TY - JOUR A1 - Bitz, Andreas A1 - Felder, Jorg A1 - Wittig, Tilmann T1 - Designing MRI Coils with Aid of Simulation JF - Microwaves & RF Y1 - 2013 SN - 0745-2993 VL - 52 IS - 7 SP - 56 PB - Penton CY - Cleveland, Ohio ER - TY - JOUR A1 - Kraff, Oliver A1 - Wrede, Karsten H. A1 - Schoemberg, Tobias A1 - Dammann, Philipp A1 - Noureddine, Yacine A1 - Orzada, Stephan A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - MR safety assessment of potential RF heating from cranial fixation plates at 7 T JF - Medical Physics Y1 - 2013 U6 - https://doi.org/10.1118/1.4795347 SN - 2473-4209 VL - 40 IS - 4 SP - 042302-1 EP - 042302-10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Umutlu, L. A1 - Maderwald, S. A1 - Kinner, S. A1 - Kraff, O. A1 - Bitz, Andreas A1 - Orzada, S. A1 - Johst, S. A1 - Wrede, K. A1 - Forsting, M. A1 - Ladd, M. E. A1 - Lauenstein, T. C. A1 - Quick, H. H. T1 - First-pass contrast-enhanced renal MRA at 7 Tesla: initial results JF - European Radiology Y1 - 2013 U6 - https://doi.org/10.1007/s00330-012-2666-0 SN - 1432-1084 VL - 23 IS - 4 SP - 1059 EP - 1066 PB - Springer CY - Berlin ER - TY - JOUR A1 - Umutlu, Lale A1 - Orzada, Stephan A1 - Kinner, Sonja A1 - Maderwald, Stefan A1 - Bronte, Irina A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Antoch, Gerald A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Lauenstein, Thomas C. T1 - Renal imaging at 7 Tesla: preliminary results JF - European Radiology N2 - Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value. Y1 - 2011 SN - 1432-1084 VL - 21 IS - 4 SP - 841 EP - 849 PB - Springer CY - Berlin ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Schmidt, Simon A1 - Stelter, Jonathan K. A1 - Wittrich, Marco A1 - Quick, Harald H. A1 - Bitz, Andreas A1 - Ladd, Mark E. T1 - Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose JF - NMR in Biomedicine N2 - In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil. KW - body imaging at 7 T MRI KW - thermal dose KW - tissue temperature KW - transmit antenna arrays Y1 - 2022 U6 - https://doi.org/10.1002/nbm.4656 SN - 0952-3480 (Print) SN - 1099-1492 (Online) VL - 35 IS - 5 SP - 1 EP - 17 PB - Wiley ER - TY - JOUR A1 - Coll-Perales, Baldomero A1 - Schulte-Tigges, Joschua A1 - Rondinone, Michele A1 - Gozalvez, Javier A1 - Reke, Michael A1 - Matheis, Dominik A1 - Walter, Thomas T1 - Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles JF - IEEE Transactions on Intelligent Transportation Systems N2 - Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions. KW - Automated driving KW - automated vehicles KW - connected automated vehicles KW - CAV KW - experimental evaluation Y1 - 2021 U6 - https://doi.org/10.1109/TITS.2021.3061085 SN - 1524-9050 (Print) SN - 1558-0016 (Online) VL - 23 IS - 7 SP - 6720 EP - 6736 PB - IEEE ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T JF - NMR in Biomedicine N2 - The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study. KW - body imaging at UHF MRI KW - integrated transmit coil arrays KW - VOP compression Y1 - 2021 U6 - https://doi.org/10.1002/nbm.4515 SN - 0952-3480 (ISSN) SN - 1099-1492 (eISSN) VL - 34 IS - 7 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kowalewski, Paul A1 - Bragard, Michael A1 - Hüning, Felix A1 - De Doncker, Rik W. T1 - An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives JF - IEEE Transactions on Instrumentation and Measurement N2 - This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth. KW - Rotary encoder KW - Wiegand sensor Y1 - 2023 U6 - https://doi.org/10.1109/TIM.2023.3326166 SN - 0018-9456 (Print) SN - 1557-9662 (Online) VL - 72 SP - 10 Seiten PB - IEEE CY - New York ER - TY - JOUR A1 - Elsen, Ingo A1 - Kraiss, Karl-Friedrich T1 - System concept and realization of a scalable neurocomputing architecture JF - Systems Analysis Modelling Simulation N2 - This paper describes the realization of a novel neurocomputer which is based on the concepts of a coprocessor. In contrast to existing neurocomputers the main interest was the realization of a scalable, flexible system, which is capable of computing neural networks of arbitrary topology and scale, with full independence of special hardware from the software's point of view. On the other hand, computational power should be added, whenever needed and flexibly adapted to the requirements of the application. Hardware independence is achieved by a run time system which is capable of using all available computing power, including multiple host CPUs and an arbitrary number of neural coprocessors autonomously. The realization of arbitrary neural topologies is provided through the implementation of the elementary operations which can be found in most neural topologies. Y1 - 1999 SN - 0232-9298 SN - 1029-4902 VL - 35 IS - 4 SP - 399 EP - 419 PB - Gordon and Breach Science Publishers CY - Amsterdam ER - TY - JOUR A1 - Elsen, Ingo A1 - Kraiss, Karl-Friedrich A1 - Krumbiegel, Dirk A1 - Walter, Peter A1 - Wickel, Jochen T1 - Visual information retrieval for 3D product identification: a midterm report JF - KI - Künstliche Intelligenz Y1 - 1999 SN - 1610-1987 SN - 0933-1875 VL - 13 IS - 1 SP - 64 EP - 67 PB - Springer CY - Berlin ER -