
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01618-6

ORIG INAL PAPER

Detecting and approximating decision boundaries in
low-dimensional spaces

Matthias Grajewski1,2 · Andreas Kleefeld1,3

Received: 22 February 2023 / Accepted: 3 July 2023
© The Author(s) 2023

Abstract
A method for detecting and approximating fault lines or surfaces, respectively, or
decision curves in two and three dimensions with guaranteed accuracy is presented.
Reformulated as a classification problem, our method starts from a set of scattered
points along with the corresponding classification algorithm to construct a representa-
tion of a decision curve by points with prescribedmaximal distance to the true decision
curve. Hereby, our algorithm ensures that the representing point set covers the decision
curve in its entire extent and features local refinement based on the geometric prop-
erties of the decision curve. We demonstrate applications of our method to problems
related to the detection of faults, to multi-criteria decision aid and, in combination
with Kirsch’s factorization method, to solving an inverse acoustic scattering problem.
In all applications we considered in this work, our method requires significantly less
pointwise classifications than previously employed algorithms.

Keywords Fault detection · Fault approximation · Inverse scattering problem ·
MCDA

Mathematics Subject Classification (2010) 65-D10 · 65-D15 · 65-D17

B Matthias Grajewski
grajewski@fh-aachen.de

Andreas Kleefeld
a.kleefeld@fz-juelich.de

1 Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied
Sciences, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany

2 Institute for Data-Driven Technologies, FH Aachen University of Applied Sciences,
Heinrich-Mußmann-Str., 52428 Jülich, Germany

3 Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Wilhelm-Johnen-Str., 52425
Jülich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01618-6&domain=pdf
https://orcid.org/0000-0001-8115-7074
https://orcid.org/0000-0001-8324-821X


Numerical Algorithms

1 Introduction

Let us consider a piecewise constant function f : Rm ⊃ � → {1, 2, . . . , n} with �

being compact, simply connected and equipped with a piecewise smooth boundary,
m ∈ {2, 3}. Such f subdivides � into mutually disjoint subsets �i := f −1(i) with
� = ∪n

i=1�i and�i ∩� j = ∅, if i �= j . We assume that each�i features a piecewise
smooth boundary. We are interested in approximating �i, j := �i ∩� j relying on as
few evaluations of f as possible and present in this work an algorithm for this task.We
choose this quantity as a measure of efficiency because evaluating f can be arbitrarily
costly in applications and dominates the runtime in such a case. Our problem can be
immediately understood as a classification problem, such that we identify �i with a
class i and interpret the curves or surfaces of discontinuity �i, j as decision curves or
surfaces.

One field of application is economics and operations research. Multi-criteria deci-
sion aid (MCDA)methods canhelp a decisionmaker to choose the best one fromafinite
number of alternatives based on different, even conflicting, criteria. MCDA methods
assume that a decision depends on quantifiable parameters (x1, . . . , xm) (“input fac-
tors”) and is drawn deterministically. For an overviewover variousMCDAapproaches,
applications and case studies, we refer to [1, 2] among many others and the references
cited therein. In this context, �i is the set of all input factors that lead to the decision
for the i-th alternative in the MCDA method. Analysing the decision process with
respect to the input factors means consistently describing all �i based upon eval-
uating the MCDA method for arbitrary combinations of input factors. This can be
achieved by approximating all �i, j . Reconstructing an obstacle in three dimensions
is a field of application in acoustic scattering theory. More precisely, one wants to
determine the support of an inhomogeneous object (its boundary to be exact) from
measured far-field data which typically is a desired task in non-destructive testing.
The far-field data are obtained for different incident waves and measured points on the
unit sphere. Several reconstruction algorithms to find the boundary of the unknown
inhomogeneity are available such as iterative methods [3], decomposition methods [4]
and sampling/probe methods (see [5] for a detailed overview). The latter ones can be
further categorised into the linear sampling method, the generalised linear sampling
method, the factorization method, the probe method and variants of it (refer to [5–9],
respectively). However, here, we will focus on the classical factorization method for
the acoustic transmission problem (refer also to [10]), with which one can decide if
a given point is located inside or outside the obstacle. Therefore, the factorization
method transfers the reconstruction of an obstacle to a classification problem and thus
into a field of application of our method. Note that the far-field data within [10] has
also been used in [11] and [12].

Finding and approximating the sets �i, j , sometimes called fault lines, is important
in the exploration of natural resources. The presence and the location of �i, j can
provide useful insights for exploring and later on exploiting of oil reservoirs [13]
and play a significant role in some geophysical applications [14]. The underlying
mathematical problem is closely related to ours, albeit not the same, as usually, the
function f considered does not provide integer values as in our case. Therefore, an

123



Numerical Algorithms

additional algorithm for detecting fault lines is required then, and the classification of
a single point may be not trivial anymore as it is in our case. Moreover, algorithms
for fault detection may need to deal with noisy data (e.g. [15]), whereas we consider
certain data only.

Many algorithms for detecting and approximating the sets�i, j have been proposed,
like [13–18] amongmany others, which all feature strengths and weaknesses. Many of
thesemethods are discussed in thewider picture of scattered data approximation [19] or
adaptive scattered data approximation based on partion of unity methods [20]. Mirzai
and Soodbakhsh [21] propose a method for detecting and approximating possibly
intersecting fault lines using a partition of unity method. The fault lines they consider
are not necessarily boundaries of subdomains �i , such that there are differences to
the problem we address in this paper. However, the vast majority of these approaches
restrict to the 2D case, whereas we present a method for 2D and 3D. The algorithm
proposed in [17] and the work cited therein were the starting point for our research.

Classification is one of the standard problems in machine learning. There are a
lot of powerful and versatile algorithms available which could readily applied to our
problem; we refer to [22] for an overview. These methods are however designed for
uncertain data in high-dimensional spaces, whereas we consider secure data in low-
dimensional spaces, a completely different use case.

Our method approximately describes the �i, j by providing a set of points with a
guaranteed maximal normal distance to �i, j . These points are intended for construct-
ing a polygon (2D) or a surface triangulation in 3D.While there are more sophisticated
and elegant ways of describing these sets, it allows us to (approximately) replace an
actual classification by a simple and fast point-in-polygon test. A Python implemen-
tation and a Matlab implementation of our algorithm used for producing the results
presented in this article are available at https://github.com/mgrajewski/faultapprox-
matlab and https://github.com/mgrajewski/faultapprox-python. These codes include
the examples and tests shown here.

This article is organised as follows: We describe our algorithm for 2D and 3D in
Sect. 2 and elaborate on the direct and inverse acoustic scattering problem, one of
our applications, in Sect. 3. We present results and applications of our algorithm to the
detection of faults, to decision modelling and to inverse scattering in Sect. 4 and finally
conclude in Sect. 5. We provide pseudo-codes of selected parts of our algorithm in the
Appendix.

2 The algorithm

2.1 Detection and approximation of 0i,j in 2D

In this section, we present our algorithm for approximating �i, j �= ∅ for m = 2 by
sufficiently many well-distributed and ordered points sufficiently close to �i, j . This

Fig. 1 General flow chart

123

https://github.com/mgrajewski/faultapprox-matlab
https://github.com/mgrajewski/faultapprox-matlab
https://github.com/mgrajewski/faultapprox-python


Numerical Algorithms

Fig. 2 Flow charts of the Algorithms initialise, fill, expand and adapt. Note that building block
barymeans inside initialise is employed twice, albeit to different sets

implicitly constitutes a polygonal description of �i, j . For convenience, we provide
flow charts (Figs. 1 and 2) and describe selected building blocks in detail. In the flow
charts, actual building blocks are typed in monospace lettering.

Algorithm 2.1 (initialise) This algorithm aims at providing initial approxima-
tions to any �i, j ; we refer to Fig. 1 (right) for an overview. From now on, we assume
�i, j �= ∅. In building block initialset, we sample f on � rather coarsely and
obtain an initial point set X along with the corresponding classification informa-
tion. Building block barymeans creates additional sampling points in the vicinity
of any �i, j . We employ a knear-nearest neighbour approach taken from Allasia et
al. [17]: For any x ∈ X , let N (x) be the set of the knear- nearest neighbours of x
in X . If N (x) ∩ �i �= ∅ and N (x) ∩ � j �= ∅, we consider x close to �i, j . Let
N�(x) = N (x) ∩ �� for some �. Hence, N (x) = ⋃r

i=1 Nci (x) for certain indices
c1, . . . , cr , Nci (x) �= ∅. We compute the barycentres bci of all Nci (x), 1 ≤ i ≤ r , and
then their arithmetic means yci ,c j = 0.5(bci + bc j ), 1 ≤ i < j ≤ r . Let M(x) be the
set of all yci ,c j generated from N (x). If N (x) ⊂ �� for some �, we set M(x) = ∅.
We end up withM = ⋃

x∈X M(x). By definition ofM, there are no duplicate points;
however, a practical implementation requires removing duplicates. After classifying
the points inM, we repeat barymeans onM obtaining sets M2(x) for any x ∈M,
then M2 = ⋃

x∈M M2(x) and ultimately a further enriched set of sampling points
X = X ∪ M ∪ M2. Building block iniapprox (for a pseudo-code, we refer
to the Appendix, Algorithm 1 computes initial approximations for all �i, j . For any
x ∈ (M ∪M2) ∩ �i , we search the nearest point x ′ ∈ X ∩ � j , j > i . We use
x and x ′ as starting points for a bisection algorithm on the line x ′x . If the bisection
algorithm is successful, we end up with a point pair x (i) ∈ �i and x ( j) ∈ � j with
‖x (i) − x ( j)‖ ≤ 2εb, where εb is a user-prescribed threshold. Then, the distance of

123



Numerical Algorithms

x (i, j) = 0.5(x (i) + x ( j)) to �i, j is at most εb. We subsume the bisection process up
to εb and computing x (i, j) from its results in building block bisection. From now
on, we consider point triplets for approximating �i, j only; for any such triplet x , the
superscript (i) denotes the point in �i , the superscript ( j) its counterpart in � j and
the superscript (i, j) the arithmetic mean of the two points. We end up with a set of
triplets S̃i, j . We moreover set S̃(i)

i, j = {x (i) | x ∈ S̃i, j } and S̃( j)
i, j = {x ( j) | x ∈ S̃i, j }. It

may occur that some triplets in S̃i, j are tightly clustered. We thin such clusters as they
add to complexity but not to accuracy by removing appropriate triplets (Fig. 3). After
cluster removal, initialise provides sets of triplets Si, j .

Remark 2.1 Building block initialise detects �i, j �= ∅ by S̃i, j �= ∅. However,
depending on X , it may happen that S̃i, j = ∅ even if �i, j �= ∅. Reliably detecting all
non-empty �i, j depends on a sufficiently large X and thus ultimately on the user.

The triplets in Si, j usually provide an incomplete approximationof�i, j only, feature
gaps and lack ordering (e.g. Fig. 10, right).

Remark 2.2 The bisection-based approach in building block iniapprox implicitly
assumes that x ′x intersects �i, j and therefore may fail if this does not hold (Fig.
4). However, such failure modes occur only rarely in practical computations, and we
implemented fallbacks in that case.

Algorithm fill (for an overview, we refer to the flow chart in Fig. 2) provides
triplets with a maximal user-prescribed distance εb to �i, j and maximal mutual dis-
tance εgap based upon Si, j , i.e. the result of Algorithm 2.1 (initialise). As we
assume that εb 
 εgap, we define the distance of two triplets x, y ∈ Si, j as ‖x (i)−y(i)‖
and the distance of x to �i, j as the distance of x (i, j) to �i, j . Following a bottom-up
approach, we start with discussing selected building blocks employed in fill.

Building block 2.1 (sort) This building block is to sort a set of triplets S according
to their position along �. We omit the indices i and j for clarity. Let us assume that
� is piecewise smooth and fulfils an inner cone condition with angle βangle. We first

Fig. 3 Cluster removal by
removeclusters in
Example 4.1 for S̃1,2 (greyed

out); points in S(1)
1,2 are displayed

in red. This figure is an excerpt
of Fig. 10, right

123



Numerical Algorithms

Fig. 4 Building
block bisection can fail:
Finding points near �1,3 fails for
the starting points x ∈ �3 and
x ′ ∈ �1 shown, as x ′x does not
intersect �1,3 x

x

search a triplet xstart ∈ S closest to the boundary of � and assume xstart to be the first
triplet in the sorted set. We initially set Š = {xstart}. Let now the triplets in Š ⊂ S be
already sorted with xr being the last of those, r > 1. We consider the ksort nearest
triplets y1, . . . , yksort to xr in S \ Š, sorted by increasing distance to xr . If for s = 1,
∠(xr − xr−1, xi − ys) < βangle, we set xr+1 = ys and add xr+1 to Š; otherwise,
we repeat with s + 1. If s > ksort, we store Š, set S = S \ Š, and repeat the sorting
procedure until S = ∅ ending up with a finite number of disjoint ordered subsets. At
the end, we combine all sorted subsets based upon the Euclidean distance between
first and last points of the subsets reversing the order of a subset if necessary.

Remark 2.3 Allasia et al. [17] present a simpler sorting method than ours as they do
not enforce the condition∠(xr−xr−1, xi−ys) < βangle. However, it may fail if xstart is
not the true starting point and if additionally the points are unevenly distributed along
� (Fig. 5) in contrast to ours. Of course, our sorting method can fail as well, but due to
our experience, it is more reliable than Allasia’s method and works sufficiently well.
There aremanymore sophisticated sortingmethods based, e.g. upon graph theory [23–

Fig. 5 Sorting due to Allasia [17] may fail (left; sorting indicated in blue), whereas our method succeeds
in the present situation (right). We obtain two ordered subsets (direction of sorting is indicated by arrows
which after combination yields the correct ordering). The dashed line represents a connection to the nearest
neighbour rejected due to angle in our approach

123



Numerical Algorithms

26], which are more reliable than our approach, but more time-consuming and much
harder to implement.

For describing building block inipairs, which is part of fill, we introduce
another two building blocks, which will be used in adapt as well.

Building block 2.2 (estcurv) This building block estimates the curvature of a curve
represented by a finite number of points near to it. Let be Sloc = {x1, . . . , xr }, r > 2,
a set of ordered points near � up to εb. This building block estimates the curvature c�

of � in x�, 1 < � < r by least-squares fitting an approximation using Gaussian radial
basis functions (RBFs, we refer to [19] for details) and then c� by the curvature of that
approximation in x�. We choose the shape parameter of the RBFs as ‖x1− xr‖/r . We
hereby assume that after shifting and suitable rotation, � can be locally represented as
a graph of an unknown function. As the points in Sloc are located on� only up to εb, we
penalise the second derivative of the RBF approximation subject to a maximal residual
of εb. This coincides with the maximal deviation in the value at an approximation
point.We employ Tikhonov regularisationwith parameter estimation usingMorozov’s
discrepancy principle.

If � cannot be considered a graph of a function even after rotation, we draw as a
fallback a circle through the points with indices �−1, � and �+1 and use the inverse of
its radius for estimating c�. We estimate c� in the first or last point of Sloc by drawing
a circle through the first or last three points in Sloc. For a pseudo-code of estcurv,
we refer to the Appendix, Algorithm 2.

Building block 2.3 (esterror) This building block estimates themaximal deviation
δ of a smooth curve from a straight line between two points on the curve with distance
d. A straightforward calculation reveals that

δ = 0.25cd2 + 1/16c3d4 +O(d6), (1)

where c denotes the maximal curvature of the curve between the two points. For Sloc
as in Building block 2.2, we estimate the maximal deviation δ of � from the straight
line between consecutive points x� and x�+1 by replacing c with max{c�, c�+1} from
Building block 2.2 (estcurv). Hereby, we rely on (1) and neglect higher order terms.

Now, we are prepared to discuss fill.

Algorithm 2.2 (fill) Building block 2.1 (sort) sorts all triplets in Si, j according
to their position near �i, j . We detect gaps in the representation of �i, j by Si, j by
considering subsequent triplets x� and x�+1. If the distance d� of x� to x�+1 is larger
than a user-prescribed threshold εgap, we consider this a gap and aim to equidistantly
add R = �d�/εgap� triplets near �i, j between x� and x�+1. To do so, building block

inipairs places new points z�,r , 1 ≤ r ≤ R, equidistantly on x (i, j)
� x (i, j)

�+1 and
computes from these initial point pairs

x+�,r = z�,r + αn, x−�,r = z�,r − αn, 1 ≤ r ≤ R.

123



Numerical Algorithms

Here, n denotes the (estimated) outer normal unit vector of �i near x�,r . Applying

Building block 2.3 (esterror) to Sloc = {x (i, j)
�−2 , . . . x (i, j)

�+2 } and some safeguarding
leads to

α = min{εsafemaxd�,max{δ, εsafeminεb}} (2)

with user-prescribed safety factors εsafemax and εsafemin. For algorithmic details, we
refer to the pseudo-code in the Appendix, Algorithm 4.

Remark 2.4 Having a local RBF approximation of � at hand when computing c in
estcurv, it seems to be straightforward for efficiency reasons to choose points z�,r
on that RBF approximation instead of just subdividing a straight line. Numerical
experiments did not show any significant advantage of that approach compared to
ours for fill. This could be related to the uneven distribution of points on � near
gaps to fill, which may decrease the quality of approximation. Therefore, we stick to
the easier approach presented here. However, estimating the curvature using Building
block 2.2 (estcurv) is sufficiently reliable for efficiently computing starting pairs.

However, the pairs of starting points (aka starting pairs) obtained from inipairs
are not necessarily valid. We call a starting pair for approximating �i, j valid, if one
of its points belongs to �i and the other one to � j . Therefore, we introduce Building
block 2.4 (startpairs).

Building block 2.4 (startpairs) This building block obtains a valid starting pair
from a pair of points (x+�,r , x

−
�,r ). If the starting pair is already valid, we return it

as the result. If x+�,r or x−�,r belongs to a third class, we stop without result. If both

points belong to the same class, we reflect x+�,r on z�,r obtaining x ′�,r (Fig. 6). If both
(x+�,r , x ′�,r ) and (x−�,r , x ′�,r ) still belong to the same class, we repeat this process with
changing roles and escalating distances atmost krep times (typically krep = 3) and stop,
if any of the resulting point pairs is valid or one of the points belongs to a third class. In
the latter case, we search a valid starting pair by scattering around 0.5(x−�,r + x ′�,r ) as
fallback. For a pseudo-code of startpairs, we refer to the Appendix, Algorithm 3.

Remark 2.5 1. We iterate the process of filling gaps in fill, as the arclength of �

between two subsequent triplets may considerably exceed the length of the straight
line between them, such that after a first pass, the mutual distance of subsequent
tripletsmay still exceed εgap in some cases. In our implementation,we approximate
the arclength of � by the arclength of the approximating polygonal line given by
the triplets computed so far.

2. If only two or even less triplets are known on �i, j , estimating curvature is impos-
sible with estcurv, and computing α by (2) fails. For this case, we implemented
fallbacks.

Using bisection, fill creates new triplets, yielding new sets Si, j .

Remark 2.6 If �i is not simply connected, some �i, j may consist of several compo-
nents.We detect this usingfill (compare the pseudo-code of fill in theAppendix,
Algorithm 4). If there are some significant gaps which can not be filled, it indicates the
presence of several components. We then subdivide Si, j correspondingly and proceed
with every subset separately.

123



Numerical Algorithms

Fig. 6 Creating valid starting
pairs in fill with
startpairs: While
(x+

�,1, x
−
�,1) is valid, (x

+
�,2, x

−
�,2)

is not, as both points belong to
the same class. However,
(x−

�,2, x
′
�,2) is valid

Figure11 indicates that even with filling gaps, Si, j may not appropriately represent
�i, j , as parts of �i, j before the first known triplet x1 and after the last known may
be neglected. Algorithm expand is used to expand Si, j to a representation of the
complete curve �i, j . It relies on several building blocks, which we discuss first.

Building block 2.5 (extrapolate) For a given ordered set S with n ≥ 2 triplets
close up to εb to a curve � and with average distance davg, we fit a polynomial with
degreen−1 in local coordinates.Wecompute these coordinates by least-squares-fitting
a line to S. As points in S are located on � up to εb only, we do not interpolate, but
penalise the second derivative in a least-squares approximation. FollowingMorozov’s
discrepancy principle, we regularise such that the maximal residual is approximately
εb.

Building block 2.6 (stepsize) Provided that � extends sufficiently far before x1 ∈
S, it seems to be straightforward to seek for a new triplet with distance εgap to x1.
However, we limit the step size for extrapolation based upon the curvature c of� in the
vicinity of x1. Extrapolating far is unreliable in case of large curvature c, and adapt
will insert additional points afterwards in that region anyway for accuracy reasons,
such that it is much more efficient to adjust the step length to the local properties of �

beforehand. Let us assume that a polygonal final approximation of � may deviate at
most by εerr from �. We compute the step size which would lead to a deviation of εerr
from a straight line segment between x1 and the new triplet yet to compute. This is a
natural upper bound for the step size lextra in extrapolation.

Rearranging (1) and neglecting higher-order terms leads to

lmax = 2

c2

(√
1+ 4cεerr − 1

)
(3)

for the maximal admissible step length lmax. However, evaluating (3) is numerically
unstable if cεerr is small. We set (cεerr)2 = v and search for the roots vmin and vmax
of v2 + 4v − 16cd. According to Vieta, vmin = − (

2+√4+ 16cd
)
and vmax =

−16cd/vmin. Resubstituting v yields lmax = 4
√
d/(−cvmin). Some safeguarding of

this result leads to a step length of

lextra = min{εgap, βgrowthdavg, lmax} ,

123



Numerical Algorithms

where we estimate c using Building block 2.2 (estcurv) applied to Sloc =
{xi, j)1 , . . . , x (i, j)

kextra
} with a user-defined parameter kextra. The term βgrowthdavg increases

robustness, as extrapolation is reliable only near the points to extrapolate, and it may
happen that davg 
 εgap.

Algorithm 2.3 (expand) This algorithm aims at finding triplets near �i, j beyond the
first or last known in Si, j until the start or end of �i, j is reached or �i, j turns out to be
a closed curve. For the sake of simplicity, we refer in what follows to finding triplets
before the first one in Si, j . Finding triplets near �i, j beyond the last one in Si, j works
analogously. We add a new triplet before x1 by extrapolating an approximation γ of

�i, j with Building block 2.5 (extrapolate) setting S =
{
x (i, j)
1 , . . . , x (i, j)

kextra

}
with

x� ∈ Si, j and choose the step size according to Building block 2.6 (stepsize).
This way, we obtain an extrapolating curve γ and some s0 such that ‖x1 − γ (s0)‖ ≈
lextra. We then create a point pair (x+s0 , x

−
s0) based on γ (s0) in a similar way as in

fill. Computing a valid starting pair with Building block 2.4 (startpairs) and
subsequent bisection yields a new triplet in Si, j . We repeat this process until we reach
the true starting point of �i, j . As heuristic criterion for γ (s0) exceeding this starting
point, we consider

x+s0 /∈ (�i ∪� j ) ∨ x−s0 /∈ (�i ∪� j ) (4)

(Fig. 7). In this case, we employ Building block 2.7 (reducestepsize) for obtain-
ing a valid pair of points (x+s̃ , x−s̃ ), which represents the starting point of �i, j . After
adding it to Si, j , expand terminates. If �i j is closed, expanding Si, j as described
above would lead to an endless loop. Therefore, we start expanding Si, j , but detect
after every addition of a triplet, if �i, j is closed. If so, we stop expanding and resort.
We skip the details to keep the presentation uncluttered. Algorithm expand yields
approximating sets S̆i, j .

Building block 2.7 (reducestepsize) Using the parameter value s1 correspond-
ing to x (i, j)

1 as lower bound and s0 as upper bound, we obtain s̃, which leads to a valid
starting pair (x+s̃ , x−s̃ ) based upon γ (s̃) and fulfils ‖γ (s̃)− γ (s′)‖ < εb by bisection
with respect to condition (4). Here, s′ denotes the second to last parameter in the
bisection process (compare Fig. 7).

Fig. 7 Scheme of expanding S1,2 until its end. Starting from x(1,2)
1 , . . . , x(1,2)

4 (displayed as blue dots),

we construct γ by extrapolate. As (x+s0 , x
−
s0 ), displayed as cyan-coloured dots, fulfils (4), we apply

bisection with respect to the parameter s until a valid starting pair based upon γ (s̃) can be constructed
(displayed in magenta), from which we compute the final triplet in S1,2 by bisection

123



Numerical Algorithms

Algorithm 2.4 (adapt) Based onesterror, this algorithm inserts a triplet (approx-
imately) halfway between consecutive triplets x� and x�+1, if esterror indicates an
error larger than εerr and removes a triplet, if the estimated error of both line segments
the triplet belongs to is smaller than εcoarse. In contrast to fill, we employ the local
RBF approximation from estcurv for computing an initial point xnew between x�

and x�+1 when refining. With x±new = xnew ± α′n, we then proceed as in fill. We
compute α′ according to (2), but replace δ by δ′ = 1/16c3d4, as the error due to (1)
refers to an approximation by line segments and is overly pessimistic for an RBF
approximation. For robustness, we never delete consecutive triplets in one pass of the
adaptive loop. After at most kadap refinement and coarsening sweeps, we end up with
final sets Ŝi, j .

2.2 Approximating 0i,j in 3D

For approximating �i, j in three dimensions, we stick to the general procedure for
approximating these sets in two dimensions (Fig. 1). While initialise remains
unchanged, fill, expand and adapt differ from their 2D counterparts, as these
exploit ordering of the points on a decision curve or fault line. There is however no
straightforward ordering of points on a surface. Because fill and adapt rely on
esterror as in two dimensions, we discuss error estimation first.

Building block 2.8 (esterror) This building block aims at estimating the maximal
error e of a linear triangulation of � based upon a finite set of points S near � up to
εb. Let T be a Delaunay triangulation of Sloc ⊂ S and let us assume that � can be
represented on the support of T by an unknown function g after appropriate change
of coordinates. For some triangle T ∈ T , it holds according to [27, Theorem 4.1]

‖g − IT g‖T ,∞ ≤ 1

2

(
R2 − d2

)
|g|2,∞,T .

Here, R describes the radius of the circumcircle of T , d the distance from its centre to
T and IT g the Lagrange interpolant of g on T ; with |g|2,∞,T , we denote the L∞-norm
of the second derivative of g on T . It remains to estimate |g|2,∞,T . As g is unknown,
we employ an RBF approximation ϕ as in Building block 2.2 (estcurv) instead
and approximate |g|2,∞,T by evaluating its second derivative in the vertices of T and
its centre. The maximum of these four values yields the desired approximation φ of
|g|2,∞,T and therefore

e ≈ 1

2

(
R2 − d2

)
φ (5)

Algorithm 2.5 (fill) For any triplet x in Si, j , we search the knear nearest neighbours
x1, . . . , xknear and switch to a local 2D coordinate system by computing the optimal
fitted plane in the sense that the sum of the squared distances between the points and
the plane is minimal (see [28]). We then compute in local coordinates a Delaunay
triangulation of the patch Sloc = {x, x1, . . . , xknear}. If the maximal edge length of
a triangle in this triangulation exceeds εgap, we mark the centre of that triangle as
starting point for constructing a valid starting pair similar as in Building inipairs,

123



Numerical Algorithms

as long as the triangle is not too anisotropic, i.e. does not contain angles approaching
0◦ or 180◦. However, large gaps in Si, j are not covered by this local approach (Fig. 8).
If there is a gap in Si, j and if the current point is at the boundary of this gap, it
will be at the boundary of the current patch. We detect this by exploiting the local
coordinate system. We assume that a patch in the vicinity of a large gap is at least
slightly elongated in tangential direction to the patch boundary. Therefore, we consider
the first local coordinate. If the first local coordinate of the current point is almost the
minimum or maximum of all respective first coordinates of the patch, then it is at its
boundary, and we assume a large gap to fill. In this case, we construct xnew on the
elongated line between the centre of gravity of the patch and x , enrich Slocal by xnew
and continue as described above. Looping over all triplets in Si, j , removing duplicate
starting points and starting points which are extremely close enables us to compute
triplets using Building block bisection similar as in Algorithm 2.2 (fill). This
yields an enriched representation of �i, j . Repeating this procedure with the enriched
set until no gaps are detected anymore or a maximal number ktextrep of filling cycles is
reached leads to Si, j .Wepresent a pseudo-codeof fill in theAppendix,Algorithm5,
to which we refer for algorithmic details.

Algorithm 2.6 (expand) When expanding a representation Si, j of �i, j , we distin-
guish between expansion towards inner boundaries �i, j ∩�k,� and expansion towards
outer boundaries �i, j ∩ ∂�. We consider expanding to inner boundaries first. Let

S
I
i, j ⊆ Si, j be all triplets closer than 0.75εgap to a triplet in another Sk,�. For some

x ∈ S
I
i, j , let x

∗ be the triplet in Sk,� closest to x . We estimate the normal vector n

of �i, j in x and project xx∗ on the corresponding tangential plane at x , yielding t.
Let x ′ ∈ Si, j be the nearest triplet to x fulfilling ∠(−t, xx ′) < αexpand and E the
plane which contains x and is spanned by xx ′ and n. We reduce the expansion to the
two-dimensional case by expanding the curve �i, j ∩E with Algorithm 2.3 (expand)
from Sect. 2.1, using x and x ′ as initial set of triplets (compare Fig. 8, right).

Fig. 8 Left: Gradually filling large gaps in Si, j (displayed as grey dots). The triplet x is represented in
golden colour; the triplets in Slocal, displayed in red, define a local coordinate system sketched with black
arrows. The centre of gravity of Slocal is shown as a blue dot. Right: Expansion of S1,2 to the inner boundary

�1,2 ∩ �1,3. Triplets in S1,2 \ SI1,2 are displayed as grey dots, triplets in S
I
1,2 as blue dots. 2D-Expanding

{x, x ′} on E ∩ �1,2 yields a new triplet near �1,2 ∩ �1,3, displayed as red dot

123



Numerical Algorithms

For expanding to outer boundaries,we construct S
B
i, j as follows: For each coordinate

direction i , we select nexpand,i points in Si, j which areminimal ormaximalwith respect

to this coordinate and set S
B
i, j = S

B
i, j \ SIi, j in order to avoid duplicate triplets. For

determining nexpand,i , we rely on the axis-parallel bounding box of Si, j with sizes
b1, b2, b3. Then, nexpand,i = �max{bi+1 mod 3, bi mod 3+1}/εgap�. From these triplets,
we select the ones which are either closer than εgap to one of the boundary facets or
fulfil

∠(n, nouter) > αexpbound, (6)

where nouter stands for the outer normal vector of the assigned boundary facet. Figure9

illustrates the purpose of condition (6). For any triplet in S
B
i, j , we proceed as for

expanding to inner boundaries, but with t = nouter. All new triplets in the same facet

F of ∂� constitute the set S
F
i, j . As this set represents the curve �i, j ∩F in the plane F ,

we are confronted with approximating a decision curve or fault line in two dimensions.

Therefore, we apply Algorithms 2.2 (fill) and 2.3 (expand) to S
F
i, j . After adding

the new triplets on the boundary of �, we apply Algorithm 2.5 again and end up with
an enlarged set S̆i, j .

Algorithm 2.7 (adapt) In contrast to the two-dimensional case, we do not adap-
tively coarse the set of triplets. While this is possible and does not harm accuracy, it
complicates computing a surface mesh from the set of triplets representing �i, j .

For adaptive refinement, we do not rely on a global triangulation of S̆i, j . Instead,
for a given triplet x ∈ S̆i, j , let S̆loc consist of the knear nearest triplets in S̆i, j to x . We
least-squares fit a plane E to S̆loci, j as in Algorithm 2.5 (fill) and create a Delaunay

triangulation T of S̆loci, j projected to E . For each non-degenerated triangle in T , we

estimate the error applyingesterror to S̆(i, j)
loc . If the estimated error exceeds εerr, we

employ the centre of the triangle as a starting point for adding a new triplet. Looping
over all x ∈ S̆i, j naturally leads to many duplicate or very close starting points which
need to be eliminated before adding triples via bisection. However, these duplicates do
not harm the efficiency of our method, as no function evaluations are required before
computing triplets from starting points.We enrich S̆i, j with the new triples created and
repeat the refinement procedure at most kadap times or until no more starting points
for computing triplets have been created.

Fig. 9 Suitable (left) and
unsuitable (right) triplets for
expanding to a domain boundary

123



Numerical Algorithms

3 Direct and inverse acoustic scattering problem

As a real-world application of our algorithm, we will consider the inverse acoustic
scattering problem in Section 4.3, which forms themathematical background for some
types of non-destructive testing and imaging and therefore is of high practical interest.
As a preparation to our numerical experiments, we provide in this section a brief
introduction to direct and inverse scattering for the acoustic transmission problem.
For more details, see [10].

Let the scatterer D ⊂ R
3 be a given bounded domain with boundary ∂D assumed

to be of class C2,α . The normal unit vector ν points into the exterior E = R
3\D of the

scatterer. The exterior E assumed to be simply connected is an infinite homogeneous
isotropic non-absorbing acoustic medium which is characterised by the mass density
�e, mean compressibility κe, and sound speed ce = 1/

√
κe�e. Likewise, the interior

of D is characterised by �i , κi , and ci = 1/
√

κi�i . The given scatterer is excited by a
time-harmonic acoustic incident plane wave of the form

uinc(x; d̂) = eikex ·d̂ , x ∈ R
3 , (7)

where ke = ω/ce is the wave number of the acoustic wave in the host medium, ω > 0
the angular frequency, and d̂ ∈ S

2 the direction of incidence with S
2 = {x ∈ R

3 :
‖x‖ = 1} the unit sphere, where ‖· ‖ denotes the standard Euclidean norm inR3. Note
that the incident field also depends on ke, but this dependence is suppressed.

The incidentwave (7) interfereswith the penetrable scatterer and creates twowaves.
The first wave is the scattered field usca(x; d̂) defined for x ∈ E propagating outward
and the second wave is the transmitted field uint(x; d̂) defined for x ∈ D. The total
field in E denoted by uext(x; d̂) is the superposition of uint(x; d̂) and usca(x; d̂) each
of which satisfies the Helmholtz equation (the reduced wave equation) in E with wave
number ke. Likewise, the transmitted field satisfies the Helmholtz equation in D with
wave number ki . Precisely, we have

�uint(x; d̂)+ k2i u
int(x; d̂) = 0 , x ∈ D ,

�uext(x; d̂)+ k2e u
ext(x; d̂) = 0 , x ∈ E .

Due to the continuity of the acoustic pressure and the normal component of the particle
velocity across ∂D yields the transmission boundary conditions

uint(x; d̂) = uext(x; d̂) and ∂νu
int(x; d̂) = τ∂νu

ext(x; d̂) , x ∈ ∂D ,

where τ = �i/�e > 0 is themass density ratio of the twomedia. To ensure awell-posed
boundary value problem, the scattered field usca(x; d̂) needs to satisfy the Sommerfeld
radiation condition

lim
r→∞ r

(
∂r u

sca(x; d̂)− ikeu
sca(x; d̂)

) = 0

123



Numerical Algorithms

with r = ‖x‖. The classical acoustic transmission problem reads: find the functions
uint(x; d̂) ∈ C2(D) ∩ C1(D) and usca(x; d̂)) ∈ C2(E) ∩ C1(E) satisfying

�uint(x; d̂)+ k2i u
int(x; d̂) = 0, x ∈ D, (8)

�uext(x; d̂)+ k2e u
ext(x; d̂) = 0, x ∈ E, (9)

uint(x; d̂)− usca(x; d̂) = uinc(x; d̂), x ∈ ∂D, (10)
1

τ
∂νu

int(x; d̂)− ∂νu
sca(x; d̂) = ∂νu

inc(x; d̂), x ∈ ∂D, (11)

lim
r→∞ r

(
∂r u

sca(x; d̂)− ikeu
sca(x; d̂)

) = 0, r = ‖x‖ (12)

3.1 The direct acoustic transmission problem

Given the incident field (i.e. the direction of incidence d̂ and the wave number ke), the
scatterer D (hence also its boundary ∂D), the wave number ki and the parameter τ ,
one has to solve (8)–(12) for uint(x; d̂) and usca(x; d̂). In the direct problem, one is
only interested in the far-field u∞(̂x; d̂) of usca(x; d̂) which is given by

usca(x; d̂) = eike‖x‖

‖x‖ u∞(̂x; d̂)+O
(
‖x‖−2

)
, ‖x‖ → ∞

uniformly in all directions x̂ ∈ S
2. The far-field can be found by evaluating an integral

equation over ∂D given two density functions determined by first solving a 2 × 2
system of integral equation of the second kind over ∂D (see [10, Sect. 4.1]). Of course,
the integral equations at hand cannot be solved analytically and have to be solved
numerically for example by the boundary element collocationmethod (see [29,Chapter
5] for more details).

To sumup, in the direct acoustic transmission problem, one is interested in u∞ (̂x; d̂)

for x̂ ∈ S
2 given the scatterer’s boundary ∂D and the direction of incidence d̂ ∈ S

2.
The parameters ke, ki and τ are given.

3.2 The inverse acoustic transmission problem

The parameters ke, ki , and τ are given. In the inverse acoustic transmission problem
one tries to find/reconstruct the domain’s boundary from the knowledge of the far-
field patterns u∞(̂x; d̂) for all x̂, d̂ ∈ S

2. This can be achieved with the factorization
method originally invented by Kirsch (see [8]). The theoretical justification of the
factorization method for the acoustic transmission problem is given in [10, Chapter
3] and shown to work practically in [10, Chapter 4]. We briefly outline the algorithm:
Assume that the far-field data are given for x̂i and d̂ j with i, j ∈ {1, . . . ,m} stored in
the matrix A ∈ C

m×m . First, compute a singular decomposition of A = U�V ∗ with
� = diag(λ1, . . . , λm). For a given point z ∈ R

3 compute the expansion coefficient
of

rz =
(
exp

(
−ikez· d̂ j

))

j=1,...,m ∈ C
m

123



Numerical Algorithms

with respect to V by

�
(z)
� =

M∑

j=1
Vj,�e

−ikez·d j , � = 1, . . . , M ,

which is a matrix–vector multiplication �(z) = V�rz . Finally, we compute

W (z) =
[

M∑

�=1

|�(z)
� |2
|λ�|

]−1

and plot the isosurfaces of z �→ W (z). The values of W (z) should be much smaller
for z /∈ D than those lying within D. The threshold value can be approximately
determined by a scatterer such as the unit sphere and then reused for other scatterers
as well. Note that until now, an equidistant set of points N within a predefined box
have been used to find the values ofW (z) leading to an amount of N×N×N function
evaluations for such a “sampling” method (see also [11] for other sampling methods).
This can be considerably reduced as shown in the next section.

4 Numerical tests and applications

4.1 Test cases related to the detection of faults

Test problem 4.1 For � = [0, 1]2, we consider the following partition: Let �3 :=
{(x − 1)6 + (y − 0.5)6 < 0.005} ∩�, �′

1 := {y ≤ 0.6+ 0.1 sin(10πx1.5)} ∩� and
�′

2 := �\�′
1. Then, we set�1 := �′

1 \�3 and�2 := �′
2 \�3 and study the partition

� = �1 ∪�2 ∪�3 (Fig. 10, left).

Example 4.1 For Test problem 4.1, we choose an initial sampling set X consisting of
50 Halton-distributed points (Fig. 10, left) and set knear = 10 and εb = 0.001. The set
M consists of 47 additional points represented as black dots; M2 contains 49 points
displayed in blue. S̃1,2 contains 43 triplets, S̃1,3 contains 26, and S̃2,3 contains 7 (Fig.
10, right). After cluster removal, we obtain |S1,2| = 23, |S1,3| = 13 and |S2,3| = 4
(Fig. 3 and Fig. 10, right).We then ordered the sets Si, j according to Building block 2.1
with βangle = arccos(−0.9) ≈ 154◦ and ksort = 5. By filling gaps with εgap = 0.05,
εsafemin = 0.95 and εsafemax = 0.25, we obtain |S1,2| = 33, |S1,3| = 18, |S2,3| = 4
(Fig. 11). We will stick to the values of the parameters given here for all subsequent
numerical examples. We set kextra = 4, εerr = 0.001, εcoarse = 0.0001 and obtain
|S̆1,2| = 43, |S̆1,3| = 28, and |S̆2,3| = 18 (Fig. 12, left). Algorithm adapt with
kadap = 4 yields |Ŝ1,2| = 77, |Ŝ1,3| = 26, and |Ŝ2,3| = 22 (Fig. 12, right). Computing
these sets requires 1088 classifications (Fig. 13).

For approximating the RMS error for the polygonal lines defined by the sets Ŝi, j ,
we replace the corresponding �i, j by fine polygonal approximations �̃i, j constructed
such that the maximal deviation from the true �i, j , which are known in our examples,

123



Numerical Algorithms

Fig. 10 Left: Partition of� = [0, 1]2 according to Example 4.1 indicated by grey solid lines with the initial
point set X displayed as grey crosses. We moreover show M (black points) and M2 (blue points); Right:

S(1)
1,2 (red points), S(1)

1,3 (blue points), and S(2)
2,3 (cyan-coloured points)

does not exceed 10−7. We then construct a test set by choosing 500 equidistant points
on each polygonal line defined by Ŝi, j and compute the RMS error of this test set with
respect to corresponding �̃i, j . For εb = εerr = 0.001 and εcoarse = 0.0001, the RMS
error is 7.66 · 10−4, whereas for εb = εerr = 10−4 and εcoarse = 10−5, the RMS error
is 6.29 · 10−5. In the latter case, our algorithm requires 2406 function evaluations.

We furthermore consider test cases which have been defined in the context of the
detection of fault lines or fault surfaces.

Test problem 4.2 Following Allasia et al. [17] and Gutzmer et at. [13], we set xM =
(0.5, 0.5)�, x = (x1, x2)�, � = [0, 1]2 and consider the function

f (x1, x2) =
{
1+ 2�3.5‖(x1, x2)‖2� , ‖(x − xM )‖2 < 0.4

0 , otherwise
(13)

Fig. 11 Algorithm 2.2 (fill)
for Test problem 4.1. Previously
existing points are greyed out in

S
(i)
i, j . Otherwise, we stick to the

colouring scheme of Fig. 10

123



Numerical Algorithms

Fig. 12 Sets S̆(i)
i, j (left) and Ŝ(i)

i, j (right) for Test problem 4.1. We stick to the colouring scheme of Fig. 10

This function is piecewise constant with smooth fault lines; it holds

� =
⋃

�i, j =
{
x ∈ R

2 : ‖x − xm‖2 = 0.4
}

∪ {‖x‖2 = 4/7 : ‖x − xm‖2 < 0.4 }
∪ {‖x‖2 = 6/7 : ‖x − xm‖2 < 0.4 } .

The set �1,3 consists of two separate components (Fig. 14, left).

Test problem 4.3 We set

f (x1, x2) =
⎧
⎨

⎩

3 , x1 > 0.6
1 , x1 < 0.5
2 , otherwise

. (14)

The set� consists of two straight lines and coincides with the two fault lines from [17],
Example 4 (Fig. 14, middle).

Fig. 13 Reconstructed
subdivision for Test problem 4.1

123



Numerical Algorithms

Fig. 14 Reconstructed subdivisions for Test problems 4.2, 4.3, and 4.4

Test problem 4.4 We set

f (x1, x2) =
{
2 , x1 > 0.4 ∧ x2 > 0.4 ∧ x2 < 0.2+ x1
1 , otherwise

(15)

The set �1,2 coincides with the fault line from [17], Example 5 (Fig. 14, right).
We compute all three test problems starting with X from Example 4.1 and the same

parameters used there and in the subsequent examples in Sect. 2.1. Figures. 15, 16
and 17 provide an overview over the approximations of all �i, j . We present details in
Tables 1 and 2 as well as the corresponding RMS errors combined with the number of
function evaluations for these three test problems and for Test problem 4.1 in Table 3.
Algorithm iniapprox is the most demanding building block in terms of function
evaluations in all examples considered. We interpret the average number of classifi-
cations per triplet as an efficiency indicator, because our specification of a polygonal
approximation of a fault implies a certain number of triplets and thus of classifications,
which cannot be undercut even by an optimal algorithm. For such an algorithm, the
average number of classifications per triplet would be 2, because a mere verification
of the triplets requires so many classifications. Averaged over Test problems 4.1, 4.3
and 4.4, it takes on average 4.0 classifications for adding one triplet in fill. How-
ever, it takes on average 12.2 classifications per triplet added for Test problem 4.2.
This is due to the fact that �1,3 consists of two components, which is detected by a
failed attempt of filling the large gap between these two components (Remark 2.6).
This process adds classifications, but no triplets. In average over the four examples,
expand requires 5.5 classifications per triplet added. A significant part of the clas-
sifications is required for the very first and very last step, as finding them requires
bisection on the extrapolation curve γ , which involves at least one classification per
iteration step. Considering the same ratio for adapt would be misleading, as triplets
are added and removed.

Test problem 4.5 For � = [0, 1]3, we consider the following partition: Let xM =
(1, 0.5, 0.5)� and �3 := {‖x − xM‖6 < 0.002} ∩ �, �′

1 := {y + 0.1z < 0.7 +
0.1 sin(10x1.5)+0.05 sin(5z1.5)}∩� and�′

2 := �\�′
1. Then, we set�1 := �′

1 \�3
and �2 := �′

2 \�3 and study the partition � = �1 ∪�2 ∪�3 (Fig. 18).

Example 4.2 We compute Test problem 4.5 starting with 200 Halton-distributed
points, knear = 10 and krep = 15. All other parameters are set as in the computa-
tion of Test problem 4.1. For the corresponding numbers of triplets and the number of
function evaluations, we refer to Table 4. Figures. 18, 19 and 20 provide visualisations
of the sets of triplets.

123



Numerical Algorithms

Fig. 15 S(i)
i, j (left), S̆

(i)
i, j (middle), and Ŝ(i)

i, j (right) for Test problem 4.2. As for the computations of Exam-
ple 4.1 in Sect. 2.1, previously existing points are greyed out

Fig. 16 S(i)
i, j (left), S̆

(i)
i, j (middle), and Ŝ(i)

i, j (right) for Test problem 4.3

Fig. 17 S(1)
1,2 (left), S̆(1)

1,2 (middle), and Ŝ(1)
1,2 (right) for Test problem 4.4

Table 1 Number of function evaluations per building block for reconstructing the subdomains

Test Problem Up to M2 iniapprox fill expand adapt

4.1 146 458 94 185 205

4.2 254 1017 465 350 127

4.3 176 595 26 74 0

4.4 87 202 34 44 83

123



Numerical Algorithms

Table 2 Total number of triplets
after the respective Building
block

Test Problem iniapprox fill expand adapt

4.1 40 55 89 125

4.2 66 98 138 171

4.3 32 45 60 6

4.4 17 26 36 18

Remark 4.1 (Choice of parameters) The algorithm presented relies on various param-
eters, whose choice may depend on the user’s requirements, e.g. regarding accuracy
but as well on the shape and size of the faults. The choice of the majority of the param-
eters is not critical in the sense that the values we presented worked well in all tests
we performed during the development of the algorithm, and altering them had only
minor influence on accuracy and efficiency, if at all. In what follows, we discuss the
parameters whose choice is significant in practical computations and whose values
may need to be adapted to the underlying classification problem. Our recommenda-
tions refer to a domain with size in the range of 1, which can be easily achieved by
scaling. The initial set X must be chosen such that any �i contains at least one point
to get detected. This is up to the user and depends on the underlying problem such
that the authors cannot give any general advice here. However, if �i ⊂ X �= ∅ by
coincidence for such �i , our implementation incorporates this class and proceeds as
intended.

The parameter εgap must be chosen that Si, j represents all features of �i, j suf-
ficiently after fill in the sense that adapt initiates further local refinement if
necessary. This however does not happen if a local feature of �i, j remains completely
undetected. If �i, j consists of several components, εgap must be chosen smaller than
their distance, as otherwise fill cannot detect this (compare Remark 2.6). If so,
distance-based sorting of Si, j using sort will fail subsequently. Usually, the polyg-
onal lines based on the sorted Si, j are self-intersecting in this case, which we detect
in our implementation. If so, we suggest the user to decrease εgap.

If the user is interested in a polygonal approximation of �i, j and not just a rep-
resenting set of points, it makes sense to choose εerr = εb in order to balance the
associated sources of error. We suggest choosing εerr > 10 · εcoarse in order to avoid
that line segments just refined in adap get coarsened in the next cycle of the adaptive
loop and so forth.

Table 3 Total number of function evaluations and RMS error

Test Problem εb = εerr = 10−3; εcoarse = 10−4 εb = εerr = 10−4; εcoarse = 10−5
no. of evals RMS error no. of evals RMS error

4.1 1088 7.66 · 10−4 2406 6.29 · 10−5
4.2 2213 3.55 · 10−4 4202 4.53 · 10−5
4.3 871 4.24 · 10−4 1293 4.02 · 10−5
4.4 450 2.75 · 10−4 764 4.26 · 10−5

123



Numerical Algorithms

Fig. 18 Left: Partition of [0, 1]3 for Test problem 4.5 displayed by �1,2 (red), �1,3 (blue) and �2,3 (grey;

partially obscured by �1,3); Right: approximating sets S(i)
i, j after removing clusters

Table 4 Number of triplets per �i, j and number of function evaluations for Example 4.2

Number of triplets Up to M2 iniapprox fill expand adapt

approx. of �1,2 102 1459 1704 2460

approx. of �1,3 83 1685 2058 2774

approx. of �2,3 36 745 981 1510

Function evaluations 616 2157 25,510 14,232 5218

Fig. 19 Left: Sets S
(1)
1,2, S

(1)
1,3 obtained applying Algorithm 2.5 (fill) for Test problem 4.5. Right: S̆(1)

1,2,

S̆(1)
1,3 after Algorithm 2.6 (expand) for the same Test problem. Previously existing points are displayed in

light grey; we omit S
(2)
2,3 and S̆(2)

2,3 in the visualisation for the sake of clarity

123



Numerical Algorithms

Fig. 20 Final sets Ŝ(1)
1,2 and Ŝ(1)

1,3
for Test problem 4.5

4.2 Decision analysis andmodelling

MCDAmethods depend on several parameters called “input factors”. Almost all com-
mon MCDA models require to set up a performance matrix P = (pi, j ), where pi, j
encodes the objective benefit or cost of the i-th alternative with respect to the j-th
criterion. Both finding suitable criteria for modelling the decision process and setting
up P requires expertise (e.g. [30] among many others) and is beyond the scope of this
work. Instead, we assume that P is given and exactly known, although this assumption
may be questioned in many practical applications. In addition to P , the decisionmaker
needs to provide non-negative weights w = (w1, . . . wc)

� which reflect the impor-
tance of the criteria from his point of view. Although originally intended as a decision
support tool, MCDA methods have been used for some time for decision analysis,
e.g. to predict decisions of actors under changed framework conditions, modelled by a
changed performancematrix. In the context of decision analysis,w is inmany practical
applications not exactly known and hard to obtain, as, e.g. surveys are time-consuming
and prone to bias due to socially accepted answers and other effects. Moreover, the
restriction to fixed weights ignores possible diversity within actors. All of the above
motivates a robustness analysis of the decision predicted, which in many cases focuses
on examining the robustness of the decision with respect to perturbations in w. If P
is not known exactly, one systematic approach is to consider the entries in P random
variables and then to determine the distribution of the conditional probability P(i |P).
For fixed P , it seems straightforward to model P(i |P) as a uniform distribution on
�i . For uncertain P , apart from special cases, one will have to resort to Monte Carlo
methods here, within which, for a given realisation of P , the subdomains �i can be
approximated via the �i, j with our algorithm presented.

In what follows, we apply our algorithm for computing �i, j to such a robustness
analysis and consider as example an application from the scientific monitoring of
the mobility turnaround in Germany. Ball et al. [31] investigate car users’ attitudes
towards the purchase of hybrid (HEV) and electric vehicles (BEV) versus conventional
cars with internal combustion engine (ICE). For this purpose, they identify 13 criteria
and divide them into 5 categories (“Ecological”,“Economic”, “Social”, “Comfort”,

123



Numerical Algorithms

“Other”). The authors weight both the criteria within the categories and the categories
themselves. Taking the former weights as given, we obtain the performance matrix
in Table 5 from the data in [31]. In contrast to SAW (simple additive weighting) [32]
as in [31], we use the more complex MCDA method SIR-TOPSIS [33] here, which
includes the very widespread MCDA methods Promethee II [34] and SAW as special
cases. We omit all details on how TOPSIS works for the sake of brevity and refer
instead to [33].

SIR-TOPSIS requires as many otherMCDAmethods that the non-negative weights
are normalised, i.e.

∑n
i=1 wi = 1. Therefore, the set of normalised admissible weights

is the standard simplex in R
n . For visualisation, we consider m = 3 or m = 4 of the

weights to be variable, and the rest to be fixed. Let bew = wv+w f , wherewv consists
of the variableweights and zeros elsewhere, andw f of the fixed ones, correspondingly.
Therefore, normalisation implies

∑
wi,v = 1 − ∑

wi, f := c f such that the set of
variable weights corresponds to a downscaled standard simplex in R

m , which we
embed in R

m−1 by appropriate translation and rotation. This yields the equilateral
triangle (for m = 3) and the regular tetrahedron (for m = 4) shown in Fig. 21.

For a 2D-visualisation of the decision space, we consider theweights corresponding
to “Ecological”, “Economic” and “Comfort” variable (Fig. 21) and colour all weights
leading to a decision in favour of ICEs black, for HEVs blue and for BEVs green.
We divide the weights w̃ proposed in [31] as a representation of car user’s mindset in
2020 in a fixed and variable part, setting w̃ = w̃v + w̃ f and display w̃v as bright red
dot in Fig. 21. In contrast to [31], SIR-TOPSIS seems to predict a shift to HEVs under
today’s conditions. For measuring robustness, we consider the largest sphere around
w̃v still fully contained in the set of weightings leading to HEVs WHEV and propose
its radius ρ as simple measure of robustness. As we have a polygonal approximation
of WHEV at hand, iteratively approximating ρ boils down to an intersection test of
polygons, if we approximate the circle by a sufficiently fine polygon. We end up with
ρ ≈ 0.06, which reconciles the findings of Ball et al. and ours: As ρ is rather small,
the decision in favour of HEVs is not very robust, as even small perturbations of the
weightingsmay lead to a decision in favour of ICEs. In [31], the decision towards ICEs
was found not to be very robust. However, both ours and Ball et al.’s results indicate
that a broad shift towards BEVs is unlikely to happen under current circumstances.

For m = 3 and m = 4, we have c f = 0.9942. The downscaled standard simplex is
rotated and translated to the equilateral triangle with vertices c f (0.4082,−0.7071)�,
c f (0.4082, 0.7071), and c f (−0.8165, 0). Therefore, we set� = c f [−0.9, 0.4082]×

Table 5 Performance matrix P̃ with corresponding criteria generated from [31], and weightings from the
car users’ point of view prior to normalisation (last row)

Ecological Economic Social Comfort Other

BEV 0.5025 0.2792 0.6250 0.1497 0.1342

ICE 0.1256 0.4167 0.1250 0.4300 0.6710

HEV 0.3719 0.3042 0.2500 0.4202 0.1948

weightings 2 7 0.1 8 0

123



Numerical Algorithms

Fig. 21 Visualisation of the decision space for 3 (left) and4 (right) variable criteria. The car users’weightings
according to [31] are displayed as red dot along with the circumsphere with radius ρ = 0.06

c f [−0.9, 0.9] and employ an initial point set X consisting of 100 Halton-distributed
points, where points far away from the triangle have been discarded, as they cannot
aid approximating �i, j (Fig. 22, left). We choose the values of all algorithm-related
parameters as for the examples in Sects. 2.1 and 4.1, except of εgap = c f · 0.05. For
m = 4, we start with X consisting of 500 Halton-distributed points in the vicinity of
the tetrahedron and take all values for the parameters of the algorithm from Sect. 2.2,
except of kadap = 3. For the final sets Ŝi, j , we refer to Fig. 22 (right and middle) and
display the number of function evaluations in Table 6. These sets have been used for
approximating ρ; Fig. 21 was generated with the proposed algorithm, albeit using a
finer initial point set and modified parameter settings, as analytical descriptions of the
decision curves and surfaces, resp., are unknown.

Due to recent geopolitical events, car users today may attach a different importance
to issues of security of supply, e.g. with fuel, than in 2021 when [31] was written.
That kind of considerations are subsumed in the category “Social” which motivates to
additionally consider the weights of that category to be variable. It turns out that with
stronger emphasis on the category “Social”, car users tend to prefer a BEV (Fig. 21,
right). One reason for this may be that the dependence on oil imports makes the
purchase of an ICE or even an HEV seem less attractive.

Fig. 22 Initial point set X (left) and final sets Ŝi, j (middle) for m = 3. Right: Selected final sets Ŝi, j for
m = 4

123



Numerical Algorithms

Table 6 Number of function evaluations per building block for reconstructing the decision boundaries (see
Sect. 4.2)

Up toM2 Iniapprox Fill Expand Adapt

Evaluations, m = 3 397 1325 198 283 44

Evaluations, m = 4 1518 4553 13352 14752 24344

No. of triplets, m = 3 100 145 174 45

No. of triplets, m = 4 335 1575 2401 6999

4.3 Surface reconstruction in 3D from scattering

In our tests, we will use different scatterers to apply our algorithm to such as the unit
sphere, the ellipsoid, the peanut, the acorn, the cushion, the round short cylinder and the
round long cylinder. Their surfaces are given parametrically in spherical coordinates
x = r1 sin(φ) cos(θ), y = r2 sin(φ) cos(θ), and z = r3 cos(φ) with θ ∈ [0, 2π),
θ ∈ [0, π ] as r1 = r2 = r3 = 1 for the unit sphere, r1 = r2 = 1 and r3 = 6/5
for the ellipsoid, r21 = r22 = r23 = 9(cos2(φ) + sin2(φ)/4)/4 for the peanut, r21 =
r22 = r23 = 9(17/4+ 2 cos(3φ))/25 for the acorn, r1 = r2 = r3 = 1− cos(2φ)/2 for
the cushion, r101 = r102 = r103 = 1/((2 sin(φ)/3)10 + cos10(φ)) for the round short
cylinder, and r101 = r102 = r103 = 1/((2 cos(φ)/3)10 + sin10(φ)) for the round long
cylinder, respectively. We will use m = 1026 number of incident and observation
directions for the construction of the far-field data with the parameters ke = 2, ki = 1,
and τ = 1/2 as also used in [10, p. 18]. Therefore, the factorization algorithm appears
as classification function f .

For our experiments, we set all algorithm-related parameters as in Sect. 2.2 except
of εerr = 0.01 and εgap = 0.25. The initial set X consists of 200 Halton-distributed
points in � = [−1.5, 1.5]3 apart of the long and the short cylinder, where we set
� = [−2, 2]3. The results (Figs. 23 and 24) indicate successful reconstructions. For
the number of triplets after each part of the algorithm and the number of function
evaluations, we refer to Tables 7 and 8. As no triplet in these tests fulfilled condi-
tion (6), no expansion took place, such that we omit the corresponding column in
our tables. As all scatters feature one closed surface, this behaviour of our algorithm
is as desired. In order to obtain a visually appealing reconstruction of the scatterers,
Anagnostopoulos et al. [10] create a tensor product set of 553 = 166, 375 points and
use the corresponding classifications to compute isosurfaces based upon these data for

Fig. 23 Reconstructed scatterers acorn, bumpy sphere, cushion and ellipsoid

123



Numerical Algorithms

Fig. 24 Reconstructed Scatterers long cylinder, peanut, short cylinder and sphere

visualisation purposes. Our approach, on the other hand, requires only a fraction of
these function evaluations. Since about half of the total computation time was used by
Kirsch’s factorization method in the surface reconstruction with a Matlab implemen-
tation of our method, our algorithm enables a significant speedup compared to [10].

Moreover, in contrast to the level set approach, our method provides a set of points
near the scatterer, which can be used for computing a further refined surface repre-
sentation like triangulation or higher-order interpolation. There are two major sources
of inaccuracy in surface reconstruction: the inaccuracy of the factorization method
itself and the error induced by the representation of the reconstructed surface, be it an
isosurface or a set of points. As our algorithm controls the latter one, comparing with
the ground truth aka the analytical description of the true surface allows for analysing
the former error source far more easily than having only implicit surfaces available.

Remark 4.2 In our tests, we do not commit to inverse crime. The far field data used
for reconstruction later one have been produced using boundary element collocation
with high accuracy. The inverse problem is solved using Kirsch’s factorization method
combined with the algorithm proposed in this work.

5 Conclusions and outlook

In this article, we presented a method for approximating manifolds of discontinuity of
a function f in 2D and 3D and demonstrated successful applications of our method
to multi-criteria decision aid, to generic test cases connected with the detection of

Table 7 Number of function evaluations per building block for reconstructing the scatterers

Scatterer Up toM2 iniapprox fill adapt

Acorn 463 1891 7242 8272

Bumpy sphere 384 1326 4844 8911

Cushion 473 1956 6237 7881

Ellipsoid 383 1329 4694 5458

Long cyl 378 1377 7119 9816

Peanut 394 1381 5149 6922

Short cyl 465 2033 9021 9667

Sphere 384 1314 3954 5102

123



Numerical Algorithms

Table 8 Total number of triplets
after the respective building
block for reconstructing the
scatterers

Scatterer iniapprox fill adapt

Acorn 222 1291 3839

Bumpy sphere 158 827 3103

Cushion 232 1125 3613

Ellipsoid 157 843 2305

Long cyl 149 1188 4040

Peanut 164 878 2864

Short cyl 217 1594 4543

Sphere 159 715 2120

faults and to an inverse acoustic scattering problem. In all cases, our method requires
significantly fewer evaluations of f than previously existing algorithms we compared
our method to. At least for the inverse acoustic scattering problem, this leads to a
significant acceleration of the overall reconstruction, as computing the factorization
method dominates the computational time even in our computations,where the number
of such computations could be reduced by a factor of approx. 7 to 12.

Our algorithm could be easily enhanced with classification algorithms as in [17]
in order to consider more general functions than we did, provided the classification
is certain. This enables for tackling fault detection problems and for applying our
method for interpolation of piecewise smooth functions assuming that f is smooth
on �1, . . . , �n with � = �1 ∪ . . . ∪ �n , but globally discontinuous. In [35], the
authors propose interpolationwith radial basis functions on each�i in this setting. This
however requires knowledge about the boundaries of each�i which could be obtained
using our method. For that purpose, [35] provides a fault detection algorithm based
on local approximation properties. Combining these two approaches is the subject of
our current research.

Appendix

Algorithm 1 Pseudo-code for Building block iniapprox

function iniapprox(Mi , X , j, εb)
!Mi = (M ∪M2) ∩�i
! X = X ∪M ∪M2: enriched set of sampling points
! j : class index, j > i
! εb: threshold for distance to �i, j

S̃(i)
i, j = ∅, S̃( j)

i, j = ∅
for all x ∈ Xi do

x ′ = nearestNeighbour(x, X ∩� j ) ! nearest neighbour of x in � j

(x(i), x( j)), success = bisection(x, x ′, 2εb)
if success then

S̃(i)
i, j = S̃(i)

i, j ∪ {x(i)}
S̃( j)
i, j = S̃( j)

i, j ∪ {x( j)}
end if

end for
return S̃(i)

i, j , S̃
( j)
i, j

end function

123



Numerical Algorithms

Algorithm 2 Pseudo code for Building block 2.2 (estcurv)
function estcurv(Sloc = {x1, . . . , xr }, �, εb)! Sloc: ordered set of points! �: index of the point in Sloc to estimate the curvature at
! εb: maximal distance of a point in Sloc to �
Sloc = Sloc − x� ! center Sloc around x�

! rotate Sloc by a PCA such that the x-axis corresponds to the first coordinates of Sloc
Sloc = Q · Sloc
! interior points of sufficiently large Sloc with ordered x-coordinates
if (r > 3) ∧ (1 < k < r) ∧ (∀k : xk,1 < xk+1,1 ∨ ∀k : xk,1 < xk+1,1 then

s = ‖x1−xr ‖
r ! scaling factor for RBF approximation

Ai, j = �(||xi − x j ||, s) ! RBF interpolation matrix, �: Gaussian RBF
Bi, j = �̈(‖xi − x j‖, s) ! penalty matrix

rescale B such that ‖B�B‖ ≈ 10 ! for numerical stability

! solve interpolation problem regularised with B using Tikhonov regularisation
α = Tikhonov(A, B, εb)
compute ϕ, ϕ̇, ϕ̈ ! RBF approximation with derivatives

c� = ϕ̇(x�)
(
1+ϕ̈(x�)2

)1.5

else ! fallback to drawing a circle through 3 consecutive points
if � = 1 then
! ρ: radius of circle through x1, x2, x3
ρ = computeRadius(x1, x2, x3)

else if � = r then
ρ = computeRadius(xr−2, xr−1, xr )

else
ρ = computeRadius(x�−1, x�, x�+1)

end if
c� = 1/ρ

end if
return c� ! c�: estimated curvature

end function

123



Numerical Algorithms

Algorithm 3 Pseudo-code for Building block 2.4 (startpairs), Part 1
function startpairs(x+, x−, c+, c−, i, j, krep)
! x+, x−: two points near �i, j
! c+, c−: class indices of x+, x−
! i, j : class indices of a valid start pair
! krep: maximal number of escalation steps
success = false ! flag for successful termination
t = false ! flag for third class involved
(x+0 , x−0 ) = (x+, x−)

k = 1
if {c+, c−} ⊆ {i, j} then ! no third class involved

for k ≤ krep do
if {c+, c−} ⊆ {i, j} ∧ c+ �= c− then

success = true
exit loop

else if {c+, c−} ⊆ {i, j} then
x+ = 2x− − x+ ! reflection step for x+
c+ = classify(x+)

else
success = false
t = true
exit loop

end if

! Reflecting x+ did not succeed, so we reflect x−.
if {c+, c−} ⊆ {i, j} ∧ c+ �= c− then

success = true
exit loop

else if {c+, c−} ⊆ {i, j} then
x− = 3x+ − 2x− ! reflection step for x−
c− = classify(x−)

else
success = false
t = true
exit loop

end if
k = k + 1

end for
else

t = true
end if

Algorithm 3 Pseudo-code for Building block 2.4 (startpairs), Part 2
! fallback, if a third class is involved
if t ∧ !success then

n = x+0 − x−0
compute X by scattering around 0.5(x+0 + x−0 ) in direction of n
classify X
if ∃x+, x− ∈ X : {c+, c−} ⊆ {i, j} ∧ c+ �= c− then

success = true
t = false

end if
end if
return (x+, x−), success ! starting pair with success flag

end function

123



Numerical Algorithms

Algorithm 4 Pseudo-code for Algorithm 2.2 (fill), 2d, Part 1

function fill(S(i)
i, j , S

( j)
i, j , i, j, εgap, krep)

! S(i)
i, j , S

( j)
i, j : points inside the triples in Si, j

! i, j : class indices
! εgap: maximal distance between subsequent triplets; user-defined
! krep: maximal number of filling cycles; user-defined, usually set to 3
Nogaps = false
k = 1
m = |S(i)

i, j | ! number of triplets in Si, j
while !Nogaps ∧ k ≤ krep do

Nogaps = true
for � = 1 : m − 1 do

if d� = ‖x� − x�+1‖ > εgap then
NoGaps = false
R = �d�/εgap�
for r = 1 : R do ! R equidistant points on x (i, j)

� x (i, j)
�+1

x�,r = (1− r/R)x (i, j)
� + r/Rx (i, j)

�+1
! outer normal vector with respect to �i

n = normalVec(x (i, j)
� , x (i, j)

�+1 )

! employ Building block 2.2 (estcurv)
! As estimating curvature is less reliable at the end of a curve, we apply a safety factor
if 2 < � < |S(i)

i, j | − 2 then

c = estcurv({x (i, j)
�−2 , . . . , x (i, j)

�+2 }, 3, εb)
else if � ≤ 2 then

c = 2.0 estcurv({x (i, j)
1 , . . . , x (i, j)

min {5,m}}, 2, εb)
else

c = 2.0 estcurv({x (i, j)
max {m−5,1}, . . . , x

(i, j)
m },m − 1, εb)

end if
δ = esterror(c, d�) ! estimate error using (1)
α = min{εsafemaxd�,max{δ, εsafeminεb}} ! compare (2)
x+�,r = x�,r + αn, x−�,r = x�,r − αn

c+, c− = classify(x+�,r , x
−
�,r )

! employ Building block 2.4 (startpairs)
(x+�,r , x

−
�,r , success) = startpairs(x+�,r , x

−
�,r , c

+, c−, i, j, krep)

Algorithm 4 Pseudo-code for Algorithm 2.2 (fill), 2d, Part 2
if success then

(x+�,r , x
−
�,r ), successBisec = bisection(x+�,r , x

−
�,r , 2εb)

if successBisec then
S(i)
i, j = S(i)

i, j ∪ {x−�,r }
S( j)
i, j = S( j)

i, j ∪ {x+�,r }
end if

end if
end for

end if
end for
Si, j = sort(Si, j ) ! Building block 2.1 (sort)
k = k + 1

end while
Si, j = Si, j
return Si, j , NoGaps ! !NoGaps indicates that �i, j consists of several components

end function

123



Numerical Algorithms

Algorithm 5 Pseudo-code for Algorithm 2.5 (fill), 3d, Part 1

function fill(S(i)
i, j , S

( j)
i, j , i, j, εgap, krep, knear)

! S(i)
i, j , S

( j)
i, j : points in the triples in Si, j

! i, j : class indices
! εgap: parameter for minimal densitity of triplets, user-defined
! krep: maximal number of filling cycles; user-defined
NoGaps = false
k = 1
m = |S(i)

i, j | ! number of triplets in Si, j
Snew = ∅, Nnew = ∅, Enew = ∅
while !NoGaps ∧k ≤ krep do

NoGaps = true
for x ∈ Si, j do
! the knear nearest neighbours of x in X
Sloc = {x, x1, . . . , xknear }
xmid = barycentre(Sloc) ! compute barycentre of Sloc
Sflatloc = Q(·Sloc − xmid) ! Q obtained by a PCA of Sloc
vals = Sflatloc [:, 3] ! z-component of local coordinates

! x- and y-component of local coordinates
points = Sflatloc [:, 1 : 2]
xflat = (Q · (x − xmid))[1 : 2] ! x in local coordinates
xmin = min points [:, 1], xmax = maxpoints[:, 1]

! detect large gaps, default α = 0.1
if (xflat[1] < xmin + α(xmax − xmin)) ∨ xflat[1] > xmin + (1− α)(xmax − xmin)) then
! xmid = 0 in local coordinates
xflatnew = (1+ 1.5εgap/‖x − xmid‖)xflat
Sflatloc = Sflatloc ∪ {xflatnew}

end if
trias = delaunay(Sflatloc ) ! compute Delaunay triangulation
for t ∈ trias do

compute maximal edge length lmax of t
if lmax > εgap ∧ t is not too anisotropic then

centre = barycentre(t)

! scaling factor for RBF approximation

s = 2
√

(xmax − xmin)(max points[:,2]−min points[:,2])/|Sflatloc |

! Tikhonov-regularised RBF approximation using Gaussians as in Building block 2.2
(estcurv)

ϕ = RBFApprox(points, vals, s, εb)

123



Numerical Algorithms

Algorithm 5 Pseudo-code for Algorithm 2.5 (fill), 3d, Part 2
! centre of triangle in global coordinates
centre = [centre, ϕ(centre)]·Q′ + xmid
estimate outer normal vector n in centre
E =esterror(ϕ, tria, centre) ! Building block 2.8
Snew = Snew ∪ {centre}
Nnew = Nnew ∪ {n}
Enew = Enew ∪ {E}

end if
end for

end for

if Snew = ∅ then
NoGaps = true

else
! remove clusters in Snew and eliminate corresponding entries in Nnew, Enew
Snew, Nnew, Enew = removeclusters(Snew, Nnew,Enew )
for i = 1 : |Snew| do

compute α from Enew[i] by (2)
x+ = Snew[i] + αNnew[i], x− = Snew[i] − αNnew[i]
c+, c− = classify(x+, x−)

! employ building block 2.4 (startpairs)
(x+, x−, success) =startpairs(x+, x−, c+, c−, i, j, k̃rep)
if success then

(x+
�,r , x

−
�,r ), successBisec = bisection(x+

�,r , x
−
�,r , 2εb)

if successBisec then
S(i)
i, j = S(i)

i, j ∪ {x−}
S( j)
i, j = S( j)

i, j ∪ {x+}
end if

end if
end for
S(i)
i, j , S

( j)
i, j = removeclusters(S(i)

i, j , S
( j)
i, j )

end if
end while
Si, j = Si, j
return Si, j , NoGaps

end function

Acknowledgements The authors want to thank Rodin Eybesh and Luis Hasenauer for porting a significant
part of ourMatlab implementation to python and the two anonymous reviewers for their valuable comments
which helped to improve the paper.

Author Contributions Matthias Grajewski developed the algorithm, implemented it and wrote the main
manuscript text except of Section 3. This was written by Andreas Kleefeld who proofread the entire
manuscript and contributed an implementation of Kirsch’s factorization method along with the test cases
regarding inverse scattering in Section 4.3. All authors reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The codes used for producing the results presented are available at https://github.com/
mgrajewski/faultapprox-matlab and https://github.com/mgrajewski/faultapprox-python.

123

https://github.com/mgrajewski/faultapprox-matlab
https://github.com/mgrajewski/faultapprox-matlab
https://github.com/mgrajewski/faultapprox-python


Numerical Algorithms

Declarations

Ethical approval Not applicable

Competing interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Figueira, J.: Multiple criteria decision analysis: state of the art surveys. SpringerLink Bücher, vol. 78.
Springer, New York (2005). https://doi.org/10.1007/b100605

2. Papathanasiou, J., Nikolaos, P.: Multiple criteria decision aid: methods, examples and Python imple-
mentations. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91648-4

3. Kleefeld, A., Lin, T.-C.: The nonlinear Landweber method applied to an inverse scattering problem
for sound-soft obstacles in 3D. Comput. Phys. Commun. 182(12), 2550–2560 (2011). https://doi.org/
10.1016/j.cpc.2011.07.023

4. Zeng, F., Suarez, P., Sun, J.: A decompositionmethod for an interior inverse scattering problem. Inverse
Probl. Imaging 7(1), 291–303 (2013). https://doi.org/10.3934/ipi.2013.7.291

5. Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Probl. 22(2), 1
(2006). https://doi.org/10.1088/0266-5611/22/2/R01

6. Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance
region. Inverse Probl. 12(4), 383–393 (1996). https://doi.org/10.1088/0266-5611/12/4/003

7. Audibert, L., Haddar, H.: A generalized formulation of the linear sampling method with exact char-
acterization of targets in terms of farfield measurements. Inverse Probl. 30(3), 035011 (2014). https://
doi.org/10.1088/0266-5611/30/3/035011

8. Kirsch, A., Grinberg, N.: The factorization method for inverse problems. Oxford University Press,
Oxford (2008). https://doi.org/10.1093/acprof:oso/9780199213535.001.0001

9. Ikehata, M.: The probe method and its applications. In: Nakamura, G., Saitoh, S., Seo, J., Yamamoto,
M. (eds.) Inverse problems and related topics. Research Notes in Mathematics, vol. 419. CRC Press,
London (2000). https://doi.org/10.1201/9780429187841-4

10. Anagnostopoulos, K.A., Charalambopoulos, A., Kleefeld, A.: The factorizationmethod for the acoustic
transmission problem. Inverse Probl. 29(11), 115015 (2013). https://doi.org/10.1088/0266-5611/29/
11/115015

11. Bazán, F.S.V., Kleefeld, A., Leem, K.H., Pelekanos, G.: Sampling method based projection approach
for the reconstruction of 3D acoustically penetrable scatterers. Linear Algebra Appl. 495, 289–323
(2016). https://doi.org/10.1016/j.laa.2015.12.020

12. Harris, I., Kleefeld, A.: Analysis of new direct sampling indicators for farfield measurements. Inverse
Probl. 35(5), 054002 (2019). https://doi.org/10.1088/1361-6420/ab08be

13. Gutzmer, T., Iske, A.: Detection of discontinuities in scattered data approximation. Numer. Algorithms
16, 155–170 (1997). https://doi.org/10.1023/A:1019139130423

14. Gout, C., Le Guyader, C., Romani, L., Saint-Guirons, A.-G.: Approximation of surfaces with fault(s)
and/or rapidly varying data, using a segmentation process, Dm-splines and the finite element method.
Numer. Algorithms 48, 67–92 (2008). https://doi.org/10.1007/s11075-008-9177-8

15. Bozzini, M., Rossini, M.: The detection and recovery of discontinuity curves from scattered data. J.
Comput. Appl. Math. 240, 148–162 (2013). https://doi.org/10.1016/j.cam.2012.06.014

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/b100605
https://doi.org/10.1007/978-3-319-91648-4
https://doi.org/10.1016/j.cpc.2011.07.023
https://doi.org/10.1016/j.cpc.2011.07.023
https://doi.org/10.3934/ipi.2013.7.291
https://doi.org/10.1088/0266-5611/22/2/R01
https://doi.org/10.1088/0266-5611/12/4/003
https://doi.org/10.1088/0266-5611/30/3/035011
https://doi.org/10.1088/0266-5611/30/3/035011
https://doi.org/10.1093/acprof:oso/9780199213535.001.0001
https://doi.org/10.1201/9780429187841-4
https://doi.org/10.1088/0266-5611/29/11/115015
https://doi.org/10.1088/0266-5611/29/11/115015
https://doi.org/10.1016/j.laa.2015.12.020
https://doi.org/10.1088/1361-6420/ab08be
https://doi.org/10.1023/A:1019139130423
https://doi.org/10.1007/s11075-008-9177-8
https://doi.org/10.1016/j.cam.2012.06.014


Numerical Algorithms

16. Arge, E., Floater, M.: Approximating scattered data with discontinuities. Numer. Algorithms 8, 149–
166 (1994). https://doi.org/10.1007/BF02142688

17. Allasia, G., Besenghi, R., Cavoretto, R., De Rossi, A.: Efficient approximation algorithms. Part I:
approximation of unknown fault lines from scattered data. Dolomites Res. Notes Approx. 3, 7–38
(2010). https://doi.org/10.14658/pupj-drna-2010-1-2

18. Allasia, G., Besenghi, R., Cavoretto, R.: Adaptive detection and approximation of unknown surface
discontinuities from scattered data. Simul. Model. Pract. Theory 17(6), 1059–1070 (2009). https://doi.
org/10.1016/j.simpat.2009.03.007

19. Wendland, H.: Scattered data approximation. Cambridge monographs on applied and computational
mathematics, vol. 17. Cambridge University Press, Cambridge and New York (2010). https://doi.org/
10.1017/CBO9780511617539.016

20. Cavoretto, R.: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for
unstructured data. J. Sci. Comput. 87(41), (2021). https://doi.org/10.1007/s10915-021-01432-z

21. Mirzaei, D., Soodbakhsh, N.: A fault detection method based on partition of unity and kernel approx-
imation. Numer. Algorithms (2023). https://doi.org/10.1007/s11075-022-01488-4

22. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)
23. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in polynomial time. SIAM

J. Comput. 31(1), 27–66 (2001). https://doi.org/10.1137/S0097539700366115
24. Amenta, N., Bern, M., Eppstein, D.: The crust and the ß-skeleton: combinatorial curve reconstruction.

Graphic. Models Image Process. 60(2), 125–135 (1998). https://doi.org/10.1006/gmip.1998.0465
25. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with good reason.

Comput. Geom. 15(4), 229–244 (2000). https://doi.org/10.1016/s0925-7721(99)00051-6
26. Ohrhallinger, S., Mudur, S.: An efficient algorithm for determining an aesthetic shape connecting

unorganized2Dpoints.Comput.Graph. Forum 32(8), 72–88 (2013). https://doi.org/10.1111/cgf.12162
27. Waldron, S.: The error in linear interpolation at the vertices of a simplex. SIAM J. Numer. Anal. 35(3),

1191–1200 (1998). https://doi.org/10.1137/S0036142996313154
28. Shakarji, C.M.: Least-squares fitting algorithms of the NIST algorithm testing system. J. Res. Natl.

Inst. Stand. Technol. 103(6), 633–641 (1998)
29. Kleefeld, A.: The transmission problem for the Helmholtz equation in R

3. Comput. Methods Appl.
Math. 12(3), 330–350 (2012). https://doi.org/10.2478/cmam-2012-00088

30. Vögele, S., Ball, C., Kuckshinrichs, W.: Multi-criteria approaches to ancillary effects: the example of
E-mobility. In: Buchholz, W., Markandya, A., Rübbelke, D., Vögele, S. (eds.) Ancillary Benefits of
Climate Policy: New Theoretical Developments and Empirical Findings, pp. 157–178. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-30978-7_9

31. Ball, C.S., Vögele, S., Grajewski, M., Kuckshinrichs, W.: E-mobility from a multi-actor point of view:
uncertainties and their impacts. Technol. Forecast. Soc. Change 170, 120925 (2021). https://doi.org/
10.1016/j.techfore.2021.120925

32. Churchman, C.W., Ackoff, R.L.: An approximate measure of value. J. Oper. Res. Soc. Am. 2(2),
172–187 (1954). https://doi.org/10.1287/opre.2.2.172

33. Xu,X.: TheSIRmethod: a superiority and inferiority rankingmethod formultiple criteria decisionmak-
ing. European J. Oper. Res. 131(3), 587–602 (2001). https://doi.org/10.1016/S0377-2217(00)00101-
6

34. Brans, J.P., Vincke, Ph., Mareschal, B.: How to select and how to rank projects: the PROMETHEE
method. European J. Oper. Res. 24, 228–238 (1986). https://doi.org/10.1016/0377-2217(86)90044-5

35. Lenarduzzi, L., Schaback, R.: Kernel-based adaptive approximation of functions with discontinuities.
Appl. Math. Comput. 307, 113–123 (2017). https://doi.org/10.1016/j.amc.2017.02.043

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/BF02142688
https://doi.org/10.14658/pupj-drna-2010-1-2
https://doi.org/10.1016/j.simpat.2009.03.007
https://doi.org/10.1016/j.simpat.2009.03.007
https://doi.org/10.1017/CBO9780511617539.016
https://doi.org/10.1017/CBO9780511617539.016
https://doi.org/10.1007/s10915-021-01432-z
https://doi.org/10.1007/s11075-022-01488-4
https://doi.org/10.1137/S0097539700366115
https://doi.org/10.1006/gmip.1998.0465
https://doi.org/10.1016/s0925-7721(99)00051-6
https://doi.org/10.1111/cgf.12162
https://doi.org/10.1137/S0036142996313154
https://doi.org/10.2478/cmam-2012-00088
https://doi.org/10.1007/978-3-030-30978-7_9
https://doi.org/10.1016/j.techfore.2021.120925
https://doi.org/10.1016/j.techfore.2021.120925
https://doi.org/10.1287/opre.2.2.172
https://doi.org/10.1016/S0377-2217(00)00101-6
https://doi.org/10.1016/S0377-2217(00)00101-6
https://doi.org/10.1016/0377-2217(86)90044-5
https://doi.org/10.1016/j.amc.2017.02.043

	Detecting and approximating decision boundaries in low-dimensional spaces
	Abstract
	1 Introduction
	2 The algorithm
	2.1 Detection and approximation of Γi,j in 2D
	2.2 Approximating Γi,j in 3D

	3 Direct and inverse acoustic scattering problem
	3.1 The direct acoustic transmission problem
	3.2 The inverse acoustic transmission problem

	4 Numerical tests and applications
	4.1 Test cases related to the detection of faults
	4.2 Decision analysis and modelling
	4.3 Surface reconstruction in 3D from scattering

	5 Conclusions and outlook
	Appendix
	Acknowledgements
	References


