschaft für Informatik CY - Bonn ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - CHAP A1 - Mulsow, Niklas A. A1 - Hülsen, Benjamin A1 - Gützlaff, Joel A1 - Spies, Leon A1 - Bresser, Andreas A1 - Dabrowski, Adam A1 - Czupalla, Markus A1 - Kirchner, Frank T1 - Concept and design of an autonomous micro rover for long term lunar exploration T2 - Proceedings of the 74th International Astronautical Congress N2 - Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power. Y1 - 2023 N1 - 74. International Astronautical Congress (IAC-2023), October 2-6 2023, Baku, Azerbaijan PB - dfki CY - Saarbrücken ER - TY - CHAP A1 - Hülsen, Benjamin A1 - Mulsow, Niklas A. A1 - Dabrowski, Adam A1 - Brinkmann, Wiebke A1 - Gützlaff, Joel A1 - Spies, Leon A1 - Czupalla, Markus A1 - Kirchner, Frank T1 - Towards an autonomous micro rover with night survivability for lunar exploration T2 - Proceedings of the 74th International Astronautical Congress N2 - In Europe, efforts are underway to develop key technologies that can be used to explore the Moon and to exploit the resources available. This includes technologies for in-situ resource utilization (ISRU), facilitating the possibility of a future Moon Village. The Moon is the next step for humans and robots to exploit the use of available resources for longer term missions, but also for further exploration of the solar system. A challenge for effective exploration missions is to achieve a compact and lightweight robot to reduce launch costs and open up the possibility of secondary payload options. Current micro rover concepts are primarily designed to last for one day of solar illumination and show a low level of autonomy. Extending the lifetime of the system by enabling survival of the lunar night and implementing a high level of autonomy will significantly increase potential mission applications and the operational range. As a reference mission, the deployment of a micro rover in the equatorial region of the Moon is being considered. An overview of mission parameters and a detailed example mission sequence is given in this paper. The mission parameters are based on an in-depth study of current space agency roadmaps, scientific goals, and upcoming flight opportunities. Furthermore, concepts of the ongoing international micro rover developments are analyzed along with technology solutions identified for survival of lunar nights and a high system autonomy. The results provide a basis of a concise requirements set-up to allow dedicated system developments and qualification measures in the future. Y1 - 2023 N1 - 74. International Astronautical Congress (IAC-2023), October 2-6 2023, Baku, Azerbaijan PB - dfki ER - TY - CHAP A1 - Stark, Ralf A1 - Rieping, Carla A1 - Esch, Thomas T1 - The impact of guide tubes on flow separation in rocket nozzles T2 - Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS N2 - Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters. KW - Guide Tube KW - TICTOP KW - Nozzle KW - Suction Y1 - 2023 N1 - Lausanne, July 9-13, 2023 ER - TY - CHAP A1 - Stark, Ralf A1 - Bartel, Sebastian A1 - Ditsche, Florian A1 - Esch, Thomas T1 - Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application T2 - Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS N2 - Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain. Y1 - 2023 N1 - Lausanne, July 9-13, 2023 ER - TY - JOUR A1 - Kowalewski, Paul A1 - Bragard, Michael A1 - Hüning, Felix A1 - De Doncker, Rik W. T1 - An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives JF - IEEE Transactions on Instrumentation and Measurement N2 - This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth. KW - Rotary encoder KW - Wiegand sensor Y1 - 2023 U6 - https://doi.org/10.1109/TIM.2023.3326166 SN - 0018-9456 (Print) SN - 1557-9662 (Online) VL - 72 SP - 10 Seiten PB - IEEE CY - New York ER - TY - JOUR A1 - Abbas, Karim A1 - Hedwig, Lukas A1 - Balc, Nicolae A1 - Bremen, Sebastian T1 - Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling JF - Polymers N2 - Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK’s economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100% solid and subjected to thermal post-treatment. This corresponds to a 20% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70% in tool production. KW - polyetheretherketone (PEEK) KW - rapid tooling KW - infill strategy KW - compression behavior KW - additive manufacturing KW - fused filament fabrication Y1 - 2023 U6 - https://doi.org/10.3390/polym15214293 N1 - This article belongs to the Special Issue "Polymer Materials and Design Processes for Additively Manufactured Products" VL - 2023 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Stiemer, Luc Nicolas A1 - Thoma, Andreas A1 - Braun, Carsten T1 - MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation JF - PLoS ONE N2 - This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8%, Faster R-CNN achieves AP = 45, 3% and RetinaNet AP = 38, 4% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker’s appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5% and a Multiple Object Tracking Precision MOTP = 75, 6% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0291415 SN - 1932-6203 N1 - Corresponding author: Luc Nicolas Stiemer VL - 18 IS - 9 PB - PLOS CY - San Fancisco ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Stefan, Lukas A1 - Keinz, Jan T1 - Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “Micromix” combustion principle T2 - Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine. N2 - The feasibility study presents results of a hydrogen combustor integration for a Medium-Range aircraft engine using the Dry-Low-NOₓ Micromix combustion principle. Based on a simplified Airbus A320-type flight mission, a thermodynamic performance model of a kerosene and a hydrogen-powered V2530-A5 engine is used to derive the thermodynamic combustor boundary conditions. A new combustor design using the Dry-Low NOx Micromix principle is investigated by slice model CFD simulations of a single Micromix injector for design and off-design operation of the engine. Combustion characteristics show typical Micromix flame shapes and good combustion efficiencies for all flight mission operating points. Nitric oxide emissions are significant below ICAO CAEP/8 limits. For comparison of the Emission Index (EI) for NOₓ emissions between kerosene and hydrogen operation, an energy (kerosene) equivalent Emission Index is used. A full 15° sector model CFD simulation of the combustion chamber with multiple Micromix injectors including inflow homogenization and dilution and cooling air flows investigates the combustor integration effects, resulting NOₓ emission and radial temperature distributions at the combustor outlet. The results show that the integration of a Micromix hydrogen combustor in actual aircraft engines is feasible and offers, besides CO₂ free combustion, a significant reduction of NOₓ emissions compared to kerosene operation. KW - emission index KW - nitric oxides KW - aircraft engine KW - Micromix KW - combustion KW - hydrogen Y1 - 2023 SN - 978-0-7918-8693-9 U6 - https://doi.org/10.1115/GT2023-102370 N1 - Paper No. GT2023-102370, V001T01A022 N1 - ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition June 26–30, 2023, Boston, Massachusetts, USA PB - ASME CY - New York ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - https://doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Loeken, Michael A1 - Hüning, Felix T1 - Energy analysis of a wireless sensor node powered by a Wiegand sensor JF - Journal of Sensors and Sensor Systems (JSSS) N2 - This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed. Y1 - 2023 U6 - https://doi.org/10.5194/jsss-12-85-2023 SN - 2194-878X N1 - Corresponding author: Felix Hüning VL - 12 IS - 1 SP - 85 EP - 92 PB - Copernicus Publ. CY - Göttingen ER - TY - CHAP A1 - Chircu, Alina A1 - Czarnecki, Christian A1 - Friedmann, Daniel A1 - Pomaskow, Johanna A1 - Sultanow, Eldar T1 - Towards a Digital Twin of Society T2 - Proceedings of the 56th Hawaii International Conference on System Sciences 2023 N2 - This paper describes the potential for developing a digital twin of society- a dynamic model that can be used to observe, analyze, and predict the evolution of various societal aspects. Such a digital twin can help governmental agencies and policy makers in interpreting trends, understanding challenges, and making decisions regarding investments or policies necessary to support societal development and ensure future prosperity. The paper reviews related work regarding the digital twin paradigm and its applications. The paper presents a motivating case study- an analysis of opportunities and challenges faced by the German federal employment agency, Bundesagentur f¨ur Arbeit (BA), proposes solutions using digital twins, and describes initial proofs of concept for such solutions. KW - Digital twin KW - Digital transformation KW - Prototype KW - Society KW - Stress testing Y1 - 2023 SN - 978-0-9981331-6-4 N1 - 56th Hawaii International Conference on System Sciences, HICSS 2023, Maui, Hawaii, USA, January 3-6, 2023 SP - 6748 EP - 6757 PB - University of Hawai'i CY - Honolulu ER - TY - JOUR A1 - Gaigall, Daniel ED - AitSahlia, Farid T1 - Allocating and forecasting changes in risk JF - Journal of risk N2 - We consider time-dependent portfolios and discuss the allocation of changes in the risk of a portfolio to changes in the portfolio’s components. For this purpose we adopt established allocation principles. We also use our approach to obtain forecasts for changes in the risk of the portfolio’s components. To put the approach into practice we present an implementation based on the output of a simulation. Allocation is illustrated with an example portfolio in the context of Solvency II. The quality of the forecasts is investigated with an empirical study. KW - portfolio risk KW - allocation KW - forecast KW - covariance principle KW - conditional expectation principle Y1 - 2023 U6 - https://doi.org/10.21314/JOR.2022.048 SN - 1755-2842 SN - 1465-1211 VL - 25 IS - 3 SP - 1 EP - 24 PB - Infopro Digital Risk CY - London ER - TY - JOUR A1 - Gaigall, Daniel T1 - On the applicability of several tests to models with not identically distributed random effects JF - Statistics : A Journal of Theoretical and Applied Statistics N2 - We consider Kolmogorov–Smirnov and Cramér–von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application. KW - central symmetry test KW - exchangeability test KW - independence test KW - random effects KW - not identically distributed Y1 - 2023 SN - 0323-3944 U6 - https://doi.org/10.1080/02331888.2023.2193748 SN - 1029-4910 VL - 57 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Gaigall, Daniel A1 - Gerstenberg, Julian T1 - Cramér-von-Mises tests for the distribution of the excess over a confidence level JF - Journal of Nonparametric Statistics N2 - The Cramér-von-Mises distance is applied to the distribution of the excess over a confidence level. Asymptotics of related statistics are investigated, and it is seen that the obtained limit distributions differ from the classical ones. For that reason, quantiles of the new limit distributions are given and new bootstrap techniques for approximation purposes are introduced and justified. The results motivate new one-sample goodness-of-fit tests for the distribution of the excess over a confidence level and a new confidence interval for the related fitting error. Simulation studies investigate size and power of the tests as well as coverage probabilities of the confidence interval in the finite sample case. A practice-oriented application of the Cramér-von-Mises tests is the determination of an appropriate confidence level for the fitting approach. The adoption of the idea to the well-known problem of threshold detection in the context of peaks over threshold modelling is sketched and illustrated by data examples. KW - Cramér-von-Mises test KW - conditional excess distribution KW - confidence interval KW - goodness-of-fit test Y1 - 2023 U6 - https://doi.org/10.1080/10485252.2023.2173958 SN - 1048-5252 (Print) SN - 1029-0311 (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Liphardt, Anna-Maria A1 - Fernandez-Gonzalo, Rodrigo A1 - Albracht, Kirsten A1 - Rittweger, Jörn A1 - Vico, Laurence T1 - Musculoskeletal research in human space flight – unmet needs for the success of crewed deep space exploration JF - npj Microgravity N2 - Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper “Human Physiology – Musculoskeletal system”, this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback. Y1 - 2023 U6 - https://doi.org/10.1038/s41526-023-00258-3 SN - 2373-8065 VL - 9 IS - Article number: 9 SP - 1 EP - 9 PB - Springer Nature ER - TY - CHAP A1 - Eggert, Mathias A1 - Zähl, Philipp M. A1 - Wolf, Martin R. A1 - Haase, Martin ED - Cooper, Kendra M.L. ED - Bucchiarone, Antonio T1 - Applying leaderboards for quality improvement in software development projects T2 - Software Engineering for Games in Serious Contexts N2 - Software development projects often fail because of insufficient code quality. It is now well documented that the task of testing software, for example, is perceived as uninteresting and rather boring, leading to poor software quality and major challenges to software development companies. One promising approach to increase the motivation for considering software quality is the use of gamification. Initial research works already investigated the effects of gamification on software developers and come to promising. Nevertheless, a lack of results from field experiments exists, which motivates the chapter at hand. By conducting a gamification experiment with five student software projects and by interviewing the project members, the chapter provides insights into the changing programming behavior of information systems students when confronted with a leaderboard. The results reveal a motivational effect as well as a reduction of code smells. KW - Leaderboard KW - Gamification KW - Software testing KW - Software development Y1 - 2023 SN - 978-3-031-33337-8 (Print) SN - 978-3-031-33338-5 (Online) U6 - https://doi.org/10.1007/978-3-031-33338-5_11 SP - 243 EP - 263 PB - Springer CY - Cham ER - TY - JOUR A1 - Thomessen, Karolin A1 - Thoma, Andreas A1 - Braun, Carsten T1 - Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm JF - CEAS Aeronautical Journal N2 - Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV. KW - UAV KW - Obstacle avoidance KW - Autonomy KW - Local path planning Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00691-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Karolin Thomessen PB - Springer CY - Wien ER - TY - JOUR A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the influence of elasticity on propeller performance: a parametric study JF - CEAS Aeronautical Journal N2 - The aerodynamic performance of propellers strongly depends on their geometry and, consequently, on aeroelastic deformations. Knowledge of the extent of the impact is crucial for overall aircraft performance. An integrated simulation environment for steady aeroelastic propeller simulations is presented. The simulation environment is applied to determine the impact of elastic deformations on the aerodynamic propeller performance. The aerodynamic module includes a blade element momentum approach to calculate aerodynamic loads. The structural module is based on finite beam elements, according to Timoshenko theory, including moderate deflections. Several fixed-pitch propellers with thin-walled cross sections made of both isotropic and non-isotropic materials are investigated. The essential parameters are varied: diameter, disc loading, sweep, material, rotational, and flight velocity. The relative change of thrust between rigid and elastic blades quantifies the impact of propeller elasticity. Swept propellers of large diameters or low disc loadings can decrease the thrust significantly. High flight velocities and low material stiffness amplify this tendency. Performance calculations without consideration of propeller elasticity can lead to decreased efficiency. To avoid cost- and time-intense redesigns, propeller elasticity should be considered for swept planforms and low disc loadings. KW - Propeller KW - Finite element method KW - Blade element method KW - Propeller elasticity KW - Aeroelasticity Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00649-y SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Felix Möhren VL - 14 SP - 311 EP - 323 PB - Springer Nature CY - Berlin ER - TY - CHAP A1 - Eggert, Mathias A1 - Weber, Jannik T1 - What drives the purchase decision in Instagram stores? T2 - ECIS 2023 Research Papers N2 - The popularity of social media and particularly Instagram grows steadily. People use the different platforms to share pictures as well as videos and to communicate with friends. The potential of social media platforms is also being used for marketing purposes and for selling products. While for Facebook and other online social media platforms the purchase decision factors are investigated several times, Instagram stores remain mainly unattended so far. The present research work closes this gap and sheds light into decisive factors for purchasing products offered in Instagram stores. A theoretical research model, which contains selected constructs that are assumed to have a significant influence on Instagram user´s purchase intention, is developed. The hypotheses are evaluated by applying structural equation modelling on survey data containing 127 relevant participants. The results of the study reveal that ‘trust’, ‘personal recommendation’, and ‘usability’ significantly influences user’s buying intention in Instagram stores. KW - Instagram store KW - shopping behavior KW - purchase factor KW - PLS KW - structural equation model Y1 - 2023 N1 - ECIS 2023, European Conference on Information Systems, Kristiansand, Norway, June 11.-16. SP - 1 EP - 17 ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - JOUR A1 - Savitskaya, Irina A1 - Zhantlessova, Sirina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Shokatayeva, Dina A1 - Sinyavsky, Yuriy A1 - Kushugulova, Almagul A1 - Digel, Ilya T1 - Prebiotic cellulose–pullulan matrix as a “vehicle” for probiotic biofilm delivery to the host large intestine JF - Polymers N2 - This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies. KW - immobilization KW - prebiotic KW - bacterial cellulose KW - biofilms KW - Lactobacillus rhamnosus GG Y1 - 2023 U6 - https://doi.org/10.3390/polym16010030 N1 - This article belongs to the Section "Polymer Composites and Nanocomposites" IS - 16(1) PB - MDPI CY - Basel ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Kowalski, Julia A1 - Boxberg, Marc S. A1 - Baader, Fabian A1 - Biele, Jens A1 - Kömle, Norbert ED - Badescu, Viorel ED - Zacny, Kris ED - Bar-Cohen, Yoseph T1 - Ice melting probes T2 - Handbook of Space Resources N2 - The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests. KW - Ice melting probe KW - Ice penetration KW - Icy moons KW - Ocean worlds KW - Mars Y1 - 2023 SN - 978-3-030-97912-6 (Print) SN - 978-3-030-97913-3 (Online) U6 - https://doi.org/10.1007/978-3-030-97913-3_29 SP - 955 EP - 996 PB - Springer CY - Cham ER - TY - CHAP A1 - Zähl, Philipp M. A1 - Theis, Sabine A1 - Wolf, Martin R. A1 - Köhler, Klemens ED - Chen, Jessie Y. C. ED - Fragomeni, Gino T1 - Teamwork in software development and what personality has to do with it - an overview T2 - Virtual, Augmented and Mixed Reality N2 - Due to the increasing complexity of software projects, software development is becoming more and more dependent on teams. The quality of this teamwork can vary depending on the team composition, as teams are always a combination of different skills and personality types. This paper aims to answer the question of how to describe a software development team and what influence the personality of the team members has on the team dynamics. For this purpose, a systematic literature review (n=48) and a literature search with the AI research assistant Elicit (n=20) were conducted. Result: A person’s personality significantly shapes his or her thinking and actions, which in turn influences his or her behavior in software development teams. It has been shown that team performance and satisfaction can be strongly influenced by personality. The quality of communication and the likelihood of conflict can also be attributed to personality. KW - Teamwork KW - Software KW - Personality KW - Performance KW - Elicit Y1 - 2023 SN - 978-3-031-35633-9 (Print) SN - 978-3-031-35634-6 (Online) U6 - https://doi.org/10.1007/978-3-031-35634-6_10 N1 - Virtual, Augmented and Mixed Reality: 15th International Conference. VAMR 2023. Held as Part of the 25th HCI International Conference. HCII 2023. Copenhagen, Denmark. July 23–28, 2023. SP - 130 EP - 153 PB - Springer CY - Cham ER - TY - CHAP A1 - Eichenbaum, Julian A1 - Nikolovski, Gjorgji A1 - Mülhens, Leon A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations T2 - 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) N2 - Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine. Y1 - 2023 SN - 979-8-3503-2069-5 (Online) SN - 979-8-3503-2070-1 (Print) U6 - https://doi.org/10.1109/CASE56687.2023.10260526 N1 - 19th International Conference on Automation Science and Engineering (CASE), 26-30 August 2023, Auckland, New Zealand. PB - IEEE ER - TY - CHAP A1 - Viehmann, Tarik A1 - Limpert, Nicolas A1 - Hofmann, Till A1 - Henning, Mike A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard ED - Eguchi, Amy ED - Lau, Nuno ED - Paetzel-Prüsmann, Maike ED - Wanichanon, Thanapat T1 - Winning the RoboCup logistics league with visual servoing and centralized goal reasoning T2 - RoboCup 2022: Robot World Cup XXV N2 - The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019. Y1 - 2023 SN - 978-3-031-28468-7 (Print) SN - 978-3-031-28469-4 (Online) U6 - https://doi.org/https://doi.org/10.1007/978-3-031-28469-4_25 N1 - Robot World Cup, RoboCup 2022. 17. July 2023. Bangkok, Thailand. Part of the Lecture Notes in Computer Science book series (LNAI,volume 13561) SP - 300 EP - 312 PB - Springer CY - Cham ER - TY - CHAP A1 - Nikolovski, Gjorgji A1 - Limpert, Nicolas A1 - Nessau, Hendrik A1 - Reke, Michael A1 - Ferrein, Alexander T1 - Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles T2 - 2023 IEEE Intelligent Vehicles Symposium (IV) N2 - The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle’s drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment. KW - Mpc KW - Control KW - Path-following KW - Navigation KW - Automation Y1 - 2023 SN - 979-8-3503-4691-6 (Online) SN - 979-8-3503-4692-3 (Print) U6 - https://doi.org/10.1109/IV55152.2023.10186806 N1 - IEEE Symposium on Intelligent Vehicle, 4.-7. June 2023, Anchorage, AK, USA. PB - IEEE ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - https://doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Eggert, Mathias A1 - Kling, Rene T1 - How to distribute charging requests of electronic vehicles? A reservation-based approach JF - International Journal of Intelligent Transportation Systems Research N2 - The number of electronic vehicles increase steadily while the space for extending the charging infrastructure is limited. In particular in urban areas, where parking spaces in attractive areas are famous, opportunities to setup new charging stations is very limited. This leads to an overload of some very attractive charging stations and an underutilization of less attractive ones. Against this background, the paper at hand presents the design of an e-vehicle reservation system that aims at distributing the utilization of the charging infrastructure, particularly in urban areas. By applying a design science approach, the requirements for a reservation-based utilization approach are elicited and a model for a suitable distribution approach and its instantiation are developed. The artefact is evaluated by simulating the distribution effects based on data of real charging station utilizations. KW - Simulation KW - Parking KW - Charging station KW - Utilization improvement KW - Reservation system KW - Electronic vehicle Y1 - 2023 U6 - https://doi.org/10.1007/s13177-023-00367-z SN - 1868-8659 N1 - Corresponding author: Mathias Eggert VL - 21 IS - 2023 SP - 437 EP - 460 PB - Springer CY - Berlin, Heidelberg, New York ER - TY - JOUR A1 - Rhoden, Imke A1 - Ball, Christopher Stephen A1 - Grajewski, Matthias A1 - Kuckshinrich, Wilhelm T1 - Reverse engineering of stakeholder preferences – A multi-criteria assessment of the German passenger car sector JF - Renewable and Sustainable Energy Reviews N2 - Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available. KW - Regionalization KW - Multi-criteria decision analysis KW - Preference assessment KW - E-Mobility KW - Mobility transition Y1 - 2023 U6 - https://doi.org/10.1016/j.rser.2023.113352 SN - 1364-0321 VL - 181 IS - July 2023 SP - Article number: 113352 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Berg-Postweiler, Julia A1 - Leicht-Scholten, Carmen T1 - One does not fit all: applying anti-bias trainings in academia T2 - Twenty-third international conference on diversity in organizations, communities & nations June 22 - 23, 2023 Toronto Metropolitan University, Rogers Communication Centre Toronto, Canada N2 - Anti-bias trainings are increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management”, anti-bias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, awake awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of anti-bias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the paper explores how sustainable the effects of individual anti-bias trainings on the behavior of participants are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing anti-bias trainings in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single anti-bias trainings and show that a target-group adaptive approach is mandatory due to the background of the approach in early childhood education. Therefore, it can be concluded that anti-bias work needs to be adapted to the target group’s needs and reality of life. Furthermore, the study reveals that single anti-bias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This paper is one of the first to scientifically evaluate anti-bias training effectiveness, especially in engineering sciences and the university context. KW - Academia KW - Engineering Habitus KW - Organizational Culture KW - Diversity Management KW - Anti-Bias Y1 - 2023 ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - https://doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vögele, Stefan A1 - Josyabhatla, Vishnu Teja A1 - Ball, Christopher A1 - Rhoden, Imke A1 - Grajewski, Matthias A1 - Rübbelke, Dirk A1 - Kuckshinrichs, Wilhelm T1 - Robust assessment of energy scenarios from stakeholders' perspectives JF - Energy N2 - Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions. Y1 - 2023 U6 - https://doi.org/10.1016/j.energy.2023.128326 SN - 1873-6785 (Online) SN - 0360-5442 (Print) IS - In Press, Article 128326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas A1 - Pallikarakis, Nikolaos T1 - Analysis of the transmission eigenvalue problem with two conductivity parameters JF - Applicable Analysis N2 - In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work. KW - Transmission Eigenvalues KW - Conductive Boundary Condition KW - Inverse Scattering Y1 - 2023 U6 - https://doi.org/10.1080/00036811.2023.2181167 SN - 0003-6811 PB - Taylor & Francis ER - TY - CHAP A1 - Altherr, Lena A1 - Conzen, Max A1 - Elsen, Ingo A1 - Frauenrath, Tobias A1 - Lyrmann, Andreas ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Sensor retrofitting of existing buildings in an interdisciplinary teaching project at university level T2 - Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel N2 - Existing residential buildings have an average lifetime of 100 years. Many of these buildings will exist for at least another 50 years. To increase the efficiency of these buildings while keeping costs at reasonable rates, they can be retrofitted with sensors that deliver information to central control units for heating, ventilation and electricity. This retrofitting process should happen with minimal intervention into existing infrastructure and requires new approaches for sensor design and data transmission. At FH Aachen University of Applied Sciences, students of different disciplines work together to learn how to design, build, deploy and operate such sensors. The presented teaching project already created a low power design for a combined CO2, temperature and humidity measurement device that can be easily integrated into most home automation systems KW - Building Automation KW - Smart Building KW - CO2 KW - Carbon Dioxide KW - Education Y1 - 2023 SN - 978-3-910103-01-6 U6 - https://doi.org/10.33968/2023.04 N1 - 19. AALE-Konferenz. Luxemburg, 08.03.-10.03.2023. BTS Connected Buildings & Cities Luxemburg (Tagungsband unter https://doi.org/10.33968/2023.01) SP - 31 EP - 40 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Noureldin, Kareem A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further. KW - Power plants KW - Energy storage KW - Associated liquids Y1 - 2023 SN - 978-0-7354-4623-6 U6 - https://doi.org/10.1063/5.0148741 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SolarPACES: SOLAR POWER & CHEMICAL ENERGY SYSTEMS: 27th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27 September–1 October 2021, Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Luft, Angela A1 - Luft, Nils A1 - Arntz, Kristian T1 - A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0 JF - Applied Sciences N2 - Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems’ fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning. KW - manufacturing data model KW - production planning and control KW - manufacturing flexibility KW - technology planning KW - SOA KW - service-oriented architectures KW - factory planning Y1 - 2023 U6 - https://doi.org/10.3390/app13137610 SN - 2076-3417 N1 - This article belongs to the Special Issue "Smart Industrial System" VL - 2023 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hammer, Thorben A1 - Quitter, Julius A1 - Mayntz, Joscha A1 - Bauschat, J.-Michael A1 - Dahmann, Peter A1 - Götten, Falk A1 - Hille, Sebastian A1 - Stumpf, Eike T1 - Free fall drag estimation of small-scale multirotor unmanned aircraft systems using computational fluid dynamics and wind tunnel experiments JF - CEAS Aeronautical Journal N2 - New European Union (EU) regulations for UAS operations require an operational risk analysis, which includes an estimation of the potential danger of the UAS crashing. A key parameter for the potential ground risk is the kinetic impact energy of the UAS. The kinetic energy depends on the impact velocity of the UAS and, therefore, on the aerodynamic drag and the weight during free fall. Hence, estimating the impact energy of a UAS requires an accurate drag estimation of the UAS in that state. The paper at hand presents the aerodynamic drag estimation of small-scale multirotor UAS. Multirotor UAS of various sizes and configurations were analysed with a fully unsteady Reynolds-averaged Navier–Stokes approach. These simulations included different velocities and various fuselage pitch angles of the UAS. The results were compared against force measurements performed in a subsonic wind tunnel and provided good consistency. Furthermore, the influence of the UAS`s fuselage pitch angle as well as the influence of fixed and free spinning propellers on the aerodynamic drag was analysed. Free spinning propellers may increase the drag by up to 110%, depending on the fuselage pitch angle. Increasing the fuselage pitch angle of the UAS lowers the drag by 40% up to 85%, depending on the UAS. The data presented in this paper allow for increased accuracy of ground risk assessments. KW - Multirotor UAS KW - Drag estimation KW - CFD KW - Wind tunnel experiments KW - Wind milling Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00702-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Thorben Hammer PB - Springer CY - Wien ER - TY - CHAP A1 - Arndt, Tobias A1 - Conzen, Max A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Galla, Oskar A1 - Köse, Hakan A1 - Schiffer, Stefan A1 - Tschesche, Matteo T1 - Anomaly detection in the metal-textile industry for the reduction of the cognitive load of quality control workers T2 - PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments N2 - This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products. KW - Datasets KW - Neural networks KW - Anomaly detection KW - Quality control KW - Process optimization Y1 - 2023 SN - 9798400700699 U6 - https://doi.org/10.1145/3594806.3596558 N1 - PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, July 5 - 7, 2023 SP - 535 EP - 542 PB - ACM ER - TY - CHAP A1 - Küppers, Malte A1 - Schuba, Marko A1 - Neugebauer, Georg A1 - Höner, Tim A1 - Hack, Sacha T1 - Security analysis of the KNX smart building protocol T2 - ARES '23: Proceedings of the 18th International Conference on Availability, Reliability and Security N2 - KNX is a protocol for smart building automation, e.g., for automated heating, air conditioning, or lighting. This paper analyses and evaluates state-of-the-art KNX devices from manufacturers Merten, Gira and Siemens with respect to security. On the one hand, it is investigated if publicly known vulnerabilities like insecure storage of passwords in software, unencrypted communication, or denialof-service attacks, can be reproduced in new devices. On the other hand, the security is analyzed in general, leading to the discovery of a previously unknown and high risk vulnerability related to so-called BCU (authentication) keys. Y1 - 2023 U6 - https://doi.org/10.1145/3600160.3605167 N1 - ARES 2023: The 18th International Conference on Availability, Reliability and Security. August 29 - September 1, 2023. Benevento, Italy. Article No.: 87 SP - 1 EP - 7 PB - ACM ER - TY - CHAP A1 - Steuer-Dankert, Linda T1 - A crazy little thing called sustainability T2 - 51st Annual Conference of the European Society for Engineering Education (SEFI) N2 - Achieving the 17 Sustainable Development Goals (SDGs) set by the United Nations (UN) in 2015 requires global collaboration between different stakeholders. Industry, and in particular engineers who shape industrial developments, have a special role to play as they are confronted with the responsibility to holistically reflect sustainability in industrial processes. This means that, in addition to the technical specifications, engineers must also question the effects of their own actions on an ecological, economic and social level in order to ensure sustainable action and contribute to the achievement of the SDGs. However, this requires competencies that enable engineers to apply all three pillars of sustainability to their own field of activity and to understand the global impact of industrial processes. In this context, it is relevant to understand how industry already reflects sustainability and to identify competences needed for sustainable development. KW - Transformative Competencies KW - Future Skills KW - Transdisciplinarity KW - Interdisciplinarity KW - Sustainability Y1 - 2023 U6 - https://doi.org/10.21427/9CQR-VC94 N1 - 51st Annual Conference of the European Society for Engineering Education, Technological University Dublin, 10th-14th September, 2023 ER - TY - JOUR A1 - Mues genannt Koers, Lucas A1 - Prevost, David A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Density reduction effects on the production of [11C]CO2 in Nb-body targets on a medical cyclotron N2 - Medical isotope production of 11C is commonly performed in gaseous targets. The power deposition of the proton beam during the irradiation decreases the target density due to thermodynamic mixing and can cause an increase of penetration depth and divergence of the proton beam. In order to investigate the difference how the target-body length influences the operation conditions and the production yield, a 12 cm and a 22 cm Nb-target body containing N2/O2 gas were irradiated using a 13 MeV proton cyclotron. It was found that the density reduction has a large influence on the pressure rise during irradiation and the achievable radioactive yield. The saturation activity of [11C]CO2 for the long target (0.083 Ci/μA) is about 10% higher than in the short target geometry (0.075 Ci/μA). Y1 - 2023 U6 - https://doi.org/10.1016/j.apradiso.2023.110911 VL - 199 IS - Art. 110911 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Droop, Philipp A1 - Chen, Shaohuang A1 - Radford, Melissa J. A1 - Paulßen, Elisabeth A1 - Gates, Byron D. A1 - Reilly, Raymond M. A1 - Radchenko, Valery A1 - Hoehr, Cornelia T1 - Synthesis of 197m/gHg labelled gold nanoparticles for targeted radionuclide therapy JF - Radiochimica Acta N2 - Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment). KW - 197m/gHg KW - Gold nanoparticle (AuNP) KW - Meitner-Auger-electron (MAE) KW - Targeted radionuclide therapy (TRT) Y1 - 2023 U6 - https://doi.org/10.1515/ract-2023-0144 SN - 2193-3405 VL - 111 IS - 10 SP - 773 EP - 779 PB - De Gruyter CY - Berlin [u.a.] ER -