TY - CHAP A1 - Groß, Rolf Fritz A1 - Hecken, M. A1 - Renz, Ulrich ED - Dittler, A. ED - Hemmer, G. ED - Kasper, G. T1 - Hot gas filtration with ceramic filter candles: experimental and numerical investigations on fluid flow during element cleaning T2 - High temperature gas cleaning. Vol. 2 N2 - Ceramic hot gas filters are widely used in combined cycles based on pressurised fluidised beds. They fulfil most of the demands with respect to cleaning efficiency and long time durability, but their operation regarding the consumption of pulse gas and energy still has to be optimised. Experimental investigations were carried out to measure the flow field, the pressure and the gas temperature inside the filter candle during pulse jet cleaning. These results are compared with the results of a numerical procedure based on a solution of the two - dimensional conservation equations for momentum and energy. The observed difficulties handling different flow regimes like highly turbulent flow as well as Darcy flow simultaneously are discussed. KW - 20 fossil-fueled power plants KW - hot gas cleanup KW - ceramics KW - filtration KW - gas flow Y1 - 1999 SN - 3-9805220-1-6 N1 - 4th International Symposium and Exhibition on Gas Cleaning at High Temperatures, 22.-24.09.1999, Karlsruhe SP - 862 EP - 873 PB - KIT Institut für Mechanische Verfahrenstechnik und Mechanik CY - Karlsruhe ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel Bernhard T1 - Hybrid investigation of air transport processes in moderately sloped stepped spillway flows T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 10 ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Tullis, Blake T1 - Hydraulic Structures - ISHS2018 in Perspective T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - https://doi.org/10.15142/T3WH2B ER - TY - JOUR A1 - Erpicum, Sebastien A1 - Crookston, Brian M. A1 - Bombardelli, Fabian A1 - Bung, Daniel Bernhard A1 - Felder, Stefan A1 - Mulligan, Sean A1 - Oertel, Mario A1 - Palermo, Michele T1 - Hydraulic structures engineering: An evolving science in a changing world JF - Wires Water Y1 - 2021 U6 - https://doi.org/10.1002/wat2.1505 SN - 2049-1948 VL - 8 IS - 2 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Ahmed, H. A1 - Schlenkhoff, A. A1 - Bung, Daniel Bernhard T1 - Hydrodynamic characteristics of vertical slotted wall breakwaters T2 - Balance and uncertainty - water in a changing world : proceedings of the 34th IAHR world congress ; 33rd Hydrology and Water Resources Symposium ; 10th Conference on Hydraulics in Water Engineering ; 26 June - 1 July 2011, Brisbane, Australia Y1 - 2011 SN - 978-0-85825-868-6 SP - 1179 EP - 1186 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel T1 - Image processing for bubble image velocimetry in self-aerated flows T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Valero, Daniel ED - Dewals, Benjamin T1 - Image processing techniques for velocity estimation in highly aerated flows: bubble image velocimetry vs. optical flow T2 - Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016) Y1 - 2016 SN - 978-1-138-02977-4 SN - 978-1-4987-8149-7 (eBook) U6 - https://doi.org/10.1201/b21902-31 SP - 151 EP - 157 PB - CRC Press ER - TY - THES A1 - Bung, Daniel Bernhard T1 - Imaging techniques for investigation of free-surface flows in hydraulic laboratories N2 - This thesis aims at the presentation and discussion of well-accepted and new imaging techniques applied to different types of flow in common hydraulic engineering environments. All studies are conducted in laboratory conditions and focus on flow depth and velocity measurements. Investigated flows cover a wide range of complexity, e.g. propagation of waves, dam-break flows, slightly and fully aerated spillway flows as well as highly turbulent hydraulic jumps. Newimagingmethods are compared to different types of sensorswhich are frequently employed in contemporary laboratory studies. This classical instrumentation as well as the general concept of hydraulic modeling is introduced to give an overview on experimental methods. Flow depths are commonly measured by means of ultrasonic sensors, also known as acoustic displacement sensors. These sensors may provide accurate data with high sample rates in case of simple flow conditions, e.g. low-turbulent clear water flows. However, with increasing turbulence, higher uncertainty must be considered. Moreover, ultrasonic sensors can provide point data only, while the relatively large acoustic beam footprint may lead to another source of uncertainty in case of relatively short, highly turbulent surface fluctuations (ripples) or free-surface air-water flows. Analysis of turbulent length and time scales of surface fluctuations from point measurements is also difficult. Imaging techniques with different dimensionality, however, may close this gap. It is shown in this thesis that edge detection methods (known from computer vision) may be used for two-dimensional free-surface extraction (i.e. from images taken through transparant sidewalls in laboratory flumes). Another opportunity in hydraulic laboratory studies comes with the application of stereo vision. Low-cost RGB-D sensors can be used to gather instantaneous, three-dimensional free-surface elevations, even in flows with very high complexity (e.g. aerated hydraulic jumps). It will be shown that the uncertainty of these methods is of similar order as for classical instruments. Particle Image Velocimetry (PIV) is a well-accepted and widespread imaging technique for velocity determination in laboratory conditions. In combination with high-speed cameras, PIV can give time-resolved velocity fields in 2D/3D or even as volumetric flow fields. PIV is based on a cross-correlation technique applied to small subimages of seeded flows. The minimum size of these subimages defines the maximum spatial resolution of resulting velocity fields. A derivative of PIV for aerated flows is also available, i.e. the so-called Bubble Image Velocimetry (BIV). This thesis emphasizes the capacities and limitations of both methods, using relatively simple setups with halogen and LED illuminations. It will be demonstrated that PIV/BIV images may also be processed by means of Optical Flow (OF) techniques. OF is another method originating from the computer vision discipline, based on the assumption of image brightness conservation within a sequence of images. The Horn-Schunck approach, which has been first employed to hydraulic engineering problems in the studies presented herein, yields dense velocity fields, i.e. pixelwise velocity data. As discussed hereinafter, the accuracy of OF competes well with PIV for clear-water flows and even improves results (compared to BIV) for aerated flow conditions. In order to independently benchmark the OF approach, synthetic images with defined turbulence intensitiy are used. Computer vision offers new opportunities that may help to improve the understanding of fluid mechanics and fluid-structure interactions in laboratory investigations. In prototype environments, it can be employed for obstacle detection (e.g. identification of potential fish migration corridors) and recognition (e.g. fish species for monitoring in a fishway) or surface reconstruction (e.g. inspection of hydraulic structures). It can thus be expected that applications to hydraulic engineering problems will develop rapidly in near future. Current methods have not been developed for fluids in motion. Systematic future developments are needed to improve the results in such difficult conditions. Y1 - 2023 U6 - https://doi.org/10.25926/BUW/0-172 ER - TY - CHAP A1 - Döring, Bernd A1 - Feldmann, Markus A1 - Kuhnhenne, Markus A1 - Hellberg, Jan T1 - Implementing a thermal activation system into a light-weight steel deck element T2 - Eurosteel 2008 : 5th European Conference on Steel and Composite Structures ; research, practice, new materials ; 3rd to 5th September 2008, Graz, Austria / ed. by Robert Ofner ... Y1 - 2008 SN - 92-0147-000-90 SP - 941 EP - 946 PB - ECCS, European Convention for Construction Steelwork CY - Brussels ER - TY - CHAP A1 - Döring, Bernd A1 - Sedlacek, Gerhard T1 - Improvement of thermal comfort in light weight buildings made of steel with new concepts for slab systems T2 - 10th Nordic Steel Construction Conference, Copenhagen, Denmark 7-9. June 2004: NSCC 2004 : proceedings Y1 - 2004 SP - 35 EP - 44 PB - Danish Steel Inst. CY - Copenhagen ER - TY - JOUR A1 - Kuhnhenne, Markus A1 - Reger, Vitali A1 - Pyschny, Dominik A1 - Döring, Bernd T1 - Influence of airtightness of steel sandwich panel joints on heat losses JF - E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020) N2 - Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency. Y1 - 2020 U6 - https://doi.org/10.1051/e3sconf/202017205008 VL - 172 IS - Art. 05008 PB - EDP Sciences CY - Les Ulis ER - TY - CHAP A1 - Ziller, Claudia A1 - Döring, Bernd ED - Carmeliet, J. ED - Hens, H. ED - Vermeir, G. T1 - Influence of the external dynamic wind pressure on the ventilation of double facades T2 - Research in building physics: proceedings of the Second International Conference on Building Physics : Leuven, Belgium, 14-18 September 2003 Y1 - 2003 SN - 9058095657, 9789058095657 SP - 527 EP - 533 PB - Taylor and Francis CY - Hoboken ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel Bernhard T1 - Initial stage of two-dimensional dam-break waves: laboratory versus VOF JF - Journal of hydraulic research N2 - Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found. KW - VOF KW - PIV KW - physical model KW - numerical model KW - drag force KW - dam-break Y1 - 2012 U6 - https://doi.org/10.1080/00221686.2011.639981 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - 50 IS - 1 SP - 89 EP - 97 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Biener, Ernst A1 - Boyken, P. A1 - Sasse, T. T1 - Integrated dredged material management system of Bremen-Seehausen JF - Sardinia 97 : proceedings ; [13 - 17 October 1997, S. Margherita di Pula - Cagliari, Sardinia, Italy] / Sixth International Landfill Symposium. Ed.: Thomas H. Christensen... - Bd. 5 : Landfill regulations, waste characteristics, landfilling in middle and lower income countries, industrial wastes and monolandfills Y1 - 1997 N1 - International Landfill Symposium <6, 1997, Santa Margherita, Pula> SP - 497 EP - 502 PB - CISA, Environmental Sanitary Engineering Centre CY - Cagliari ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions T2 - New Perspectives in Science Education - International Conference N2 - In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future. KW - Freshmen KW - roleplay KW - Smart Building Engineering KW - BIM KW - remote teamwork Y1 - 2021 N1 - New Perspectives in Science Education - 10th Edition, 18-19 March 2021, Fully Virtual Conference PB - Filodiritto CY - Bologna ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel Bernhard T1 - Interfacial velocity estimation in highly aerated stepped spillway flows with a single tip fibre optical probe and Artificial Neural Networks T2 - 6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. Lübeck, Germany N2 - Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) phase functions at different locations of a stepped spillway. These phase functions have been related to the interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial velocity. Y1 - 2016 U6 - https://doi.org/10.15142/T3Q590 ER - TY - CHAP A1 - Heinz, G. A1 - Oertel, Mario A1 - Bung, Daniel Bernhard ED - Janssen, Robert T1 - Investigations on a cooling water system for a gas tubine facility concerning air vortexes and sediment transport T2 - Hydraulic structures: useful water harvesting systems or relics? : Third International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS'10) : Edinburgh, Scotland, U.K., 2-3 May 2010 Y1 - 2010 SN - 9781742720159 SP - 109 EP - 116 PB - School of Civil Engineering, The University of Queensland CY - Brisbane ER - TY - CHAP A1 - Uibel, Thomas A1 - Blaß, Hans-Joachim T1 - Joints with Dowel Type Fasteners in CLT structures T2 - Focus solid timber solutions : European Conference on Cross Laminated Timber (CLT); May 21-22, 2013, Graz University of Technology, Austria Y1 - 2013 SN - 978-1-85790-181-8 ; 1-85790-181-9 SP - 119 EP - 134 ER - TY - CHAP A1 - Bung, Daniel Bernhard ED - Rowinski, Pawel T1 - Laboratory models of free-surface flows T2 - Rivers - physical, fluvial and environmental processes N2 - Hydraulic modeling is the classical approach to investigate and describe complex fluid motion. Many empirical formulas in the literature used for the hydraulic design of river training measures and structures have been developed using experimental data from the laboratory. Although computer capacities have increased to a high level which allows to run complex numerical simulations on standard workstation nowadays, non-standard design of structures may still raise the need to perform physical model investigations. These investigations deliver insight into details of flow patterns and the effect of varying boundary conditions. Data from hydraulic model tests may be used for calibration of numerical models as well. As the field of hydraulic modeling is very complex, this chapter intends to give a short overview on capacities and limits of hydraulic modeling in regard to river flows and hydraulic structures only. The reader shall get a first idea of modeling principles and basic considerations. More detailed information can be found in the references. KW - Physical modeling KW - Similitude KW - Open channels KW - Hydraulic structures Y1 - 2015 SN - 978-3-319-17718-2 ; 978-3-319-17719-9 U6 - https://doi.org/10.1007/978-3-319-17719-9_9 SP - 213 EP - 228 PB - Springer CY - Cham ER - TY - CHAP A1 - Feldmann, Markus A1 - Pyschny, D. A1 - Döring, Bernd A1 - Kuhnhenne, Markus T1 - Life cycle assessment of steel constructions T2 - Life-cycle and sustainability of civil infrastructure systems : proceedings of the Third International Symposium on Life-Cycle Civil Engineering (IALCCE'12) : Vienna, Austria, October 3-6, 2012 Y1 - 2012 SN - 978-0-203-10336-4 SP - 321 PB - Taylor and Francis CY - Hoboken ER - TY - CHAP A1 - Uibel, Thomas A1 - Blaß, Hans Joachim T1 - Load Carrying Capacity of Joints with Dowel Type Fasteners in Solid Wood Panels T2 - Proceedings. CIB-W18 Meeting 2006, Florence, Italy 2006 Y1 - 2006 SN - 0945-6996 N1 - Paper 39-7-5 SP - 1 EP - 10 ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Oertel, Mario T1 - Manipulation of non-aerated cavity flow on a stepped spillway model T2 - 3rd European IAHR Congress : April 14 – 16, 2014, Porto Y1 - 2014 PB - Univ. of Porto CY - Porto ER - TY - JOUR A1 - Höttges, Jörg A1 - Arnold, Uwe A1 - Rouvé, Gerhard T1 - Measurement of transverse mixing using digital image acquisition JF - Mixing and transport in the environment : a memorial volume for Catherine M. Allen (1954-1991) / ed. by Keith J. Beven Y1 - 1994 SN - 0471941425 PB - Wiley CY - Chichester [u.a.] ER - TY - JOUR A1 - Leandro, J. A1 - Bung, Daniel Bernhard A1 - Carvalho, R. T1 - Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods JF - Experiments in fluids Y1 - 2014 U6 - https://doi.org/10.1007/s00348-014-1732-6 SN - 0723-4864 (Print) ; 1432-1114 (Online) IS - 55 SP - Art. 1732 PB - Springer Nature CY - Heidelberg ER - TY - BOOK A1 - Kettern, Jürgen T1 - Mechanical and biological treatment of waste after separate collection / R. Damiecki; J.T. Kettern. Italian Ministry of Enviroment Y1 - 1993 N1 - SARDINIA 93 ; 2 ; International Landfill Symposium ; (4. : ; 1993.10.11-15 : ; S. Margherita di Pula) PB - Eigenverlag CY - Caglieri ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Miniature urban farming plant: a complex educational “Toy” for engineering students T2 - The Future of Education 11th Edition 2021 N2 - Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This “miniature industrial plant” was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in “playing” and learning with it in a realistic way. KW - urban farming KW - food production KW - smart engineering KW - 3D printing KW - sustainability Y1 - 2021 N1 - FOE 2021 : The Future of Education International Conference – Fully Virtual Edition; 01.07.2021-02.07.2021; Florence, Italy ER - TY - JOUR A1 - Biener, Ernst A1 - Sasse, T. A1 - Arnold, J. A1 - Woltering, S. T1 - New treatment of harbour sludge in Bremen and Bremerhaven / E. Biener ; T. Sasse ; J. Arnold ; S. Woltering ; N. Binder JF - Characterisation and treatment of sediments : Antwerpen, Belgium, September 15 - 17, 1999 ; [preceded by 12th International Harbour Congress] ; proceedings / CATS 4. Ed.: G. De Schutter. Organized by: Technologisch Instituut, Koninklijke Vlaamse Ingenieursvereniging Y1 - 1999 SN - 9076019118 N1 - CATS <4, 1999, Anvers> SP - 115 EP - 122 PB - Technolog. Inst. CY - Anvers ER - TY - JOUR A1 - Bung, Daniel Bernhard T1 - Non-intrusive detection of air–water surface roughness in self-aerated chute flows JF - Journal of hydraulic research Y1 - 2013 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 51 IS - Iss. 3 SP - 322 EP - 329 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Bung, Daniel Bernhard T1 - Non-intrusive measuring of air-water flow properties in self-aerated stepped spillway flow T2 - Balance and uncertainty - water in a changing world : proceedings of the 34th IAHR world congress ; 33rd Hydrology and Water Resources Symposium ; 10th Conference on Hydraulics in Water Engineering ; 26 June - 1 July 2011, Brisbane, Australia Y1 - 2011 SN - 978-0-85825-868-6 SP - 2380 EP - 2387 ER - TY - CHAP A1 - Kirsch, Ansgar T1 - Numerical investigation of the face stability of shallow tunnels in sand T2 - Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ... Y1 - 2010 SN - 978-0-415-59239-0 SP - 779 EP - 784 PB - Taylor and Francis CY - London ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Crookston, B. M. A1 - Matos, J. ED - Crookston, B. ED - Tullis, B. T1 - Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways BT - Session 1: Hydraulic structures T2 - Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016 Y1 - 2016 SN - 978-1-884575-75-4 U6 - https://doi.org/10.15142/T340628160853 SP - 635 EP - 646 ER - TY - CHAP A1 - Kirsch, Ansgar A1 - Marcher, Thomas T1 - Numerical prediction of time-dependent rock swelling based on an example of a major tunnel project in Ontario/Canada T2 - Numerical methods in geotechnical engineering : (NUMGE 2010) : proceedings of the seventh European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, Norway, 2 - 4 June 2010 / ed. by Thomas Benz ... Y1 - 2010 SN - 978-0-415-59239-0 SP - 297 EP - 302 PB - Taylor and Francis CY - London ER - TY - CHAP A1 - Oertel, Mario A1 - Balmes, Jan P. A1 - Bung, Daniel Bernhard T1 - Numerical simulation of erosion processes on crossbar block ramps T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 8 ER - TY - JOUR A1 - Valero, Daniel A1 - Viti, Nicolo A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment JF - Water Y1 - 2019 U6 - https://doi.org/10.3390/w11010036 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 36 PB - MDPI CY - Basel ER - TY - JOUR A1 - Viti, Nicolo A1 - Valero, Daniel A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook JF - Water Y1 - 2019 U6 - https://doi.org/10.3390/w11010028 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 28 ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Erpicum, Sebastien A1 - Dewals, Benjamin T1 - Numerical study of turbulent oscillations around a cylinder: RANS capabilities and sensitivity analysis T2 - Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia Y1 - 2017 SN - 2521-716X SP - 3126 EP - 3135 ER - TY - CHAP A1 - Müller, Karsten A1 - Fischer, B. T1 - Objective condition assessment of sewer systems T2 - Strategic asset management of water supply and wastewater infrastructures : invited papers from the 2nd IWA Leading Edge Conference on Strategic Asset Management (LESAM), Lisbon, October [17 - 19] 2007 / ed. by Helene Alegre and Maria do Céu Almeida Y1 - 2009 SN - 9781843391869 SP - 521 EP - 534 PB - IWA Publ. CY - London ER - TY - JOUR A1 - Zhang, G. A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Chanson, H. T1 - On the estimation of free-surface turbulence using ultrasonic sensors JF - Flow Measurement and Instrumentation N2 - Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed. Y1 - 2018 U6 - https://doi.org/10.1016/j.flowmeasinst.2018.02.009 SN - 0955-5986 VL - 60 SP - 171 EP - 184 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Duran Paredes, Ludwin A1 - Mottaghy, Darius A1 - Herrmann, Ulf A1 - Groß, Rolf Fritz T1 - Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components T2 - EGU General Assembly 2020 N2 - We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation. Y1 - 2020 N1 - EGU General Assembly 2020, Online, 4–8 May 2020 ER - TY - CHAP A1 - Mohan, Nijanthan A1 - Groß, Rolf Fritz A1 - Menzel, Karsten A1 - Theis, Fabian T1 - Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany – A Case Study T2 - WIT Transactions on The Built Environment, Vol. 205 N2 - Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany. KW - building information modelling KW - HVAC KW - prefabrication KW - construction KW - small and medium scaled companies Y1 - 2021 U6 - https://doi.org/10.2495/BIM210101 SN - 1743-3509 N1 - 4th International Conference on Building Information Modelling (BIM) in Design, Construction and Operations, 1–3 September 2021. Santiago de Compostela, Spain SP - 117 EP - 126 PB - WIT Press CY - Southampton ER - TY - JOUR A1 - Bung, Daniel Bernhard A1 - Valero, Daniel T1 - Optical flow estimation in aerated flows JF - Journal of Hydraulic Research N2 - Optical flow estimation is known from Computer Vision where it is used to determine obstacle movements through a sequence of images following an assumption of brightness conservation. This paper presents the first study on application of the optical flow method to aerated stepped spillway flows. For this purpose, the flow is captured with a high-speed camera and illuminated with a synchronized LED light source. The flow velocities, obtained using a basic Horn–Schunck method for estimation of the optical flow coupled with an image pyramid multi-resolution approach for image filtering, compare well with data from intrusive conductivity probe measurements. Application of the Horn–Schunck method yields densely populated flow field data sets with velocity information for every pixel. It is found that the image pyramid approach has the most significant effect on the accuracy compared to other image processing techniques. However, the final results show some dependency on the pixel intensity distribution, with better accuracy found for grey values between 100 and 150. Y1 - 2016 U6 - https://doi.org/10.1080/00221686.2016.1173600 VL - 54 IS - 5 SP - 575 EP - 580 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Höttges, Jörg A1 - Ritterbach, E. A1 - Els, H. T1 - Optical Improvement of LDV-Measurement in Pipe Flow / Ritterbach, E.; J. Höttges; H. Els JF - Laser anemometry : advances and applications; proceedings of the 2. International Conference, Strathclyde, Scotland, 21st to 23rd September 1987 / ed. by John Turner ... UK LDA Users Group Y1 - 1987 SN - 3540187561 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Schlenkhoff, Andreas ED - Pagliara, Stefano T1 - Optimization of the reaeration potential on embankment stepped spillways in skimming flow regime T2 - Hydraulic structures : proceedings of the second International Junior Researcher and Engineer Workshop on Hydraulic Structures, Pisa, Italy, 30 July-1 August 2008 Y1 - 2008 SN - 978-88-8492-568-8 SP - 97 EP - 106 ER - TY - JOUR A1 - von Häfen, Hajo A1 - Krautwald, Clemens A1 - Stolle, Jacob A1 - Bung, Daniel Bernhard A1 - Goseberg, Nils T1 - Overland flow of broken solitary waves over a two-dimensional coastal plane JF - Coastal Engineering N2 - Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand. KW - Landslide tsunamis KW - Hazard assessment KW - Large scale tests KW - Overland flow KW - Solitary waves Y1 - 2022 U6 - https://doi.org/10.1016/j.coastaleng.2022.104125 SN - 1872-7379 VL - 175 IS - August PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Schalko, Isabella A1 - Friedrich, Heide A1 - Abad, Jorge D. A1 - Bung, Daniel Bernhard A1 - Donchyts, Gennadii A1 - Felder, Stefan A1 - Ferreira, Rui M. L. A1 - Hohermuth, Benjamin A1 - Kramer, Matthias A1 - Li, Danxun A1 - Mendes, Luis A1 - Moreno-Rodenas, Antonio A1 - Nones, Michael A1 - Paron, Paolo A1 - Ruiz-Villanueva, Virginia A1 - Wang, Ruo-Qian A1 - Franca, Mario J. T1 - Pathways towards democratization of hydro-environment observations and data JF - Iahr White Paper Series Y1 - 2021 IS - 1 SP - 1 EP - 9 PB - International Association for Hydro-Environment Engineering and Research (IAHR) ER - TY - JOUR A1 - Bayon, Arnau A1 - Valero, Daniel A1 - Garcia-Bartual, Rafael A1 - Vallés-Morán, Francisco José A1 - López-Jiménez, P. Amparo T1 - Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump JF - Environmental Modelling & Software N2 - A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers. Y1 - 2016 SN - 1364-8152 U6 - https://doi.org/10.1016/j.envsoft.2016.02.018 VL - 80 SP - 322 EP - 335 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kerpen, N. B. A1 - Bung, Daniel Bernhard A1 - Schlurmann, Torsten T1 - Physical model investigations of pressure distributions next to ships passing through a lock T2 - 5th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : CG JOINT 2010 Y1 - 2010 SN - 978-7-5618-3671-2 SP - 514 EP - 519 PB - Univ. Press CY - Tianjin ER - TY - CHAP A1 - Kerpen, N. B. A1 - Bung, Daniel Bernhard A1 - Schlurmann, Torsten ED - Janssen, Robert T1 - Physical model investigations of ships passing through a lock T2 - Hydraulic structures: useful water harvesting systems or relics? : Third International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS'10) : Edinburgh, Scotland, U.K., 2-3 May 2010 Y1 - 2010 SN - 9781742720159 SP - 93 EP - 100 PB - School of Civil Engineeering, The University of Queensland CY - Brisbane ER - TY - CHAP A1 - Schlenkhoff, Andreas A1 - Bung, Daniel Bernhard T1 - Prediction of oxygen transfer in self-aerated skimming flow on embankment stepped spillways T2 - Water engineering for sustainable environment : 33rd IAHR congress ; 9 - 14 August 2009, Vancouver, British Columbia, Canada Y1 - 2009 SN - 9789078046080 SP - 1 CD-ROM ER -