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Abstract: This study analyses the expected utilization of an urban distribution grid under high
penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The
grid utilization and the corresponding power flow are evaluated, while varying the control strategies
and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the
impact of e-mobility. The individual mobility demand is modelled based on the largest German
studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the
ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is
carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is
derived individually for each installed system in a resolution of 15 min. The residential consumption
is estimated using historical smart meter data, which are collected in London between 2012 and 2014.
For a realistic charging demand, each residential household decides daily on the state of charge if their
vehicle requires to be charged. The resulting charging time series depends on the underlying behavior
scenario. Market prices and mobility demand are therefore used as scenario input parameters for a
utility function based on the current state of charge to model individual behavior. The aggregated
electricity demand is the starting point of the power flow calculation. The evaluation is carried out for
an urban region with approximately 3100 residents. The analysis shows that increased penetration of
photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and
reduce the need for congestion-related intervention by the grid operator by reducing the amount of
kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to
14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed
by implementing an intelligent price or control signal. The analysis took place using data from a
real German grid with 10 subgrids. The entire software can be adapted for the analysis of different
distribution grids and is publicly available as an open-source software library on GitHub.

Keywords: e-mobility; smart-charging; distribution grid simulation

1. Introduction

The German government has set itself the goal of reducing greenhouse gas emissions
in the transport sector by 48% by 2030 compared with 1990. This requires the electrifica-
tion of transport and the use of renewable energies. A prerequisite for this is the further
expansion of the charging infrastructure. The transformation from fossil energy to re-
newable energy sources (RES) started in the year 2004 by setting the first novel of the
“Erneuerbaren-Energien-Gesetz” (EEG—Law) in charge to meet the EU climate objectives.
In 2020, the average yearly share of the electric energy generated by renewables in Germany
was 45% [1].

Due to the time-dependent availability of RES and further decentralization of the elec-
tricity generation, the power system is changing. On the other hand, the expanding market
of Electric Vehicles (EVs) is an additional challenge, which creates a lot of decentralized
demand and provides an interesting potential as storage. The German objective of one
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million EVs on the roads by 2020 was not achieved, but current developments and forecasts
indicate a successful ramp-up. In 2020, about 200,000 funding applications are submitted for
EVs, and 360,000 EVs were subsidized in 2021 [2]. By 2030, the German government aims
for seven to ten million EVs, while the German Association of the Automotive Industry
expects 10.5 million EVs [3].

To meet this objective, capable charging infrastructure and control of this infrastructure
is required. It is planned to increase the amount of available public charging stations from
21,000 in 2021 to one million in 2030. This plan corresponds with the EU’s objective of a
ratio of EVs to public charging points of 10:1 [4]. Additionally, 7.1 million charging points
in private households are required to ensure the electrification of the transport sector [5].
The share of private charging operations is estimated up to 88%, which results in additional
consumption of 10,000 GWh in the low voltage grids, especially in urban regions. In the
public domain, 12% of charging operations will be carried out with a corresponding energy
volume of 12,000 GWh in 2030 [5].

As grid planning allocates resources for decades of operation, large parts of today’s
distribution grids were not planned for today’s demand of electrification. Multiple studies
show that simultaneous charging during peak hours can exhaust and exceed the current
grid capacities [6–10].

To avoid congestion, either a grid reinforcement or an intelligent control system
can be applied. Therefore, time-dependent charging prices are already considered and
tested in some areas [11]. Different simulation tools can model energy system expansion
and investments on a larger scale [12], while this study investigates whether congestion
in the distribution grid can be reduced with the help of simple controlling or dynamic
prices. Individual charging behavior is rarely investigated thoroughly, resulting in high
assumptions about concurrent charging processes.

2. Related Work

Distribution grids and possible control signals for EVs have been investigated in many
previous studies. The approaches to mapping mobility behavior, the charging strategies,
and the modelling approach for the energy supply units and the energy distribution grids
vary considerably between the individual studies.

In this section, some studies related to modelling of price-sensitive charging behavior
are cited, and their strategies are compared to the ones developed in this paper. The
research in this field is conducted worldwide and evolves dynamically, and therefore, the
related work is multifaceted. The adapted approaches before the year 2015 are summarized
in Gottwalts PhD thesis [13], where he found that Time-of-Use-based pricing can be used
to achieve demand response for small shares of flexible loads and investigates group-based
pricing in contrast to Realtime pricing. Growing databases and a partial mapping of user
behavior were the basis for subsequent works in particular, summarized by Su in the year
2020 [14]. He updates the existing knowledge basis and gives a broad overview of existing
EV models, charging strategies and ToU-based vs. group-based pricing approaches for
demand response. A high potential for load-shifting EV charging was found in [15], as
constantly about 45% of cars are available. However, the most recent studies consider latest
EV models, their charging behavior, and the resulting demand response to price signals
with different approaches in [16–25]. In [16,17], the EV demand is modeled deterministically
considering a non-sensitive approach, such as the first charging strategy Base Case chosen in
this paper. The first modelling approach presented in this paper is a more flexible adaptive
approach with a fixed cap, represented by a maximum willingness to pay for the energy. In
the result, the EV users only charge if the SoC is below the required SoC of the coming day.
Furthermore, we have derived individual functions of willingness to pay depending on the
state of charge based on surveys to further refine the charging strategy.

Many approaches generate scenario data through sampling from existing data to
create scenarios with future higher charging demand as seen in [20–22]. A total of 29,262 ex-
isting EV charging curves were used in [22] to sample the power demand. A specific
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case comparing uncontrolled and controlled charging is shown in [26,27], while the eco-
nomic investment and operation cost were considered in [28].

Yet those approaches do not model price sensitivity and the responding displacement
of charging demand. Such factors can be determined by using a stochastic probabilistic
simulation with consideration of the grid aspects [18,29–31]. A similar approach to inves-
tigate grid planning was done in [32], which investigates four different charging station
location cases. The authors in [23] propose a probability-based approach and compare price
sensitive and non-sensitive demands with the result of much lower maximum demand and
a shift toward the evening hours from 7 and 10 am without sensitivity.

The investigation of PV potentials in the context of E-Mobility was done in [33],
where different PV and EV penetration cases were modelled using three different charging
behaviors without price sensitivity in a cell-based grid model.

In [24], the EV charging demand is controlled in an indirect manner by adopting a
dynamic virtual pricing mechanism according to the forecasted EV charging demand and
local renewable generation production. The objective of the EV Agents is to minimize their
individual charging cost, according to the price values and therefore schedule the charges at
the cheapest hours. This modelling approach is very similar to the second Case B and Case
C charging strategy presented in this paper where the maximization of the PV consumption
in the individual households and the maximization of a user satisfying function determine
the charging schedule for the EVs. The main difference to the approaches in this paper are
the usage of real distribution grid data, PV integration, and energy consumption data for
this grid and the benefit function usage as optimization objective.

3. Materials and Methods

In this section, the methods that are used to model the mobility behavior, the resulting
charging demand, and the ordinary power demand are explained. In addition, the applied
dynamic grid fee and the different scenario cases are derived.

The overall agent-based simulation framework is implemented in Python with com-
mon libraries such as NumPy, Pandas and GeoPandas, PyPSA and PVLib. The results are
stored using the timeseries database TimescaleDB and are evaluated with the help of a geo
referenced data store extension PostGIS. To orchestrate the multiple simulation runs across
a cluster of HPC servers, the technology Docker Swarm is used. Yet, single simulations can
also be run on a consumer laptop. To solve the optimization, any solver supported by the
solver library pyomo can be used, for example GLPK.

3.1. Simulation Framework & Sequence

The framework is designed in such a way that several scenarios/simulations can be
calculated in parallel. For this purpose, each simulation is started in a separate Docker
container. The containers work on the same database, so that the results can be easily
summarized and analyzed.

The scenarios differ depending on the considered user behavior. In the Base Case, the
user requests a charging process after his journey. A request is always made if the current
SoC of the vehicle is not sufficient for the mobility needs of the next day. For example, if the
vehicle only has 15% left after the journey, but 45% is needed for the next day, the consumer
sends a request to fully charge his EV to 100%. In this case, the charging process is planned
so that it starts at the next time step t and continues until the vehicle is fully charged at his
nominal power Pcar.

Depending on the level of the dynamic grid fee Gt, the charging process is accepted
and carried out or suspended. If the price level is too high, charging is suspended for
30 min until the user makes another request. A maximum of five rejections are possible
until the consumer commits even at higher costs.

This corresponds to the assumption that the need for mobility is always more worth
as the total cost of charging, and that the consumer accepts this cost to reach his workplace
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the next day, for example. The following steps and the corresponding Figure 1 summarize
the simulation process in detail for the Base Case.
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1. The Consumer sends a charging request for the next simulation period (15 min)
2. The Flexibility Provider maps the demand on the corresponding grid node and sends

demand to the Capacity Provider.
3. The Capacity Provider calculates the total grid utilization and answers with a grid fee

time series.
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In the other scenarios (Case A, Case B, and Case C), each consumer solves an optimiza-
tion problem at the beginning of each day. Input variables of the optimization are the
PV generation and the consumption, resulting from a Standard Load Profile (SLP). The
journeys of the day are also considered, as well as the required SoC of the coming day.
At the end of the day, the SoC must fulfil the same requirement that is also used in the
Base Case. In addition, the electricity tariff of the end consumer, including surcharges and
taxes, as well as the dynamic grid fee are considered. The grid fee is initially assumed to be
2.5 ct/kWh for the first calculation of the five possible optimization runs.

The Capacity Provider receives a request for the next 96 quarter hours from all con-
sumers who want to charge their EV via the electricity grid. The capacity provider processes
the requests in the order in which they were made. Only when the six steps from Figure 1
have been processed for a consumer, the next consumer is handled.

If a consumer rejects the request because, for example, the grid fees exceed the initial
2.5 ct/kWh, it carries out another optimization with the new grid fee information at each
time step t. The result of the optimization is either a disclaimer of the recharge because the
grid fee is too high in all hours, or a shift to other hours in which the grid fee is lower. The
consumer always accepts the last of his five offers, even if the price is higher than the price
limit. The objective function of the optimization problem can be formulated as shown in
Equation (1).

max

(
B−

T

∑
t

PRequestt·Tari ft

)
(1)

The users living in a residential area want to maximize their benefit B, meaning to
maximize the usage with cheapest cost. For this purpose, a utility function is used, which
is defined in Case A and Case B via a linear function between SoCs of the cars and the
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price limit. In the last Case C, the integral of the demand functions, which are derived in
Section 3.3, is used. These are linearized piecewise using the following Equations (2)–(6).

∑
s

zs = 1 (2)

qs ≥ SegVLows·zs ∀ s (3)

qs ≤ SegVUps·zs ∀ s (4)

B = ∑
s

SegBLows·zs+
SegCoe f fs·(qs − SegVLows·zs)

(5)

VTotal = ∑s qs (6)

The linearization is explained in detail in [34,35]. To increase the benefit B, the car
must be charged. This can be done either via a photovoltaic system Ppvt or by purchasing
requested electricity PRequestt from the grid. If the benefit gain ∆B is lower than the
additional cost Tari ft, the car is not charged any further. The Equations (7)–(9) show the
corresponding balancing of the charging power PCharget, the power of the photovoltaic
system Ppvt and the grid purchase PRequestt at time step t.

PRequestt = PCharget − Ppvt (7)

PGent − Ppv ≥ 0 ∀ t ∈ T (8)

PRequestt ≥ 0 ∀ t ∈ T (9)

The charging power PCharget is the sum of the individual capacities for each car in
the household (see Equation (10)). The car can only be charged when it is not in use and
when it is at home (see Equation (11)).

PCharget = ∑C
car Pcar,t (10)

Pcar,t ≤ (1−Ucar,t)·PMaxcar ∀ t ∈ T, car ∈ C (11)

Finally, the SoC level of a car is restricted to the lower limit 0 and the upper limit
EMaxcar as shown in Equations (12)–(14).

Vcar,t = Vcar,t−1 + Pcar,t·dt− EDemcar,t

∀ t ∈ T, car ∈ C
(12)

0 ≤ Vcar,t ≤ Ecar

∀ t ∈ T, car ∈ C
(13)

VTotal = ∑C
car Vcar,T (14)

The study examines four scenarios. For each scenario, the degree of PV expansion
is varied between 25% and 100% of the potential maximum capacity in the supply area.
The scenarios differ in the modelling of the charging behavior of the consumers and the
used electricity tariff. In the first two cases (Base and A), the end consumers receive a fixed
electricity price that corresponds to the average of the day-ahead prices for the analyzed
period. In the simulation, the month of May in 2022 is examined. In Case B and C, the hourly
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day-ahead price is directly passed on to the consumers. A further 10.8 ct/kWh in surpluses
and taxes is added to both the fixed price and the dynamic day-ahead price. Depending on
the grid utilization, a dynamic grid fee is added to every requested charging process.

In the Base Case, no optimization takes place regarding an objective value. Drivers
always request a charging process via the Capacity Provider when they return from a
journey and the SoC of their vehicle is no longer sufficient for the journey on the following
day. This is described by the SoC limit SoCLimitt. The Consumers have a fixed price
limit of 45 ct/kWh. If the charging price is on average more expensive than the limit, the
charging process is shifted in hours with less utilization.

In Case A, the described optimization takes place at the beginning of each day. The
objective value is the maximization of electricity consumption from the own PV system.
For this purpose, it is assumed that the PV generation for the coming day is already known.
Thus, any uncertainty in PV generation at the time of optimization is not considered.
Analogous to the Base Case, electricity is only consumed from the grid if the SoC is no
longer sufficient for the upcoming mobility demand. Otherwise, only the use of the own PV
System is possible. If the average price of a request is again above the limit of 45 ct/kWh,
the charging process is shifted again.

In Case C, the objective value is the maximization of a benefit function B, which leads
to a maximum PV usage and a charging at the cheapest hours. The SoC-dependent benefit
function B is described in detail in Section 3.3. In Case B, the fixed price cap of 45 ct/kWh is
applied. For each scenario case, serval simulations are calculated to get a distribution of
possible grid congestions. Table 1 summarize the scenarios.

Table 1. Simulation parameters of investigated scenarios.

Scenario Charging Strategy Market Grid Fee Mobility Behavior

Base Case SoC independent Flat Price dynamic random

Case A maximize PV usage + SoC independent Flat Price dynamic random

Case B maximize PV usage + SoC independent Spot Price dynamic random

Case C maximize PV usage + SoC dependent Spot Price dynamic random

3.2. Agents in the Simulation Framework

The agent of the capacity provider calculates the grid utilization and the resulting
dynamic grid fee Gt of the requested charging process. The function in Equation (15) is
used to calculate the dynamic fee. The function increases monotonically until it reaches its
maximum value of 100 ct/kWh at a utilization of 100%. From this limit, the price remains
constant. To model the function Gt, the current grid fees in Germany were analyzed.
According to [24], the average grid fee for residential areas is approximately 7.5 ct/kWh. A
difference of 2.0–3.0 ct/kWh is possible. In this study, a minimum of 2.6 ct/kWh is chosen,
and the common 7.5 ct/kWh at a utilization of 40%.

Gt = max
n∈N

(
0.15·

(
0.175− ln

(
1− u

2
3
n,t

)))
(15)

To calculate the grid fee Gt, the highest utilization of the component n at the respective
time t in the corresponding sub-grid is used. The end consumer or the flexibility provider
receives the dynamic grid fee for each requested point in time.

To determine the utilization of each grid component, a calculation of the power flow
is carried out using the Python package PyPSA [35]. The power flow corresponds to the
solution of a non-linear system of equations, which is solved using the Newton Raphson
method. Since the capacity provider cannot directly control the charging of the EVs, the
optimal power flow is not calculated, as often in other studies including [9,36]. Therefore,
the capacity provider does not solve an optimization task by dispatching the demand and
generation, but the dispatch of the consumers takes place via the dynamic grid fee.
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In the simulation, a distribution grid on low voltage level (400 V in Germany) with
approx. 3100 residential consumers with approx. 3600 EVs is evaluated. The number of
consumers is distributed over ten sub grids. The smallest grid has approx. 180 residential
consumers, the largest grid approx. 480 residential consumers. The analyzed grid topology
is shown in Figure 2. In the 100% PV-Scenario, the total amount of installed photovoltaic
capacity is approx. 4.5 MW.
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The agent of the Flexibility Provider takes over the communication with the Capacity
Provider for the consumers. The agent offers different tariffs depending on the analyzed
scenario. The varying price signal in Case B and C is a composition of the price of the
wholesale market (the day-ahead and continuous intraday market). Here, the wholesale
market prices are based on the merit order principle and therefore take the scarcity of
fluctuating renewable energy into account.

To summarize, the Flexibility Provider takes the role of the energy supplier and is
responsible for energy purchase at the wholesale market. In the simulation framework, the
agent only aggregates the generation and consumption time series and acts as an intermediary.

3.3. Consumer Behavior

In the simulation framework, three consumer types are implemented. To model
the demand time series of each consumer, a SLP is used. Businesses and residential
consumers with less than 100,000 kWh per year are forecasted and settled with such a SLP
in Germany [37]. Bigger consumers, as the industry sector, are settled using historic meter
values. Since no meter values are available for the industry consumers in the analyzed grid,
a SLP for industry consumers is derived.

For this purpose, the total demand of residential and commercial customers was sub-
tracted from the time series of the total load in Germany. Next, typical days are summarized.
Therefore, all working days (Monday to Friday) are averaged for the annual seasons spring,
summer, autumn, and winter. The same applies to Saturdays and Sundays. Therefore,
twelve typical profiles are derived in hourly resolution for industry consumers. To estimate
the annual consumption in the residential sector per hour, the SLP type H0 is used [37].
The profile is scaled with the total demand of 128 TWh/a. The same applies to commercial
consumers, but with profile type G0 [37] and a yearly consumption of 135 TWh/a.
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To summarize, all three consumer types are modeled with a SLP. For all residential
areas, the H0 profile; for all businesses, the G0 profile; and for all bigger consumers, the
derived profile (I0-Profile) is used.

In addition to the static demand, each household is represented by a Consumer-Agent,
who has the objective to charge the EV with a specific strategy. The charging process always
takes place at home.

To get a well-estimated charging demand, the mobility behavior of a single resident is
modelled. The mobility behavior results from a statistic evaluation of the study “Mobilität
in Deutschland” [36], where 154,420 households are surveyed. Based on these mobility
statistics, different mobility events Mi are implemented. Each mobility event Mi belongs to
one of the three categories work, errands, or hobby. A similar classification is carried out
in [38]. To define a mobility event Mi, the following variables are used:

• Tst,j as the start time at the destination in [HH:MM],
• Tdt,j as the event duration in [min],
• Tt,j as the travel time to the destination and/or back in [min],
• the absence time Tat,j in [min] and
• Dt,j as the distance between the home and destination in [km] for a day t.

To estimate the number of drivers and cars in the supply area, a mean consumption of
1500 kWh per year per person is assumed. With the data of the yearly energy consumption
of each residential area, the number of persons per household is calculated and limited to
two possible drivers. Each driver has his own EV. The mobility pattern of each driver is
drawn as follows:

1. Draw the employment status and the relationship full-time or part-time. Tat,work is
525 and 240 min for full- and part-time jobs.

2. Determine the mobility weekday t ∈ DoW, five days are drawn for work.
3. Terminate the start time Tst,j depending on weekdays or weekend.
4. Get the one-way distance Dt,j.
5. Depending on the distance, determine the travel time Tt,j and the means of transport.
6. Repeat step 2–5 for two hobbies with an absence time Tat,hobby of 90 min and a certain

number of errands with an absence time Tat,errand of 35 min per week.

The maximum number of events is three per day, covering all categories. Next, drivers
get a random EV. The vehicle must have at least the range to cover the maximum distance
without charging. Equation (16) summarizes the condition for the range DEV .

DEV ≥ 2 max
t∈T

(
N

∑
j=1

Dt,j

)
(16)

A random draw is made from all possible vehicles. The probability that a vehicle is
drawn corresponds to the current registration statistics of the Federal Motor Transport
Authority in Germany [2] The manufacturer’s specification of the battery capacity Ecar, the
charging power Pcar, and the consumption EDemcar are used. The power Pcar refers to a
charging process at an Alternating Current (AC) charging station.

The potential of photovoltaics in the grid area was estimated using the data from
source [39]. The portal offers the possibility to query PV data on a building-specific basis.
The data include the roof areas of a building with azimuth, tilt, and maximum possible
power at an efficiency of 17%. The data were prepared according to the known consumers
in the supply area, so that each consumer receives at least one PV system in a 100% scenario.
For multi-family houses, the total PV capacity of the building must be distributed among
several consumers. The capacity was distributed to the individual residents in proportion
to the total annual energy consumption of all consumers in the building.

The weather data from source [40] was used to calculate the final PV generation.
The source provides weather data in a square grid of 0.25 degrees in hourly resolution
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for the whole of Europe. For simplification, the weather data in the investigated supply
area were averaged so that every consumer receives the same weather at every hour. The
transfer of the weather data into a generation time series is done in Python with the library
PVLib [41]. PV feed-in into the public grid is not considered. This means that there are no
grid congestion situations due to too high PV feed-in.

Nevertheless, it is possible to quantify the effects of PV on the increasing grid utiliza-
tion due to e-mobility. To investigate this, different consumer strategies were derived.

In the scenario cases, Base Case, Case A, and Case B, it was assumed that demand
for electricity is independent of the dynamic retail price up to a defined threshold CMax.
When the threshold is exceeded, the result is a complete demand displacement for the
electricity purchase of the EVs. On one hand, this leads to the desired guarantee that not
many grid congestions occur. On the other hand, this modeling of the dynamic incentive
effect is a clear abstraction of the actual relationship between demand (effect) and retail
price (cause). In addition, this modeling technique results in a step function since demand
evolves discontinuously at the threshold.

In classical microeconomics, demand is assumed to have a defined price elasticity,
which can also reflect the real decision behavior of consumers more realistically. The
assumption of an elasticity is also of great importance for the analysis of incentive models
for load control, e.g., market- and grid-serving charging [42]. Therefore, a set of price
elasticity functions is used in scenario Case C.

For the derivation the price elasticity, survey results were used for this study, which
were presented in detail in [43]. In the survey design, approximately 90 participants were
asked to define three price levels according to the following questions, among others, as
part of the online survey: The study provided the following information on price and
charging behavior:

• The following total price CMin at AC charging stations is low for me—I would try to
charge (Stated in ct/kWh).

• The following total price CMax at AC charging stations is too high for me—I would
not charge (Stated in ct/kWh).

• The following total price PLimit at AC charging stations is quite high for me—but I
would charge if necessary (Stated in ct/kWh).

Figure 3 shows the results for CMin and CMax of the survey in a scatter histogram.
Above and to the right of the scatter plot, the absolute frequency distribution (histograms)
of CMin and CMax are also plotted. The scatterplot indicates a correlation between CMax
and CMin. A higher indication of CMin tends to result in feedback of an increased CMax for
the same respondent. This correlation will be analyzed in more detail using a subsequent
regression analysis.
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What is striking in the histogram for CMin is the broad distribution of responses. This
suggests that end consumers have different price sensitivities, because all customers got
the same average price level of 40 ct/kWh in the survey.

In the following, CMin and CMax are to be interpreted as marginal prices at a very high
and low SoC. In a next step, the relationship between CMin and CMax is quantified using
linear regression and the significance of the slope parameter is assessed. The estimator for
the slope parameter m in the amount of 0.75 is significant compared to the H0 hypothesis
m = 0. The slope of the function between the point CLimit is derived from the difference
of the two marginal prices CMin and CMax to the marginal price CLimit. The results of the
subsequent regression analysis are shown in Table 2.

Table 2. Regression parameters of price sensitivity curve.

CMin to CMax Estimate SE p-Value

Intercept 26.75 4.71 1.94 × 10−7

m 0.75 0.16 1.31 × 10−5

CMin to CLimit − CMin
Intercept 26.73 4.70 1.95 × 10−7

m −0.25 0.16 0.12
CMax to CMax − CLimit

Intercept −5.36 1.75 0.003
m 0.27 0.035 2.65 × 10−11

A positive correlation between the difference of CMin and CMax to CLimit could also be
demonstrated, indicating a differentiation of the slopes of the demand functions.

For the concrete demand function, a simplified assumption was made that the points
CMax, CLimit and CMin are associated with a respective SoC of 20%, 40% and 90%. The
values 90% and 20% correspond to a battery-saving charging behavior. [N6] The third
interpolation point of 40% was derived from the fact that at a SOC of 40%, over 90% of all
motion profiles can be mapped.

From the regression analysis, the support points for the continuous demand func-
tion F(SoC) were derived: CMax = (CMax; 15%), CLimit = (CMax − 0.27·CMax; 40%),
CMin = (CMin; 85%). The H0-Hypthesis for the slope between min and CMax − CMin
is rejected in case of α < 12%. The lower value of m underlines the existence of a different
slope along the curve, but a future survey with a larger number of participants should be
conducted to further investigate the relationship and decrease the standard deviation of
the estimator. The course of the demand function between the grid points was interpolated
with the help of a spline. In a final step, it was considered that, according to the survey re-
sults, individual demand curves can be assumed (see histogram of CMin in Figure 3). This is
particularly important when considering the simultaneity of the reaction to a price change.

Based on the survey results, it can be expected that a defined price signal results in
a demand-specific reduction in demand. In terms of content, this reflects a different and
individual “range anxiety” of individual residents, since the demand restraint leads to a
reduced SoC. Residents will judge the “value” of the SoC differently.

The graph in Figure 4 shows thirteen exemplary trajectories of each demand function
F(SoC). Each curve represents a corresponding risk preference. This becomes comprehensi-
ble when considering a defined end customer price with the associated advised SoC. For
example, at a price of approx. 62 ct/kWh, a very risk-averse household will achieve a
minimum SoC of about 30%, while a very price-sensitive household will not seek charging
at this price and will charge its EV solely from its home PV system. Conversely, when
the retail price is below the median price level of 40 ct/kWh, the individual profiles also
aim for a different SoC state. This corresponds to the fact that price-sensitive users want
to maintain charging flexibility for their own PV electricity or for future hours with even
significantly lower electricity prices and thus do not aim for a SoC of 100%.
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Figure 4. 13 Trajectories of each demand function depending on the State of charge—drawn from the
survey. The trajectories show different exemplary price sensitivity behavior.

The assignment of end users to one of the mapped demand functions F(SoC) is done
with a random variable that picks up the relative frequency distribution of CMin. This
ensures that extreme manifestations of risk aversion occur less frequently in the total
consumer base than demand functions located in the middle of the set of curves.

Exemplary behavior curves of a specific car are shown in Figure 5. The usage behavior
is the same through all scenarios since the visited car stays the same. In the Base Case, the
car is only charged when it becomes available without optimizing, using most of the energy
from the grid. The second Case shows how optimizing the PV usage increases the SoC
and reduces charging from the grid. As the market price is constant, the grid charging is
optimized according to the grid fee signal, resulting in many short charging periods. In
Case B, a dynamic spot market price is added, which has a much larger impact than the
grid fee did, resulting in a preference to charge when the market prices are low. Often,
market prices are low during the day when cars are unavailable (see Figure 6), creating
a preference to charge shortly before or after the unavailability of the car. Finally, Case C
introduces the derived demand function F(SoC), which is based on the current SoC and
results in a lower average SoC.
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4. Results

In this section, the main results of the evaluation are presented. For this purpose,
the analyses are divided into a comparison of the Base Case with Case A (increase of PV
self-consumption) and an analysis of the strategies regarding a more realistic representation
of user behavior in the case of dynamic market prices (Case B and Case C).

For the following explanations, it is useful to remember Figure 6. It shows the market
price, the normalized PV-feed in, and the average availability of the EVs at home. The
figure illustrates the challenge of synchronizing the charging of EVs with periods of low
prices or high PV feed-in in the different use cases. Times of high PV-feed in and low
market prices are often attended to low availability of EVs for charging operations.

4.1. Analysis of a Self-Supply-Based Charging Strategy

In a first step of the analysis, it is analyzed whether an increased PV self-consumption
can significantly contribute to the reduction of the grid load. Figure 7 shows the sorted
duration line of the average transformer utilization. In all simulations of different PV
capacities in Case A, an average transformer utilization of >50% is observed in less than 2%
of the simulation hours. An increase in installed PV capacity results in a more noticeable
reduction in average utilization, especially in the middle and at the right edge of the
duration line.
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When considering the 1% quantile, which shows an average utilization between
50–55%, the reduction effect is less noticeable with an increase in installed PV capacity.
This effect is understandable since the PV feed-in is based on a fluctuating supply (solar
radiation) and thus cannot be controlled, and in addition, there is a natural asynchrony
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between PV feed-in and charging demand (see Figure 6). A closer look at the values in
the 1% quantile shows that these occur in hours with low/no solar radiation where the PV
supply cannot act grid serving.

A more detailed breakdown of the utilization analysis for the respective 10 transform-
ers of the distribution grid shows that the PV effect is also differentiated depending on
the area. The type of use in the respective area, and thus the ratio of installed PV capacity
to the number of EVs, have a decisive influence on the reduction potential. The upper
graph of Figure 8 shows the number of EVs and the potential of PV generation. Basically,
a correlation with the transformer utilization is shown here in the second graph. The
different reduction potential of the second graph can be explained in connection with
the different shares of PV to electromobility in the individual areas. Therefore, the most
significant impact can be seen in subgrid 2. Figure 8 shows that a detailed evaluation is
useful, especially for inhomogeneous grid areas, to determine the influence of different
PV-installed capacity precisely.
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4.2. Analysis of More Complex Derivation of the Charging Behavior

In the following, the effects of the more realistic mapping of the demand function
F(SoC) and the consideration of a dynamic market price on the grid utilization are evaluated.
The individual utilization under a high penetration of installed PV capacity of 80% of the
potential is shown in the right panel of Figure 9. The 1% quantile as a risk measure for the
grid utilization is clearly differentiated over the four considered cases. It is understandable
that the introduction of a self-consumption optimizing (red) and additionally to a dynamic
market price aligned charging behavior (green) lead to a clear increase in the utilization
factor in the 1% quantile. However, from the authors’ point of view, a grid planning based
on these values would lead to an inefficient grid planning. This is shown by the scenario of
an additional consideration of a differentiated demand elasticity (red) that is closer to reality.
The higher simultaneity in the charging behavior caused by the dynamic market price
component does not represent individual risk preferences—but creates a swing effect for all
simulation households. The demand functions parameterized based on the survey mitigate
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this effect of the dynamic market price component in the residential tariff. This result
demonstrates the need for a more in-depth analysis of user behavior in further research to
map this aspect more precisely and to refine the impact analysis on grid utilization.
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4.3. Grid and Economic Impact Analyses

In the following analyses, the grid utilization as well as the economic implications of
the individual cases are considered from the end customer’s perspective.

The individual cases require a corresponding regulatory framework. It is of decisive
importance to know about the individual benefit function of the user’s behavior. Assuming
an economically rational agent, the more complex user behavior depicted in Case C should
therefore be compatible with an associated economic incentive.

In Table 3, the consumption (grid- and PV-side) as well as the associated costs for a
detailed analysis (split market- and grid-side) are presented.

Table 3. Result overview for the scenarios with a used PV potential of 80%.

Unit Base Case Case A Case B Case C

Charging

Grid % 98 71 71 69
PV % 2 29 29 31

Shifted % <0.3 <0.1 4.9 38.9

Pricing

Average Cost ct/kWh 21.8 15.6 15.2 14.0
Market % 78 79 72 73

Grid % 22 21 28 27
ø Grid Fee ct/kWh 4.3 3.9 3.4 3.0

95% quantile ct/kWh 6.4 5.8 7.4 6.6
ø 95–100% ct/kWh 6.8 6.2 8.8 7.5

Utilization

ø Util. % 20 17 17 17
95%-quantile % 47 40 52 47

ø 95–100% % 56 47 67 59

Figure 10 shows the utilization for a given transformer throughout all scenarios for one
week of simulation time. Comparing the Base Case to Case A, one can see that a reduction in
grid utilization is performed through the optimization of the PV charging. Furthermore,
adding the price signal without differentiation in the user behavior creates large utilization
spikes (Case B), which are reduced if the benefit function F(SoC) is added (Case C).
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On one hand, looking at consumption shows the increase in PV self-consumption in
Case A–C described earlier. The largest cost reduction is achieved by the significant increase
in PV self-consumption from Case A onwards due to better synchronization of charging
and PV feed-in.

The further cost reduction in Case B and Case C is largely based on an additional
response to the dynamic price signal. It is noticeable that the differentiation of the demand
function can significantly reduce the peak grid congestions as also seen in Figure 9. The level
in this range almost reaches the utilization level of the Base Case again (without dynamic
market price signal). However, this must be contrasted with the fact that a correspondingly
mapped user behavior, in contrast to PV synchronization, is only provided with a relatively
low economic incentive in the model evaluation (reduction of the market-side costs from
15.2 to 14.0 ct/kWh).

Optimizing PV usage reduces the cost by 6.2 ct/kWh, which shows the greatest
potential for cost reduction from the users’ point of view.

5. Conclusions

In this paper, we presented a multi-agent-based simulation for a realistic view of pos-
sible grid congestions due to the increase in e-mobility. This model is open-source available
on GitHub at https://github.com/NOWUM/smartdso/. Furthermore, we investigated
the effect of dynamic grid and market prices. To summarize, the dynamic market prices
result in high simultaneity factors, which can be handled by the provided dynamic grid fee
and differentiated price sensitivity curves.

In the future, it can be assumed that due to increased fluctuating feed-in, the day-
ahead and intraday prices will be subject to higher fluctuations, and thus, the incentive for
dynamic tariffs should increase. Nevertheless, it can be assumed that a very high degree
of automation and a low restriction of the quality of life are required to observe the user
behavior depicted here in practice.

The presented methodology focuses on the agent-based modeling of individual mobil-
ity behavior where each mobility demand is priced by the grid operator/capacity provider.

Modeling the user’s behavior independently of the grid operator prices allows simu-
lating heterogenous individual charging behavior of the agents.

The assigned user behavior in Case C leads to a significant change in grid utilization,
which highlights the requirement for more realistic modelling of charging behavior when
analyzing future grid development plans. As a next step, the user behavior and scope
of functions of the market actors should be improved. Moreover, other sector-coupled

https://github.com/NOWUM/smartdso/
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technologies such as power-to-heat and battery storages should be introduced to cover the
total scope of energy demand. This allows to further investigate a more realistic view of
the impact of flexibility from e-Mobility and PV systems on the energy system.
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Nomenclature

RES Renewable energy sources
EEG Erneuerbare-Energien-Gesetz
EV Electric Vehicle
PV Photovoltaic
PSA Power System Analysis
SLP Standard Load Profile
AC Alternating Current
SoC State of Charge
T Set of time steps
t time step
C Set of EV/cars
c car
D [km] Travel Distance
DEV [km] range of the EV
Pcar [kW] maximum charging power of a car
Ecar [kWh] maximum capacity of a car
EDemcar,t [kW] demand of a car at time step t
Vcar,t [kWh] capacity level of a car at time step t
Gt [ct/kWh] dynamic grid fee at time step t
B benefit, which depends on Vcar,t
S set of segments
s segment of linearized B function
zs variable to indicate the active segment
SegVLows lower capacity of linearized B function
SegVUps upper capacity of linearized B function
SegCoe fs slope of the linearized B function
VTotal [kWh] sum of single Vcar,t
Ppvt [kW] power of the attached PV system at t
PCharget [kW] charged power at timestep t
CLimit [ct/kWh] mean price for SoC 40%
CMax [ct/kWh] upper price, charge when SoC < 20%
CMin [ct/kWh] lower price, charge when SoC < 90%
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