TY - THES A1 - Eschbach, Lara T1 - ESPACE – ESCAPE N2 - Die Arbeit „ESPACE-ESCAPE“ befasst sich mit der Frage, was entstehen kann, wenn man sich bewusst auf das einlässt, was ist, und welche ungeahnten Räume sich eröffnen, wenn dieser Zustand erst einmal akzeptiert und somit erkundet werden kann. Die Fotografien erzählen in ihrem Zusammenspiel von einer Suche, von Niedergeschlagenheit und dem Gefühl nicht von der Stelle zu kommen. Davon, sich im Kreis zu bewegen. Von vorbeiziehenden Tagen, Wochen und Monaten. Dem Wechsel zwischen Licht und Dunkelheit, deren Grenzen sich auflösen und ineinander übergehen. Dem Wunsch danach, es der Natur gleichzutun und in einen Schlaf zu fallen. Nur für eine kurze lange Weile dem Winter entgehen. So eine Art Winterschlaf eben. Die Fotografien bündeln dieses kollektive Gefühl als melancholische Sicht auf den unendlich erscheinenden Winter und dennoch: Zwischen den Zeilen liegen eine verborgene Schönheit, Hoffnung und Neuanfang. KW - Fotografie KW - Winter KW - Depression KW - Traum KW - Schlaf Y1 - 2021 PB - FH Aachen CY - Aachen ER - TY - THES A1 - Franken, Florian T1 - Zeitfenster: Eine Dorfgeschichte aus Bildcollagen N2 - Die Zeit befindet sich im ständigen Wandel. Mit ihr verbindet man Zukunft, Vergangenheit und Gegenwart. Letzteres prägt das jetzige Dasein. Der Zeitwandel ist ein Prozess, über den wir uns meist erst nach Jahren bewusstwerden. Besonders, wenn man das Dorf, in welchem man aufgewachsen ist, näher betrachtet, fällt einem auf, was sich im Laufe der Jahre architektonisch oder infrastrukturell verändert hat. So stellt sich die Frage, wie das Dorf im letzten Jahrhundert ausgesehen hat. Wie sah es vor, während und nach den beiden Weltkriegen aus? Wie war das Dorfleben in der Zwischenkriegszeit? Was hat sich im letzten Jahrhundert verändert? Diese Arbeit zeigt den Wandel der Zeit, kombiniert aus Vergangenheit und Gegenwart. Damalige Aufnahmeorte wurden erneut aufgesucht, die Fotos aus der gleichen Position wurden neu abgelichtet und miteinander kombiniert. KW - Vergangenheit KW - Zeitwandel KW - Dorfleben KW - Collagen KW - 20. Jahrhundert Y1 - 2021 N1 - Für diese Arbeit steht kein Volltext zur Verfügung. PB - FH Aachen CY - Aachen ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Nambipareechee, Mrinal Murali A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection JF - Sensors N2 - Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible. KW - colorization KW - multiplex detection KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/s21175859 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advanced Nanomaterial-Based Sensors for Biomedical Applications" VL - 21 IS - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kohlberger, David-Sharif A1 - Wild, Dominik A1 - Kasper, Stefan A1 - Czupalla, Markus T1 - Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method T2 - ICES202: Satellite, Payload, and Instrument Thermal Control N2 - Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated. KW - passive thermal control KW - PCM KW - star tracker KW - Infused Thermal Solutions KW - GEO KW - LEO Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - CHAP A1 - Wild, Dominik A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS) T2 - ICES104: Advances in Thermal Control Technology N2 - Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine. KW - latent heat KW - thermo-physical KW - lattice KW - ESATAN KW - subroutine KW - PCM KW - ITS Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - JOUR A1 - Staat, Manfred T1 - An extension strain type Mohr–Coulomb criterion JF - Rock mechanics and rock engineering N2 - Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. Y1 - 2021 U6 - https://doi.org/10.1007/s00603-021-02608-7 SN - 1434-453X N1 - Corresponding author: Manfred Staat VL - 54 IS - 12 SP - 6207 EP - 6233 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Welden, Rene A1 - Jablonski, Melanie A1 - Wege, Christina A1 - Keusgen, Michael A1 - Wagner, Patrick Hermann A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase JF - Biosensors N2 - The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS. KW - microfluidics KW - enzyme kinetics KW - actuator-sensor system KW - light-addressable electrode KW - light-addressable potentiometric sensor Y1 - 2021 U6 - https://doi.org/10.3390/bios11060171 SN - 2079-6374 N1 - This article belongs to the Special Issue "Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)" VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Sherelkhan, Dinara K. A1 - Jussupova, Dariya B. A1 - Altynbay, Nazym P. T1 - Low-rank coal as a source of humic substances for soil amendment and fertility management JF - Agriculture N2 - Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production. KW - soil remediation KW - crop yield KW - soil health KW - soil amendment KW - low-rank coal Y1 - 2021 U6 - https://doi.org/10.3390/agriculture11121261 SN - 2077-0472 N1 - This article belongs to the Special Issue "From Waste to Fertilizer in Sustainable Agriculture" VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kleefeld, Andreas T1 - The hot spots conjecture can be false: some numerical examples JF - Advances in Computational Mathematics N2 - The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10− 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well. KW - Numerics KW - Boundary integral equations KW - Potential theory KW - Helmholtz equation KW - Interior Neumann eigenvalues Y1 - 2021 U6 - https://doi.org/10.1007/s10444-021-09911-5 SN - 1019-7168 VL - 47 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Tegtmeyer, Philipp A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode T2 - AIAA SCITECH 2022 Forum N2 - This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed. Y1 - 2021 U6 - https://doi.org/10.2514/6.2022-0546 N1 - AIAA SCITECH 2022 Forum, January 3-7, 2022, San Diego, CA & Virtual PB - AIAA CY - Reston, Va. ER -