TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - http://dx.doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER - TY - GEN A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemes A1 - Chen, Qian A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Sustrate, Anna-Marie A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Performance data of an ice-melting probe from field tests in two different ice environments N2 - This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters). KW - Ocean Worlds KW - Icy Moons KW - Cryobot KW - Analogue Environments KW - Melting Efficiency KW - Melting Performance KW - Melting Probe KW - Ice Melting Y1 - 2022 U6 - http://dx.doi.org/10.5281/zenodo.6094866 N1 - Forschungsdaten zu "Field-test performance of an ice-melting probe in a terrestrial analogue environment" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10889) ER - TY - JOUR A1 - Finger, Felix T1 - Senkrechtstarter: FH-Absolvent wird für Transportdrohne ausgezeichnet JF - campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17 Y1 - 2016 SN - 2196-9426 IS - 17. Regionalausgabe Aachen SP - 116 EP - 117 PB - Campushunter Media CY - Heidelberg ER - TY - JOUR A1 - Finger, Felix T1 - Vergleichende Leistungs- und Nutzenbewertung von VTOL- und CTOL-UAVs JF - Luft- und Raumfahrt : informieren, vernetzen, fördern / Hrsg.: Deutsche Gesellschaft für Luft- und Raumfahrt Y1 - 2017 SN - 0173-6264 VL - 38 IS - 1 SP - 44 EP - 47 ER - TY - CHAP A1 - Finger, Felix T1 - Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs T2 - Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016 Y1 - 2016 ER - TY - JOUR A1 - Finger, Felix A1 - Bil, Cees A1 - Braun, Carsten T1 - Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft JF - Journal of Aircraft Y1 - 2019 U6 - http://dx.doi.org/10.2514/1.C035428 SN - 1533-3868 VL - 57 IS - 2 SP - 245 EP - 255 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Case studies in initial sizing for hybrid-electric general aviation aircraft T2 - 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio Y1 - 2018 U6 - http://dx.doi.org/10.2514/6.2018-5005 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs JF - CEAS Aeronautical Journal N2 - One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost–benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s13272-018-0352-x SN - 1869-5582 print SN - 1869-5590 online VL - 10 IS - 3 SP - 843 PB - Springer ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - The Impact of Electric Propulsion on the Performance of VTOL UAVs T2 - Deutscher Luft- und Raumfahrtkongress 2017, DLRK , München Y1 - 2017 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft T2 - Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea Y1 - 2017 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft T2 - AIAA Scitech 2019 Forum Y1 - 2019 U6 - http://dx.doi.org/10.2514/6.2019-1812 N1 - AIAA Scitech Forum, 2019; San Diego; United States; 7 January 2019 through 11 January 2019 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft JF - Journal of Aircraft N2 - Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - http://dx.doi.org/10.2514/1.C035897 SN - 1533-3868 VL - 57 IS - 5 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA SciTech Forum 2020, 06.01.2020 - 10.01.2020, Orlando Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1502 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft JF - Journal of Aerospace Engineering N2 - Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery’s energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery’s specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used. Y1 - 2020 U6 - http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0001113 SN - 1943-5525 VL - 33 IS - 3 PB - ASCE CY - Reston, Va. ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - JOUR A1 - Finger, Felix A1 - Götten, Falk T1 - Neue Ansätze für die Entwicklung von unbemannten Fluggeräten JF - Ingenieurspiegel N2 - Wie sieht das unbemannte Flugzeug von Übermorgen aus? Dieser Frage stellen sich Forscher an der Fachhochschule Aachen. Die weltweit rasant fortschreitende Entwicklung des Marktes für unbemannte Fluggeräte (UAVs - „Unmanned Aerial Vehicles“) bietet großes Potenzial für Wachstum und Wertschöpfung. Unbemannte fliegende Systeme können – für bestimmte Anwendungsgebiete – wesentlich günstiger, kleiner und effizienter ausgelegt werden als bemannte Lösungen. Dabei sind sich viele Unternehmen über das mögliche Potential dieser Technologie noch gar nicht bewusst. Y1 - 2019 SN - 1868-5919 N1 - Project: UAV Design VL - 2019 IS - 1 SP - 67 EP - 68 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 U6 - http://dx.doi.org/10.25967/490012 SP - 1 EP - 17 ER - TY - JOUR A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, primary energy, and cost: the impact of optimization objectives on the initial sizing of hybrid-electric general aviation aircraft JF - CEAS Aeronautical Journal N2 - For short take-off and landing (STOL) aircraft, a parallel hybrid-electric propulsion system potentially offers superior performance compared to a conventional propulsion system, because the short-take-off power requirement is much higher than the cruise power requirement. This power-matching problem can be solved with a balanced hybrid propulsion system. However, there is a trade-off between wing loading, power loading, the level of hybridization, as well as range and take-off distance. An optimization method can vary design variables in such a way that a minimum of a particular objective is attained. In this paper, a comparison between the optimization results for minimum mass, minimum consumed primary energy, and minimum cost is conducted. A new initial sizing algorithm for general aviation aircraft with hybrid-electric propulsion systems is applied. This initial sizing methodology covers point performance, mission performance analysis, the weight estimation process, and cost estimation. The methodology is applied to the design of a STOL general aviation aircraft, intended for on-demand air mobility operations. The aircraft is sized to carry eight passengers over a distance of 500 km, while able to take off and land from short airstrips. Results indicate that parallel hybrid-electric propulsion systems must be considered for future STOL aircraft. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s13272-020-00449-8 SN - 1869-5590 N1 - Corresponding author: Felix Finger VL - 2020 IS - 11 SP - 713 EP - 730 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 SP - 1 EP - 13 ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - JOUR A1 - Fischer, Jan-Thomas A1 - Kowalski, Julia A1 - Pudasaini, Shiva P. T1 - Topographic curvature effects in applied avalanche modelling JF - Cold Regions Science and Technology N2 - This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients. KW - Snow KW - Avalanche Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.coldregions.2012.01.005 SN - 1872-7441 VL - 74-75 SP - 21 EP - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fischer, Jan-Thomas A1 - Kowalski, Julia A1 - Pudasaini, Shiva P. A1 - Miller, S. A. T1 - Dynamic Avalanche Modeling in Natural Terrain JF - International Snow Science Workshop, Davos 2009, Proceedings ; Proc. ISSW 2009 N2 - The powerful avalanche simulation toolbox RAMMS (Rapid Mass Movements) is based on a depth-averaged hydrodynamic system of equations with a Voellmy-Salm friction relation. The two empirical friction parameters μ and � correspond to a dry Coulomb friction and a viscous resistance, respectively. Although μ and � lack a proper physical explanation, 60 years of acquired avalanche data in the Swiss Alps made a systematic calibration possible. RAMMS can therefore successfully model avalanche flow depth, velocities, impact pressure and run out distances. Pudasaini and Hutter (2003) have proposed extended, rigorously derived model equations that account for local curvature and twist. A coordinate transformation into a reference system, applied to the actual mountain topography of the natural avalanche path, is performed. The local curvature and the twist of the avalanche path induce an additional term in the overburden pressure. This leads to a modification of the Coulomb friction, the free-surface pressure gradient, the pressure induced by the channel, and the gravity components along and normal to the curved and twisted reference surface. This eventually guides the flow dynamics and deposits of avalanches. In the present study, we investigate the influence of curvature on avalanche flow in real mountain terrain. Simulations of real avalanche paths are performed and compared for the different models approaches. An algorithm to calculate curvature in real terrain is introduced in RAMMS. This leads to a curvature dependent friction relation in an extended version of the Voellmy-Salm model equations. Our analysis provides yet another step in interpreting the physical meaning and significance of the friction parameters used in the RAMMS computational environment. KW - snow KW - avalanche Y1 - 2009 SP - 448 EP - 452 ER - TY - JOUR A1 - Fornaciari, Andrea A1 - Guidetti, Marco A1 - Havermann, Marc A1 - Lettini, Antonio T1 - Maccine mobili più efficienti JF - Fluidotecnica N2 - Secondo le attuali normative tutte le macchine mobili, entro il 2012, dovranno essere soggette a un incremento di efficienza energetica. Un’evoluzione del sistema idraulico potrà contribuire in maniera significativa al miglioramento richiesto. Elettronica e idraulica sempre più protagoniste. Y1 - 2010 IS - 345 SP - 11 EP - 14 PB - Quine Business Publisher CY - Milano ER - TY - JOUR A1 - Franke, Thomas A1 - Bosis, R. A1 - Napoli, M.-D. T1 - Über das Internet steuerbarer Gebläseprüfstand mit einstellbaren Eintrittsleitschaufeln JF - Virtuelle Instrumente in der Praxis : Begleitband zum Kongreß VIP 2001 / Rahman Jamal ; Hans Jaschinski Y1 - 2001 SN - 3-7785-2829-7 N1 - Serie Praxiswissen Elektronik-Industrie : Messtechnik SP - 219 EP - 225 PB - Hüthig Verlag CY - Heidelberg [u.a.] ER - TY - THES A1 - Frotscher, Ralf T1 - Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem Y1 - 2016 N1 - Duisburg, Essen, Universität Duisburg-Essen, Diss., 2016 ER - TY - BOOK A1 - Funke, Harald T1 - Analyse der Temperatur- und Strömungsungleichförmigkeiten in mehrstufigen Turbinen / Harald Funke Y1 - 2001 SN - 3-89653-400-9 N1 - Zugl.: Aachen, Techn. Hochsch., Diss., 2001 PB - Mainz CY - Aachen ER - TY - BOOK A1 - Funke, Harald T1 - Optimierung und Miniaturisierung der Mikro-Misch-Diffusionsverbrennung von Wasserstoff zur potentiellen Anwendung in einer Ultra-Gasturbine. Schlussbericht. Y1 - 2008 N1 - Förderkennzeichen: 1729X05 PB - Fachhochschule Aachen CY - Aachen ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture JF - International Journal of Gas Turbine, Propulsion and Power Systems N2 - The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance Y1 - 2022 SN - 1882-5079 VL - 13 IS - 2 SP - 1 EP - 7 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-013 ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications JF - International Journal of Hydrogen Energy Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.ijhydene.2019.01.161 SN - 0360-3199 VL - 44 IS - 13 SP - 6978 EP - 6990 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. June 17–21, 2019 Phoenix, Arizona, USA. Volume 4A: Combustion, Fuels, and Emissions Y1 - 2019 SN - 978-0-7918-5861-5 U6 - http://dx.doi.org/10.1115/GT2019-90095 ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion JF - ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13–17, 2016 N2 - The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model. Y1 - 2016 SN - 978-0-7918-4975-0 U6 - http://dx.doi.org/10.1115/GT2016-56430 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications T2 - Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26–30, 2017 N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs. Y1 - 2017 SN - 978-0-7918-5085-5 U6 - http://dx.doi.org/10.1115/GT2017-64795 N1 - Paper No. GT2017-64795, V04BT04A045 PB - ASME CY - New York ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion JF - Journal of Engineering for Gas Turbines and Power N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Y1 - 2018 U6 - http://dx.doi.org/10.1115/1.4038882 SN - 0742-4795 N1 - Article number 081504; Paper No: GTP-17-1567 VL - 140 IS - 8 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications JF - Journal of Thermal Science and Engineering Applications Y1 - 2019 U6 - http://dx.doi.org/10.1115/1.4041495 SN - 19485085 N1 - Paper No: GT2017-64795 VL - 11 IS - 1 SP - 011015 PB - ASME CY - New York ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21–25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - http://dx.doi.org/10.1115/GT2020-16328 N1 - Paper No. GT2020-16328, V04BT04A069 PB - American Society of Mechanical Engineers (ASME) ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Stefan, Lukas A1 - Keinz, Jan T1 - Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “Micromix” combustion principle T2 - Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine. Boston, Massachusetts, USA. June 26–30, 2023 N2 - The feasibility study presents results of a hydrogen combustor integration for a Medium-Range aircraft engine using the Dry-Low-NOₓ Micromix combustion principle. Based on a simplified Airbus A320-type flight mission, a thermodynamic performance model of a kerosene and a hydrogen-powered V2530-A5 engine is used to derive the thermodynamic combustor boundary conditions. A new combustor design using the Dry-Low NOx Micromix principle is investigated by slice model CFD simulations of a single Micromix injector for design and off-design operation of the engine. Combustion characteristics show typical Micromix flame shapes and good combustion efficiencies for all flight mission operating points. Nitric oxide emissions are significant below ICAO CAEP/8 limits. For comparison of the Emission Index (EI) for NOₓ emissions between kerosene and hydrogen operation, an energy (kerosene) equivalent Emission Index is used. A full 15° sector model CFD simulation of the combustion chamber with multiple Micromix injectors including inflow homogenization and dilution and cooling air flows investigates the combustor integration effects, resulting NOₓ emission and radial temperature distributions at the combustor outlet. The results show that the integration of a Micromix hydrogen combustor in actual aircraft engines is feasible and offers, besides CO₂ free combustion, a significant reduction of NOₓ emissions compared to kerosene operation. KW - emission index KW - nitric oxides KW - aircraft engine KW - Micromix KW - combustion KW - hydrogen Y1 - 2023 SN - 978-0-7918-8693-9 U6 - http://dx.doi.org/10.1115/GT2023-102370 N1 - Paper No. GT2023-102370, V001T01A022 PB - ASME CY - New York ER - TY - JOUR A1 - Funke, Harald A1 - Börner, Sebastian A1 - Falk, F. A1 - Hendrick, P. T1 - Control system modifications and their effects on the operation of a hydrogen-fueled Auxiliary Power Unit JF - XX international symposium on air breathing engines 2011 : ISABE 2011, Gothenburg, Sweden, 12-16 September, 2011. Vol. 2. Y1 - 2011 SN - 9781618391803 N1 - 20th International Symposium on Air Breathing Engines 2011 : (ISABE 2011) : Gothenburg, Sweden, 12-16 September, 2011. SP - 929 EP - 938 PB - American Institute of Aeronautics and Astronautics CY - Reston, VA ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Hendrick, P. A1 - Recker, E. T1 - Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine T2 - Progress in Propulsion Physics. Vol. 2 Y1 - 2011 SN - 978-2-7598-0673-7 SP - 475 EP - 486 PB - EDP Sciences CY - Les Ulis ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Hendrick, P. A1 - Recker, E. A1 - Elsing, R. ED - DeLuca, Luigi T. T1 - Development and integration of a scalable low NOx combustion chamber for a hydrogen fuelled aero gas turbine T2 - Progress in Propulsion Physics. - Vol. 4 Y1 - 2013 SN - 978-2-7598-0876-2 U6 - http://dx.doi.org/10.1051/eucass/201304357 N1 - 4th European Conference for Aero-Space Sciences : July 4 - 8, 2011, St Petersburg, Russia ; EUCASS <4, 2011, St. Petersburg> SP - 357 EP - 372 PB - EDP Sciences CY - [Les Ulis] ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Keinz, Jan A1 - Hendrick, P. A1 - Recker, E. T1 - Low NOx Hydrogen combustion chamber for industrial gas turbine applications“, 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery T2 - ISROMAC-14 : the Forteenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; Honolulu, Hawaii, February 27 - March 02nd, 2012 Y1 - 2012 N1 - International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ; (14 ; 2012.02.27-03.02 ; Honolulu, Hawaii) ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Keinz, Jan A1 - Kusterer, K. A1 - Kroninger, D. A1 - Kitajima, J. A1 - Kazari, M. A1 - Horikama, A. T1 - Numerical and experimental characterization of low NOx Micromix combustion principle for industrial hydrogen gas turbine applications T2 - Proceedings of ASME Turbo Expo 2012 Y1 - 2013 N1 - ASME Turbo Expo 2012, GT2012, June 11-15, 2012, Copenhagen, Denmark ER - TY - JOUR A1 - Funke, Harald A1 - Börner, Sebastian A1 - Krebs, W. A1 - Wolf, E. T1 - Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications JF - ASME Turbo Expo 2011 ; Vancouver, Canada, June 6-10, 2011 Y1 - 2011 N1 - GT2011-45305 ER - TY - JOUR A1 - Funke, Harald A1 - Börner, Sebastian A1 - Robinson, A. A1 - Hendrick, P. A1 - Recker, E. T1 - Low NOx H2 combustion for industrial gas turbines of various power ranges JF - 5th International Gas Turbine Conference ETN-IGTC, ETN-2010-42, Brussels, Belgium, October 2010 Y1 - 2010 ER - TY - JOUR A1 - Funke, Harald A1 - Dickhoff, J. A1 - Keinz, Jan A1 - Anis, H. A. A1 - Parente, A. A1 - Hendrick, P. T1 - Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications JF - Energy procedia N2 - The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90%-Vol. hydrogen (H₂) and 10%-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.egypro.2014.12.201 SN - 1876-6102 (E-Journal) IS - 61 SP - 1736 EP - 1739 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Peter ED - Bartz, Wilfried J. T1 - Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship T2 - Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009 N2 - The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 % v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security. Y1 - 2009 SN - 978-3-924813-75-8 SP - 237 EP - 244 PB - Technische Akademie Esslingen (TAE) CY - Ostfildern ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - http://dx.doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER -