TY - CHAP A1 - Bedbur, Christian A1 - Moorkamp, Wilfried A1 - Peterson, Leif Arne A1 - Uibel, Thomas ED - Kuhlmann, Ulrike T1 - Holzbrücken mit Natursteinbelägen - Untersuchungen zur Aktivierung der Verbundwirkung T2 - Doktorandenkolloquium Holzbau Forschung + Praxis 2020 Y1 - 2020 N1 - 8. Doktorandenkolloquium „Holzbau Forschung + Praxis“, 05. und 06. März 2020, Stuttgart SP - 53 EP - 60 PB - Universität Stuttgart, Institut für Konstruktion und Entwurf CY - Stuttgart ER - TY - JOUR A1 - Henriques, A. A1 - Jurado, B. A1 - Grieser, M. A1 - Denis-Petit, D. A1 - Chiron, T. A1 - Gaudefroy, L. A1 - Glorius, J. A1 - Langer, Christoph A1 - Litvinov, Yu. A. A1 - Mathieu, L. A1 - Meot, V. A1 - Perez-Sanchez, R. A1 - Pibernat, J. A1 - Reifarth, R. A1 - Roig, O. A1 - Thomas, B. A. A1 - Thomas, B. A. A1 - Thomas, J. C. A1 - Tsekhanovich, I. T1 - Indirect measurements of neutron cross-secti at heavy-ion storage rings JF - Journal of Physics: Conference Series N2 - Cross sections for neutron-induced reactions of short-lived nuclei are essential for nuclear astrophysics since these reactions in the stars are responsible for the production of most heavy elements in the universe. These reactions are also key in applied domains like energy production and medicine. Nevertheless, neutron-induced cross-section measurements can be extremely challenging or even impossible to perform due to the radioactivity of the targets involved. Indirect measurements through the surrogate-reaction method can help to overcome these difficulties. The surrogate-reaction method relies on the use of an alternative reaction that will lead to the formation of the same excited nucleus as in the neutron-induced reaction of interest. The decay probabilities (for fission, neutron and gamma-ray emission) of the nucleus produced via the surrogate reaction allow one to constrain models and the prediction of the desired neutron cross sections. We propose to perform surrogate reaction measurements in inverse kinematics at heavy-ion storage rings, in particular at the CRYRING@ESR of the GSI/FAIR facility. We present the conceptual idea of the most promising setup to measure for the first time simultaneously the fission, neutron and gamma-ray emission probabilities. The results of the first simulations considering the 238U(d,d') reaction are shown, as well as new technical developments that are being carried out towards this set-up. Y1 - 2020 U6 - https://doi.org/10.1088/1742-6596/1668/1/012019 VL - 1668 IS - Art. 012019 PB - IOP CY - Bristol ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa N2 - In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions. Y1 - 2020 SN - 978-1-7281-4162-6 U6 - https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 N1 - 2020 International SAUPEC/RobMech/PRASA Conference, 29-31 Jan. 2020, Cape Town, South Africa SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Atmane, Ilias A1 - Hirech, Kamal A1 - Kassmi, K. A1 - Mahdi, Zahra A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, H. A1 - Bachiri, Najib ED - Omrane, Amina ED - Kassmi, Khalil ED - Akram, Muhammad Wasim ED - Khanna, Ashish ED - Mostafiz, Imtiaz T1 - Design and realization of a pilot solar desalination plant in Douar El Hamri in the province of Berkane (Morocco) T2 - Sustainable entrepreneurship, renewable energy-based projects, and digitalization N2 - Producing fresh water from saline water has become one of the most difficult challenges to overcome especially with the high demand and shortage of fresh water. In this context, as part of a collaboration with Germany, the authors propose a design and implementation of a pilot multi-stage solar desalination system (MSD), remotely controlled, at Douar Al Hamri in the rural town of Boughriba in the province of Berkane, Morocco. More specifically, they present their contribution on the remote control and supervision system, which makes the functioning of the MSD system reliable and guarantees the production of drinking water for the population of Douar. The results obtained show that the electronic cards and computer communication software implemented allow the acquisition of all electrical (currents, voltages, powers, yields), thermal (temperatures of each stage), and meteorological (irradiance and ambient temperature), remote control and maintenance (switching on, off, data transfer). By comparing with the literature carried out in the field of solar energy, the authors conclude that the MSD and electronic desalination systems realized during this work represent a contribution in terms of the reliability and durability of providing drinking water in rural and urban areas. Y1 - 2020 SN - 9781000292541 (E-Book) SN - 9781003097921 (E-Book) SN - 9780367468378 (Hardcover) PB - CRC Press CY - Boca Raton, Fa. ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Ladd, Mark E. A1 - Clemens, Markus A1 - Bitz, Andreas T1 - Safety of subjects during radiofrequency exposure in ultra-high-field magnetic resonance imaging JF - IEEE Letters on Electromagnetic Compatibility Practice and Applications N2 - Magnetic resonance imaging (MRI) is one of the most important medical imaging techniques. Since the introduction of MRI in the mid-1980s, there has been a continuous trend toward higher static magnetic fields to obtain i.a. a higher signal-to-noise ratio. The step toward ultra-high-field (UHF) MRI at 7 Tesla and higher, however, creates several challenges regarding the homogeneity of the spin excitation RF transmit field and the RF exposure of the subject. In UHF MRI systems, the wavelength of the RF field is in the range of the diameter of the human body, which can result in inhomogeneous spin excitation and local SAR hotspots. To optimize the homogeneity in a region of interest, UHF MRI systems use parallel transmit systems with multiple transmit antennas and time-dependent modulation of the RF signal in the individual transmit channels. Furthermore, SAR increases with increasing field strength, while the SAR limits remain unchanged. Two different approaches to generate the RF transmit field in UHF systems using antenna arrays close and remote to the body are investigated in this letter. Achievable imaging performance is evaluated compared to typical clinical RF transmit systems at lower field strength. The evaluation has been performed under consideration of RF exposure based on local SAR and tissue temperature. Furthermore, results for thermal dose as an alternative RF exposure metric are presented. Y1 - 2020 SN - 2637-6423 U6 - https://doi.org/10.1109/LEMCPA.2020.3029747 VL - 2 IS - 3 SP - 1 EP - 8 PB - IEEE CY - New York, NY ER -