TY - JOUR A1 - Schüller-Ruhl, Aaron A1 - Dinstühler, Leonard A1 - Senger, Thorsten A1 - Bergfeld, Stefan A1 - Ingenhag, Christian A1 - Fleischhaker, Robert ED - Mackenzie, Jacob T1 - Direct fabrication of arbitrary phase masks in optical glass via ultra-short pulsed laser writing of refractive index modifications JF - Applied Physics B N2 - We study the possibility to fabricate an arbitrary phase mask in a one-step laser-writing process inside the volume of an optical glass substrate. We derive the phase mask from a Gerchberg–Saxton-type algorithm as an array and create each individual phase shift using a refractive index modification of variable axial length. We realize the variable axial length by superimposing refractive index modifications induced by an ultra-short pulsed laser at different focusing depth. Each single modification is created by applying 1000 pulses with 15 μJ pulse energy at 100 kHz to a fixed spot of 25 μm diameter and the focus is then shifted axially in steps of 10 μm. With several proof-of-principle examples, we show the feasibility of our method. In particular, we identify the induced refractive index change to about a value of Δn=1.5⋅10−3. We also determine our current limitations by calculating the overlap in the form of a scalar product and we discuss possible future improvements. Y1 - 2022 U6 - http://dx.doi.org/10.1007/s00340-022-07928-2 SN - 1432-0649 (Online) SN - 0946-2171 (Print) N1 - Corresponding author: Robert Fleischhaker VL - 128 IS - Article number: 208 SP - 1 EP - 11 PB - Springer CY - Berlin ER - TY - JOUR A1 - Rossi, Leonardo A1 - Winands, Mark H. M. A1 - Butenweg, Christoph ED - Zhang, Jessica T1 - Monte Carlo Tree Search as an intelligent search tool in structural design problems JF - Engineering with Computers : An International Journal for Simulation-Based Engineering N2 - Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study’s outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers. KW - Monte Carlo Tree Search KW - Structural design KW - Artificial intelligence KW - Civil engineering KW - Genetic algorithm Y1 - 2022 U6 - http://dx.doi.org/10.1007/s00366-021-01338-2 SN - 1435-5663 SN - 0177-0667 VL - 38 IS - 4 SP - 3219 EP - 3236 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Ansal, Atilla T1 - Latest findings on the behaviour factor q for the seismic design of URM buildings JF - Bulletin of Earthquake Engineering N2 - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20–0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0–3.0 are proposed. KW - Unreinforced masonry buildings KW - Modern constructions KW - Seismic design KW - Linear elastic analysis KW - Behaviour factor q Y1 - 2022 U6 - http://dx.doi.org/10.1007/s10518-022-01419-7 SN - 1573-1456 SN - 1570-761X VL - 20 IS - 11 SP - 5797 EP - 5848 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - http://dx.doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dellmann, Sophia Florence A1 - Glorius, J. A1 - Litvinov, Yu A. A1 - Reifarth, R. A1 - Al-Khasawneh, Kafa A1 - Aliotta, M. A1 - Bott, L. A1 - Brückner, Benjamin A1 - Bruno, C. G. A1 - Chen, Ruijiu A1 - Davinson, T. A1 - Dickel, T. A1 - Dillmann, Iris A1 - Dmytriev, D. A1 - Erbacher, P. A1 - Freire-Fernández, D. A1 - Forstner, Oliver A1 - Geissel, H. A1 - Göbel, K. A1 - Griffin, Christopher J. A1 - Grisenti, R. A1 - Gumberidze, Alexandre A1 - Haettner, Emma A1 - Hagmann, Siegbert A1 - Heil, M. A1 - Heß, R. A1 - Hillenbrand, P.-M. A1 - Joseph, R. A1 - Jurado, B. A1 - Kozhuharov, Christophor A1 - Kulikov, I. A1 - Löher, Bastian A1 - Langer, Christoph A1 - Leckenby, Guy A1 - Lederer-Woods, C. A1 - Lestinsky, M. A1 - Litvinov, S. A. A1 - Lorenz, B. A. A1 - Lorenz, E. A1 - Marsh, J. A1 - Menz, Esther Babette A1 - Morgenroth, T. A1 - Petridis, N. A1 - Pibernat, Jerome A1 - Popp, U. A1 - Psaltis, Athanasios A1 - Sanjari, Shahab A1 - Scheidenberger, C. A1 - Sguazzin, M. A1 - Sidhu, Ragandeep Singh A1 - Spillmann, Uwe A1 - Steck, M. A1 - Stöhlker, T. A1 - Surzhykov, A. A1 - Swartz, J. A. A1 - Törnqvist, H. A1 - Varga, L. A1 - Vescovi, Diego A1 - Weick, H. A1 - Weigand, M. A1 - Woods, P. A1 - Xing, Y. A1 - Yamaguchi, Taiyo T1 - Proton capture on stored radioactive ¹¹⁸Te ions JF - EPJ Web of Conferences N2 - Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented. Y1 - 2023 U6 - http://dx.doi.org/10.1051/epjconf/202327911018 SN - 2100-014X N1 - Volume 279, 2023. Nuclear Physics in Astrophysics – X (NPA-X 2022). VL - 279 IS - Article Number: 11018 SP - 1 EP - 5 PB - EDP Sciences ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Cheenakula, Dheeraja A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Design and construction of a new reactor for flexible biomethanation of hydrogen JF - Fermentation N2 - The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h−1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested. KW - methanation KW - plug flow reactor KW - bubble column KW - bio-methane KW - power-to-gas Y1 - 2023 U6 - http://dx.doi.org/10.3390/fermentation9080774 SN - 2311-5637 N1 - The article belongs to the Special Issue Fermentation Processes: Modeling, Optimization and Control VL - 9 IS - 8 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Berg-Postweiler, Julia A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - One size does not fit all: Applying antibias trainings in academia JF - The International Journal of Organizational Diversity N2 - Antibias training is increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management,” antibias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, promote awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of antibias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the article aims to explore how sustainable the effects of individual antibias trainings on participants’ behavior are. In order to investigate this, participant observation in a qualitative pre–post setting was conducted, analyzing antibias training in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single antibias trainings and show that a target-group adaptive approach is mandatory owing to the background of the approach in early childhood education. Therefore, antibias work needs to be adapted to the target group’s needs and realities of life. Furthermore, the study reveals that single antibias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This article is one of the first to scientifically evaluate antibias training effectiveness, especially in engineering sciences and the university context. KW - Antibias KW - Diversity Management KW - Organizational Culture KW - Engineering Habitus Y1 - 2023 U6 - http://dx.doi.org/10.18848/2328-6261/CGP/v24i01/1-23 SN - 2328-6261 (Print) SN - 2328-6229 (Online) VL - 24 IS - 1 SP - 1 EP - 23 PB - Common Ground Research Networks ER -