TY - JOUR A1 - Paulßen, Elisabeth A1 - Lengkeek, Nigel A. A1 - Le, Van So A1 - Pellegrini, Paul A. A1 - Greguric, Ivan A1 - Weiner, Ron T1 - The role of additives in moderating the influence of Fe(III) and Cu(II) on the radiochemical yield of [⁶⁸Ga(DOTATATE)] JF - Applied Radiation and Isotopes N2 - [⁶⁸Ga(DOTATATE)] has demonstrated its clinical usefulness. Both Fe³⁺ and Cu²⁺, potential contaminants in Gallium-68 generator eluent, substantially reduce the radiochemical (RC) yield of [⁶⁸Ga(DOTATATE)] if the metal/ligand ratio of 1:1 is exceeded. A variety of compounds were examined for their potential ability to reduce this effect. Most had no effect on RC yield. However, addition of phosphate diminished the influence of Fe³⁺ by likely forming an insoluble iron salt. Addition of ascorbic acid reduced Cu²⁺ and Fe³⁺ to Cu⁺ and Fe²⁺ respectively, both of which have limited impact on RC yields. At low ligand amounts (5 nmol DOTATATE), the addition of 30 nmol phosphate (0.19 mM) increased the tolerance of Fe3⁺ from 4 nmol to 10 nmol (0.06 mM), while the addition of ascorbic acid allowed high RC yields (>95%) in the presence of 40 nmol Fe³⁺ (0.25 mM) and 100 nmol Cu²⁺ (0.63 mM). The effect of ascorbic acid was highly pH-dependant, and gave optimal results at pH 3. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.apradiso.2015.09.008 SN - 1872-9800 VL - 107 SP - 13 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Barbazán, Paula A1 - Hagenbach, Adelheid A1 - Paulßen, Elisabeth A1 - Abram, Ulrich A1 - Carballo, Rosa A1 - Rodriguez-Hermida, Sabina A1 - Vázquez-López, Ezequiel M. T1 - Tricarbonyl Rhenium(I) and Technetium(I) Complexes with Hydrazones Derived from 4,5-Diazafluoren-9-one and 1,10-Phenanthroline-5,6-dione JF - European Journal of Inorganic Chemistry N2 - Tricarbonylrhenium(I) and -technetium(I) halide (halide = Cl and Br) complexes of ligands derived from 4,5-diazafluoren-9-one (df) and 1,10-phenanthroline-5,6-dione (phen) derivatives of benzoic and 2-hydroxybenzoic acid hydrazides have been prepared. The complexes have been characterized by elemental analysis, MS, IR, 1H NMR and absorption and emission UV/Vis spectroscopic methods. The metal centres (ReI and TcI) are coordinated through the nitrogen imine atoms and establish five-membered chelate rings, whereas the hydrazone groups stand uncoordinated. The 1H NMR spectra suggest the same behaviour in solution on the basis of only marginal variations in the chemical shifts of the hydrazine protons. Y1 - 2010 U6 - http://dx.doi.org/10.1002/ejic.201000522 SN - 1099-0682 IS - 29 SP - 4622 EP - 4630 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Paulßen, Elisabeth A1 - Ngyugen, Hung Huy A1 - Kahlcke, Nils A1 - Deflon, Victor M. A1 - Abram, Ulrich T1 - Tricarbonyltechnetium(I) and -rhenium(I) complexes with N′-thiocarbamoylpicolylbenzamidines JF - Polyhedron N2 - N,N-Dialkylamino(thiocarbonyl)-N′-picolylbenzamidines react with (NEt4)2[M(CO)3X3] (M = Re, X = Br; M = Tc, X = Cl) under formation of neutral [M(CO)3L] complexes in high yields. The monoanionic NNS ligands bind in a facial coordination mode and can readily be modified at the (CS)NR1R2 moiety. The complexes [99Tc(CO)3(LPyMor)] and [Re(CO)3(L)] (L = LPyMor, LPyEt) were characterized by X-ray diffraction. Reactions of [99mTc(CO)3(H2O)3]+ with the N′-thiocarbamoylpicolylbenzamidines give the corresponding 99mTc complexes. The ester group in HLPyCOOEt allows linkage between biomolecules and the metal core. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.poly.2012.04.008 SN - 0277-5387 VL - 40 IS - 1 SP - 153 EP - 158 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoehr, Cornelia A1 - Paulßen, Elisabeth A1 - Benard, Francois A1 - Lee, Chris Jaeil A1 - Hou, Xinchi A1 - Badesso, Brian A1 - Ferguson, Simon A1 - Miao, Qing A1 - Yang, Hua A1 - Buckley, Ken A1 - Hanemaayer, Victoire A1 - Zeisler, Stefan A1 - Ruth, Thomas A1 - Celler, Anna A1 - Schaffer, Paul T1 - ⁴⁴ᶢSc production using a water target on a 13 MeV cyclotron JF - Nuclear medicine and biology N2 - Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in development of less common isotopes. Herein, we describe the production of ⁴⁴Sc (t₁⸝₂ = 3.97 h, Eavg,β⁺ = 1.47 MeV, branching ratio = 94.27%) in a solution target and an automated loading system which allows a quick turn-around between different radiometallic isotopes and therefore greatly improves their availability for tracer development. Experimental yields are compared to theoretical calculations. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.nucmedbio.2013.12.016 SN - 1872-9614 VL - 41 IS - 5 SP - 401 EP - 406 PB - Elsevier CY - Amsterdam ER -