TY - CHAP A1 - Weber, S. A1 - Terstegge, Andreas A1 - Halling, H. A1 - Herzog, H. A1 - Reinartz, R. A1 - Reinhart, P. A1 - Rongen, F. A1 - Müller-Gärtner, H.-W. T1 - The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity T2 - Conference record / 1995 IEEE Nuclear Science Symposium and Medical Imaging, October 21 - 28, 1995, San Francisco ; vol. 2 Y1 - 1995 SN - 078033180X ; 0780331818 ; 0780331826 SP - 1002 EP - 1005 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Arinkin, Vladimir A1 - Digel, Ilya A1 - Porst, Dariusz A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application JF - BMC bioinformatics N2 - Background True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with technical/optical methods and artificial neural networks (ANN). Results Fluorescence microscopy images of leaflet cross sections have been taken from a set of five date palm tree cultivars (Hewlat al Jouf, Khlas, Nabot Soltan, Shishi, Um Raheem). After features extraction from images, the obtained data have been fed in a multilayer perceptron ANN with backpropagation learning algorithm. Conclusions Overall, an accurate result in prediction and differentiation of date palm tree cultivars was achieved with average prediction in tenfold cross-validation is 89.1% and reached 100% in one of the best ANN. Y1 - 2014 U6 - http://dx.doi.org/10.1186/1471-2105-15-55 SN - 1471-2105 VL - 15 IS - 55 SP - 1 EP - 8 ER - TY - JOUR A1 - Sawada, Kazuaki A1 - Nakazawa, Hirokazu A1 - Takenaga, Shoko A1 - Hizawa, Takeshi A1 - Futagawa, Masato A1 - Dasai, Fumihiro A1 - Sakurai, Takashi A1 - Okumura, Koichi A1 - Hattori, Toshiaki A1 - Ishida, Makoto T1 - Multimodal bioimage sensor JF - IEICE transactions on fundamentals of electronics, communidations and computer sciences N2 - To visualize the biochemical distribution two-dimensionally, we invented a solid-state-type ion image sensor that indicates the chemical activity of solutions and cells. The device, which consists of a CCD array covered with a functionalized membrane to detect charge accumulation, is highly sensitive to changes in the concentration and two-dimensional distribution of ions and biomaterials. Y1 - 2014 U6 - http://dx.doi.org/10.1587/transfun.E97.A.726 SN - 0916-8508 (Print) ; 1745-1337 (Online) VL - E97-A (2014) IS - 3 SP - 726 EP - 733 PB - IEICE CY - Tokyo ER -