TY - JOUR A1 - Schulze, Sven A1 - Feyerl, Günter A1 - Pischinger, Stefan T1 - Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions JF - Energies N2 - To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks. KW - Energy management strategies KW - ECMS KW - CO2 emission reduction targets KW - Driving cycle recognition KW - Predictive battery discharge Y1 - 2023 U6 - https://doi.org/10.3390/en16135171 SN - 1996-1073 N1 - The article belongs to the Special Issue "Energy Management Strategies of Electrified Vehicles toward the Real-World Driving". VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - https://doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Elsen, Ingo A1 - Kraiss, Karl-Friedrich T1 - System concept and realization of a scalable neurocomputing architecture JF - Systems Analysis Modelling Simulation N2 - This paper describes the realization of a novel neurocomputer which is based on the concepts of a coprocessor. In contrast to existing neurocomputers the main interest was the realization of a scalable, flexible system, which is capable of computing neural networks of arbitrary topology and scale, with full independence of special hardware from the software's point of view. On the other hand, computational power should be added, whenever needed and flexibly adapted to the requirements of the application. Hardware independence is achieved by a run time system which is capable of using all available computing power, including multiple host CPUs and an arbitrary number of neural coprocessors autonomously. The realization of arbitrary neural topologies is provided through the implementation of the elementary operations which can be found in most neural topologies. Y1 - 1999 SN - 0232-9298 SN - 1029-4902 VL - 35 IS - 4 SP - 399 EP - 419 PB - Gordon and Breach Science Publishers CY - Amsterdam ER - TY - JOUR A1 - Elsen, Ingo A1 - Kraiss, Karl-Friedrich A1 - Krumbiegel, Dirk A1 - Walter, Peter A1 - Wickel, Jochen T1 - Visual information retrieval for 3D product identification: a midterm report JF - KI - Künstliche Intelligenz Y1 - 1999 SN - 1610-1987 SN - 0933-1875 VL - 13 IS - 1 SP - 64 EP - 67 PB - Springer CY - Berlin ER - TY - JOUR A1 - Elsen, Ingo A1 - Hartung, Frank A1 - Horn, Uwe A1 - Kampmann, Markus A1 - Peters, Liliane ED - Voas, Jeffrey T1 - Streaming technology in 3G mobile communication systems JF - Computer : innovative technology for computer professionals N2 - Third-generation mobile communication systems will combine standardized streaming with a range of unique services to provide high-quality Internet content that meets the specific needs of the rapidly growing mobile market. Y1 - 2001 SN - 0018-9162 SN - 1558-0814 VL - 34 IS - 9 Seiten SP - 46 EP - 52 PB - IEEE CY - New York ER - TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - https://doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER - TY - JOUR A1 - Esch, Thomas T1 - Trends in commercial vehicle powertrains JF - ATZautotechnology N2 - Low emission zones and truck bans, the rising price of diesel and increases in road tolls: all of these factors are putting serious pressure on the transport industry. Commercial vehicle manufacturers and their suppliers are in the process of identifying new solutions to these challenges as part of their efforts to meet the EEV (enhanced environmentally friendly vehicle) limits, which are currently the most robust European exhaust and emissions standards for trucks and buses. KW - European Transient Cycle KW - Common Rail Injection System KW - Commercial Vehicle KW - Selective Catalytic Reduction KW - Diesel Engine Y1 - 2010 U6 - https://doi.org/10.1007/BF03247185 SN - 2192-886X VL - 2010 IS - 10 SP - 26 EP - 31 PB - Vieweg & Sohn CY - Wiesbaden ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - https://doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER - TY - JOUR A1 - Stiemer, Luc Nicolas A1 - Thoma, Andreas A1 - Braun, Carsten T1 - MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation JF - PLoS ONE N2 - This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8%, Faster R-CNN achieves AP = 45, 3% and RetinaNet AP = 38, 4% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker’s appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5% and a Multiple Object Tracking Precision MOTP = 75, 6% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0291415 SN - 1932-6203 N1 - Corresponding author: Luc Nicolas Stiemer VL - 18 IS - 9 PB - PLOS CY - San Fancisco ER - TY - JOUR A1 - Rupp, Matthias A1 - Schulze, Sven A1 - Kuperjans, Isabel T1 - Comparative life cycle analysis of conventional and hybrid heavy-duty trucks JF - World electric vehicle journal N2 - Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle’s environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance. Y1 - 2018 U6 - https://doi.org/10.3390/wevj9020033 SN - 2032-6653 VL - 9 IS - 2 SP - Article No. 33 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rake, Heinrich A1 - Enning, Manfred A1 - Kurth, Johannes A1 - Schröder, Walter T1 - Automatic uncoupler completes automation at the hump JF - RGI - Railway Gazette International Y1 - 1994 SN - 0373-5346 VL - 150 IS - 6 SP - 371 EP - 374 PB - Reed Business CY - Sutton ER - TY - JOUR A1 - Saretzki, Charlotte A1 - Bergmann, Ole A1 - Dahmann, Peter A1 - Janser, Frank A1 - Keimer, Jona A1 - Machado, Patricia A1 - Morrison, Audry A1 - Page, Henry A1 - Pluta, Emil A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Are small airplanes safe with regards to COVID-19 transmission? JF - Journal of Travel Medicine Y1 - 2021 U6 - https://doi.org/10.1093/jtm/taab105 SN - 1708-8305 VL - 28 IS - 7 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Bergmann, Ole A1 - Möhren, Felix A1 - Braun, Carsten A1 - Janser, Frank T1 - On the influence of elasticity on swept propeller noise JF - AIAA SCITECH 2023 Forum N2 - High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0210 N1 - Session: Propeller, Open Rotor, and Rotorcraft Noise II AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA CY - Reston, Va. ER -