TY - JOUR A1 - Behbahani, Mehdi A1 - Mai, A. A1 - Bergmann, B. A1 - Waluga, C. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Mottaghy, K. T1 - Modeling and Numerical Simulation of Blood Damage Y1 - 2010 N1 - Posterpresentation ; Umbrella Symposium "Modelling and Simulation in Medicine, Engineering and Sciences", Forschungszentrum Jülich, January 18-20, 2010 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Waluga, C. A1 - Stock, S. A1 - Mai, A. A1 - Bergmann, B. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Scheidt, H. A1 - Oedekoven, B. A1 - Mottaghy, K. T1 - Modelling and Numerical Analysis of Platelet Reactions and Surface Thrombus Growth Y1 - 2009 N1 - Posterpresentation ; European Society of Biomaterials (ESB), Lausanne, Switzerland, September 7-10, 2009 ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, Simon A1 - von Wulfen, Benedikt A1 - Clemens, Joachim A1 - Konstantinidis, Konstantinos A1 - Ameres, Gerald A1 - Hoffmann, Ruth A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek M. A1 - Funke, Oliver A1 - Blandfort, Daniel A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, Dmitry A1 - Heinen, Dirk A1 - Scholz, Franziska A1 - Wiebusch, Christopher H. A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Reineking, Thomas A1 - Zetzsche, Christoph A1 - Schill, Kerstin A1 - Förstner, Roger A1 - Niedermeier, Herbert A1 - Szumski, Arkadiusz A1 - Eissfeller, Bernd A1 - Naumann, Uwe A1 - Helbing, Klaus T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mansurov, Zulkhair A. A1 - Digel, Ilya A1 - Biisenbaev, M. A1 - Savistkaya, I. A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly S. A1 - Zhubanova, Azhar Achmet T1 - Bio-composite material on the basis of carbonized rice husk in biomedicine and environmental applications JF - Eurasian Chemico-Technological Journal Y1 - 2012 U6 - https://doi.org/10.18321/ectj105 SN - 2522-4867 VL - 14 IS - 2 SP - 115 EP - 131 PB - Institute of Combustion Problems CY - Almaty ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Zhubanova, Azhar A1 - Tastambek, Kuanysh T. A1 - Tepecik, Atakan A1 - Sherelkhan, Dinara T1 - Biotechnological potentials of surfactants in coal utilization: a review JF - Environmental Science and Pollution Research N2 - The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption. KW - Coal KW - Surfactants KW - Microorganisms KW - Biosolubilization KW - Biobeneficiation Y1 - 2024 U6 - https://doi.org/10.1007/s11356-024-34892-5 SN - 1614-7499 VL - 31 SP - 55099 EP - 55118 PB - Springer CY - Berlin ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Herčík, David A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Tóth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and ‘Now-Term ‘technologies T2 - 69 th International Astronautical Congress (IAC) N2 - Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population. KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - small spacecraft Y1 - 2018 N1 - 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. https://www.bho-legal.com/1-5-october-2018-69th-international-astronautical-congress-2018-in-bremen-germany/ SP - 1 EP - 18 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D. A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Meß, Jan-Gerd A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Ceriotti, Matteo A1 - McInnes, Colin A1 - Peloni, Alessandro A1 - Biele, Jens A1 - Krause, Christian A1 - Dachwald, Bernd A1 - Hercik, David A1 - Lichtenheldt, Roy A1 - Wolff, Friederike A1 - Koncz, Alexander A1 - Pelivan, Ivanka A1 - Schmitz, Nicole A1 - Boden, Ralf Christian A1 - Riemann, Johannes A1 - Seboldt, Wolfgang A1 - Wejmo, Elisabet A1 - Ziach, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Ruffer, Michael A1 - Cordero, Federico A1 - Tardivel, Simon T1 - Solar sails for planetary defense & high-energy missions T2 - IEEE Aerospace Conference Proceedings N2 - 20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection. Y1 - 2019 U6 - https://doi.org/10.1109/AERO.2019.8741900 N1 - AERO 2019; Big Sky; United States; 2 March 2019 through 9 March 2019 SP - 1 EP - 21 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian A1 - Herčík, David A1 - Herique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron A1 - Kofman, Wlodek A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Toth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions T2 - 2nd Asteroid Science Intersections with In-Space Mine Engineering – ASIME 2018 N2 - Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside. Y1 - 2018 N1 - 2nd Asteroid Science Intersections with In-Space Mine Engineering – ASIME 2018 16-17 April 2018, Belval, Luxembourg SP - 1 EP - 33 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Heiligers, Jeannette A1 - Herčík, David A1 - Hérique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin A1 - Meß, Jan-Gerd A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wiedemann, Carsten A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Flights are ten a sail – Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration T2 - 70th International Astronautical Congress (IAC) KW - system engineering KW - small solar system body characterisation KW - small spacecraft solar sail KW - small spacecraft asteroid lander KW - responsive space Y1 - 2019 SN - 9781713814856 N1 - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019 SP - 1 EP - 7 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Riemann, Johannes A1 - Spröwitz, Tom A1 - Tardivel, Simon T1 - Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization T2 - 5th IAA Planetary Defense Conference KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - asteroid sample return Y1 - 2017 N1 - 5th IAA Planetary Defense Conference – PDC 2017 15-19 May 2017, Tokyo, Japan ER -