TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Tim, Sieker A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnology and bioprocess engineering – from the first ullmann's article to recent trends JF - ChemBioEng Reviews N2 - For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed. Y1 - 2015 U6 - https://doi.org/10.1002/cben.201500008 VL - 2 IS - 3 SP - 175 EP - 184 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Sieker, Tim A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnologie und Bioverfahrenstechnik – Vom ersten Ullmanns Artikel bis hin zu aktuellen Forschungsthemen JF - Chemie Ingenieur Technik N2 - Biotechnologie und die mit ihr verbundenen technischen Prozesse prägen seit Jahrtausenden die Entwicklung der Menschheit. Ausgehend von empirischen Verfahren, insbesondere zur Herstellung von Lebensmitteln und täglichen Gebrauchsgütern, haben sich diese Disziplinen zu einem der innovativsten Zukunftsfelder entwickelt. Durch das immer detailliertere Verständnis zellulärer Vorgänge können mittlerweile Produktionsstämme gezielt optimiert werden. Im Zusammenspiel mit moderner Prozesstechnik können so eine Vielzahl von Bulk- und Feinchemikalien sowie Pharmazeutika effizient hergestellt werden. In diesem Artikel werden exemplarisch einige der aktuellen Trends vorgestellt. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201400083 SN - 0009-286X VL - 86 IS - 12 SP - 2215 EP - 2225 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Zhubanova, A. A. A1 - Mansurov, Z. A. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Use of Carbonized Rise Shell for the local treatment of wounds JF - Eurasian ChemTech Journal N2 - On the model of musculocutaneous wound in rats, the effect of applicative sorption by carbonized rise shell (CRS) on the healing of festering wound was studied. It has been shown, that cytological changes end with rapid scar formation. The use of CRS at the period of severe purulent wound contributes to its favorable course, prevents the development of complications of the animals from sepsis. Y1 - 2010 U6 - https://doi.org/10.18321/ectj35 SN - 2522-4867 VL - 12 IS - 2 SP - 133 EP - 138 PB - Institute of Combustion Problems CY - Almaty ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Zhanadilovna, Abdieva G. A1 - Ualieva, Perizat S. A1 - Abaihanovna, Zhusipova D. A1 - Digel, Ilya A1 - Savitskaya, Irina S. A1 - Zhubanova, Azhar Achmet T1 - Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties. Y1 - 2020 SN - 978-981-4800-27-3 U6 - https://doi.org/10.1201/9780429428647-11 SP - 211 EP - 228 PB - Jenny Stanford Publishing CY - Singapore ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Qiao, Xiaohui A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Zhubanova, Azhar T1 - The effect of leonardite-derived amendments on soil microbiome structure and potato yield JF - Agriculture N2 - Humic substances originating from various organic matters can ameliorate soil properties, stimulate plant growth, and improve nutrient uptake. Due to the low calorific heating value, leonardite is rather unsuitable as fuel. However, it may serve as a potential source of humic substances. This study was aimed at characterizing the leonardite-based soil amendments and examining the effect of their application on the soil microbial community, as well as on potato growth and tuber yield. A high yield (71.1%) of humic acid (LHA) from leonardite has been demonstrated. Parental leonardite (PL) and LHA were applied to soil prior to potato cultivation. The 16S rRNA sequencing of soil samples revealed distinct relationships between microbial community composition and the application of leonardite-based soil amendments. Potato tubers were planted in pots in greenhouse conditions. The tubers were harvested at the mature stage for the determination of growth and yield parameters. The results demonstrated that the LHA treatments had a significant effect on increasing potato growth (54.9%) and tuber yield (66.4%) when compared to the control. The findings highlight the importance of amending leonardite-based humic products for maintaining the biogeochemical stability of soils, for keeping their healthy microbial community structure, and for increasing the agronomic productivity of potato plants. Y1 - 2020 U6 - https://doi.org/10.3390/agriculture10050147 VL - 10 IS - Art. 147 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Zhubanova, A. A. T1 - Investigation the Influence of Carbonized Material Based On Rice Husk on Viability and Migration of Fibroblasts in T3B3 Cell Culture JF - KazNU Bulletin. Biology series Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 59 IS - 3/1 SP - 20 EP - 23 ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Zhubanova, A. A. T1 - Advantages of creation of e-books in training of specialists biologists and biotechnologists JF - KazNU Bulletin. Biology series. N2 - The necessity of e-books as a primary of learning, its opportunities for realization of competence during training biologist and biotechnologist specialists are determined. Definitions and requirements to the e-books, its advantages in comparison with traditional textbooks, and the ways of creation of e-books in the SunRav BookEditor program are considered. KW - SunRav BookEditor KW - softs KW - distance learning KW - e-issues KW - e-books Y1 - 2014 SN - 1563-0218 VL - 60 IS - 1 SP - 249 EP - 252 PB - Al-Farabi Kazakh National University CY - Almaty ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Sherelkhan, Dinara K. A1 - Jussupova, Dariya B. A1 - Altynbay, Nazym P. T1 - Low-rank coal as a source of humic substances for soil amendment and fertility management JF - Agriculture N2 - Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production. KW - soil remediation KW - crop yield KW - soil health KW - soil amendment KW - low-rank coal Y1 - 2021 U6 - https://doi.org/10.3390/agriculture11121261 SN - 2077-0472 N1 - This article belongs to the Special Issue "From Waste to Fertilizer in Sustainable Agriculture" VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Kozhahmetova, Marzhan A1 - Sherelkhan, Dinara K. A1 - Tauanov, Zhandos T1 - Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability JF - International Journal of Hydrogen Energy N2 - Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions. KW - Coal KW - Methanogenesis KW - Methane KW - Hydrogenotrophic methanogens KW - H2 Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2023.09.223 SN - 1879-3487 (online) SN - 0360-3199 (print) VL - 52 IS - Part D SP - 1264 EP - 1277 PB - Elsevier CY - New York ER -