TY - JOUR A1 - Lambers, Andreas A1 - Bragard, Michael T1 - Kinetische Skulptur - Treffen sich ein E-Techniker und ein Künstler ... JF - Elektor : learn, design, share N2 - Die Verbindung der Welten dressierter Elektronen und grenzenloser Kreativität bietet ein großes Potential; zum Beispiel bei modernen Skulpturen, deren Form sich durch Motoren verändern kann. An der FH Aachen wurde ein solches Projekt verwirklicht: Eine Matrix aus Holzkugeln kann Piktogramme anzeigen, aber auch mathematische Funktionen visualisieren. In diesem Artikel beschreiben wir die clevere Ansteuerung der Motoren. Y1 - 2017 SN - 0932-5468 VL - 48 IS - 9 SP - 78 EP - 83 PB - Elektor-Verlag CY - Aachen ER - TY - BOOK A1 - Niethammer, Bernhard A1 - Fissabre, Anke T1 - Die Steiff Spielwarenfabrik in Giengen / Brenz : Ein unbekanntes Meisterwerk der frühen Moderne Y1 - 2017 SN - 978-3-943164-03-9 PB - Geymüller Verlag für Architektur CY - Aachen ER - TY - JOUR A1 - Honarvarfard, Elham A1 - Gamella, Maria A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer JF - Applied Materials Today N2 - An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte–insulator–semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications. KW - Electrolyte–insulator–semiconductor KW - Capacitive field-effect KW - CNOT KW - XOR KW - Enzyme logic gate Y1 - 2017 U6 - https://doi.org/10.1016/j.apmt.2017.08.003 SN - 2352-9407 VL - 9 SP - 266 EP - 270 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Schöning, Michael Josef A1 - Selmer, Thorsten T1 - Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid JF - Applied Biochemistry and Biotechnology N2 - Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM−1 (L-malate biosensor) and 0.4 μA mM−1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0–10.0 mM with a sensitivity of 0.09 μA mM−1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates. Y1 - 2017 U6 - https://doi.org/10.1007/s12010-017-2578-1 SN - 1559-0291 VL - 183 SP - 566 EP - 581 PB - Springer CY - Berlin ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Albanna, Walid A1 - Lueke, Jan Niklas A1 - Sjapic, Volha A1 - Kotliar, Konstantin A1 - Hescheler, Jürgen A1 - Clusmann, Hans A1 - Sjapic, Sergej A1 - Alpdogan, Serdan A1 - Schneider, Toni A1 - Schubert, Gerrit Alexander A1 - Neumaier, Felix T1 - Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina JF - Current Eye Research Y1 - 2017 U6 - https://doi.org/10.1080/02713683.2017.1339807 SN - 1460-2202 IS - Article in press SP - 1 EP - 9 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Seifarth, Volker A1 - Grosse, Joachim O. A1 - Grossmann, Matthias A1 - Janke, Heinz Peter A1 - Arndt, Patrick A1 - Koch, Sabine A1 - Epple, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation JF - Journal of Biomaterials Applications Y1 - 2017 U6 - https://doi.org/10.1177/0885328217723178 SN - 1530-8022 VL - 32 IS - 3 SP - 321 EP - 330 PB - Sage CY - London ER - TY - CHAP A1 - Breuer, Lars A1 - Guthmann, Eric A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications T2 - Proceedings Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 Y1 - 2017 U6 - https://doi.org/10.3390/proceedings1040524 SP - 1 EP - 4 ER - TY - CHAP A1 - Niemueller, Tim A1 - Zwilling, Frederik A1 - Lakemeyer, Gerhard A1 - Löbach, Matthias A1 - Reuter, Sebastian A1 - Jeschke, Sabina A1 - Ferrein, Alexander T1 - Cyber-Physical System Intelligence T2 - Industrial Internet of Things N2 - Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure. KW - Smart factory KW - Industry 4.0 KW - Multi-robot systems KW - Autonomous mobile robots KW - RoboCup Y1 - 2017 SN - 978-3-319-42559-7 U6 - https://doi.org/10.1007/978-3-319-42559-7_17 N1 - Springer Series in Wireless Technology SP - 447 EP - 472 PB - Springer CY - Cham ER - TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - South African robotics entity for a collaboration initiative T2 - Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016 Y1 - 2017 SN - 978-1-5090-3335-5 U6 - https://doi.org/10.1109/RoboMech.2016.7813144 N1 - PRASA-RobMech, Nov. 30 2016-Dec. 2 2016, Stellenbosch, South Africa SP - 1 EP - 6 PB - IEEE ER -