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Abstract
Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms 
either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely 
on local sensor information. Similarly, animals need to find feasible paths based on local information about their surround-
ings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over 
far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the 
distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters 
the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees 
led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both 
variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 
3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy 
consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion 
tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter com-
bination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings dem-
onstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.
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1 Introduction

Due to technical advances in the field of unmanned aerial 
vehicles (UAVs), the number of use cases for UAV missions 
increased over the last few years. These use cases include 
maintenance, surveillance, and delivery [1–3]. UAV steer-
ing can be done remotely or autonomously. The higher the 
level of autonomy becomes, the higher the need for a safe 
and reliable obstacle avoidance algorithm to avoid crashes 
and injuries will be. 

Obstacle avoidance covers obstacle detection, path plan-
ning, and maneuvering. Sensor systems have already been 
widely researched and developed over the past years. The 
path planning aspect of obstacle avoidance has the greatest 

potential for improvement. Path planning aims to find an 
optimal and efficient connecting path from a starting point 
to a goal point. Path planning either follows a global or local 
approach. A global path planning algorithm relies on global 
information about the UAV’s environment. Therefore, the 
quality of the information about the environment limits 
global path planning algorithms. On the contrary, local path 
planning uses only the UAV’s local sensor information. Its 
goal is to make the best progress based on local information 
to reach the goal. However, the limited information about 
the environment restricts the quality of the local path plan-
ning algorithm [4]. An advantage of the local approach is 
that unforeseen obstacles, for example, newly built houses 
that do not occur on a map, can be avoided. Therefore, local 
path planning algorithms often represent a backup strategy 
for evading globally unknown obstacles [4]. Because the 
sensor range limits the local planner, it can plan into dead 
ends, which is problematic.

A popular local path planning algorithm is the 3DVFH* 
[5]. This algorithm is also used in the px4 flight controller, a 

 * Karolin Thomessen 
 karolin.thomessen@alumni.fh-aachen.de

1 FH Aachen, Aachen, Germany
2 RMIT University, Melbourne, Australia

http://orcid.org/0009-0007-0911-277X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-023-00691-w&domain=pdf


 K. Thomessen et al.

1 3

widely used flight controller for small UAVs. It combines a 
purely local approach to find the best local direction with the 
A* global path-finding algorithm. The general idea behind 
the 3DVFH* is to detect obstacle-free directions, choose 
the best direction based on a cost function, and evaluate 
this chosen direction by applying the A* search algorithm. 
Therefore, the algorithm also examines what would happen 
if the UAV moved in a specified direction. It also has a mem-
ory strategy to remember previously seen points. Examining 
possible directions and the memory strategy are advantages 
of the 3DVFH*. However, the algorithm performs poorly 
in cluttered environments, since its cost function prefers a 
horizontal goal-driven evasion strategy [6].

Animals usually show optimal and efficient behavior, 
because they have had thousands of years of evolution to 
learn from. Therefore, observing animals or plants and 
adapting their strategies to technological systems is widely 
used in developing new technology strategies [7]. In several 
optimization problems, bio-inspired algorithms are better 
suited than the theoretical mathematical approaches, for 
example, the Genetic Algorithm or the Particle Swarm Opti-
mization [8]. Flight strategies are also often implemented 
using inspiration from flying insects, for example, honeybees 
[9]. Bumblebees also often serve as a source of inspiration 
since they are big and heavy and, therefore, must have an 
efficient obstacle avoidance strategy. Experiments with bum-
blebees have revealed that they tend to evade close obstacles 
horizontally, whereas far-away obstacles are evaded verti-
cally [10]. This knowledge builds the foundation for a bio-
inspired adaption of the 3DVFH*, in which obstacles should 
be vertically evaded if they are far away.

This paper presents the main functionalities of the 
3DVFH* algorithm, the bio-inspired adaptions to this foun-
dational algorithm, and how this novel algorithm improved 
different UAV missions.

2  Background

In robotics, a path usually describes the connection between 
a start and goal point through an environment known as the 
configuration space. Path planning can be divided into global 
and local path planning [11]. Figure 1 shows the classifica-
tion used in this work. Bio-inspired path planning is a grow-
ing field of interest, and is also discussed in this chapter.

2.1  Global path planning

In global path planning, the global environment is known to 
a full extent [12]. Therefore, the global path’s quality first 
depends on the quality of the environmental data and the 
algorithm's performance. Global path planning algorithms 
divide into sample-based and graph-based approaches, 

which Fig. 1 visualizes. The sample-based strategies search 
for the best path by sampling the configuration space while 
also performing collision detection [13]. Examples of sam-
ple-based path planning approaches are RRT and RRT* 
[14]. Comparing the RRT* with the RRT, the RRT* pro-
duces more optimal paths, but is more time-consuming [15]. 
The idea behind graph-based path planning algorithms is 
that they explore the configuration space by searching for 
the best possible path in a graph [14]. Examples of graph-
based path planning algorithms are A*, Theta*, and D* [14]. 
Although the A* was developed over 30 years ago, it is still 
a widely used path planning algorithm due to its simplicity 
[12, 16]. The A* searches a configuration space by expand-
ing nodes from a starting node and applying a cost function 
to analyze the new nodes [17]. The cost function contains a 
general term, the distance to the newly expanded node, and 
a heuristic term, the distance toward the goal. The best node 
with the lowest cost is then expanded again. Repeating these 
steps leads to a path toward the goal.

2.2  Local path planning

A local path planning algorithm, also called reactive path 
planning, calculates the path based on the current sensor 
information and has no information on the environment 
behind that sensor range [12]. Therefore, the sensor range 
limits the local path planning algorithm [4]. Still, using local 
information enables the local path planning algorithm to 
operate in unknown environments, which makes reliable 
local path planning one of the most important steps toward 
fully autonomous flight.

In the group of local path planning algorithms, the 
3DVFH* plays a major role. It is one of the most popular 
local path planning algorithms, which T. Baumann intro-
duced in [5]. As it is integrated into the flight controller 
px4’s avoidance software [18], it can be seen as state-of-
the-art for local path planning in a three-dimensional space. 
The 3DVFH* combines the two-dimensional local path 
planning algorithm VFH, which was introduced in [19], and 
the global path planning algorithm A*, and adapts it to a 
3D space. For environmental modeling, the 3DVFH* uses a 

Fig. 1  Classification of path planning
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grid-based representation in the form of a two-dimensional 
polar histogram. The 3DVFH* also has a memory strategy, 
which uses a two-dimensional polar histogram, called a 
memory histogram, containing the points seen in several 
previous timesteps. The general idea is to find the best pos-
sible flight direction in this histogram representation and 
evaluate this choice by applying the A* search algorithm.

As shown in Fig. 2, the first step of the algorithm is 
building the histogram, which the path planner uses later. 
Therefore, the current sensor information is transferred 
into the histogram. Every histogram cell displays a certain 
area in the spherical surroundings of the drone. Histogram 
cells can either be free or occupied, while also holding 
information about the distance to the closest obstacle in 
that area. The memory histogram contains information 
about the age of the information in the histogram cells. 
Combining this histogram with the memory histogram, 
containing the information from the last several timesteps, 
leads to the combined histogram. The A* search algo-
rithm, which presents the next step of the algorithm in 
Fig. 2, uses this combined histogram to calculate the best 
path, which is defined by the cost function. Each node 
that the A* algorithm evaluates displays one histogram 
cell. After every expansion of the best nodes in the A* 

algorithm, safety measures are applied. These safety meas-
ures include ground avoidance and sphere avoidance. The 
sphere avoidance assures that a spherical region around 
an occupied node is blocked. The A* search tree expands 
until reaching the maximum number of allowed nodes or 
until the best node lies within the goal region. The flight 
controller then receives the best path.

The core of the 3DVFH* is the cost function, which eval-
uates possible paths and attempts to find the best suitable 
path. The cost function is the third step of the A* algorithm 
as visualized in Fig. 2. The cost function described here is 
derived from the px4 avoidance algorithm [18], which uses 
the 3DVFH*. It consists of four general cost parameters and 
the heuristic cost. The four general cost parameters include 
yaw cost, pitch cost, velocity cost, and obstacle cost. The 
heuristic cost describes the distance from the considered 
node to the goal. All cost parts have weighting factors to 
vary the weight of the different costs, which are indicated by 
the variable k in the equations describing the cost terms. The 
cost parameters are calculated for every node not blocked 
by the safety measures. Each node has a pitch angle and a 
yaw angle. The pitch angle is the elevation angle, and the 
yaw angle is the azimuth angle, which were assigned to the 
nodes in the expanding nodes’ process. The angles are in a 
local coordinate system.

The yaw cost considers the difference between the yaw 
of the currently considered node yawnode and the yaw of the 
goal yawgoal . The less difference between the two angles, 
the smaller the value for yaw cost. The following equation 
gives the yaw cost costyaw:

The pitch cost costpitch represents the difference between 
the pitch of the currently considered node pitchnode and the 
pitch of the goal pitchgoal and is calculated by the follow-
ing equation. Large differences in the pitch angles lead to 
a high pitch cost

The velocity cost term costvelocity evaluates the chosen 
paths' smoothness by determining the straightness between 
two branches of the tree of waypoints. It considers the dot 
product of the normalized position of the next node pnode , 
and the velocity of the UAV to the current node, v . Since 
the dot product can also be described as the multiplication 
of the magnitudes of the two vectors and the cosine of the 
angle between them, the velocity cost term characterizes 
the influence of the direction of motion. Large differences 
in the angle between the position vector and the velocity 
vector lead to high values for the velocity cost term. The 
following equation gives the velocity cost:

(1)costyaw = kyaw ∗
(
yawnode − yawgoal

)2
.

(2)costpitch = kpitch ∗
(
pitchnode − pitchgoal

)2
.

Fig. 2  Structure of the implemented 3DVFH* algorithm
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The following equation describes the obstacle cost 
costobst . dhistogram describes the distance of the node to the 
next obstacle in that particular histogram field. The weight-
ing factor kobst is a distance value and serves as an inflection 
point. If a distance is closer than this value, the cost value 
for this node increases. The cost value costobst utilizes the 
difference of kobst and dhistogram in an empirical function. The 
obstacle cost parameter only exists for occupied histogram 
cells

The following equation summarizes the calculation of the 
cost of a node:

After applying the cost function, the heuristic cost term 
is added to the nodes with the lowest cost.

2.3  Bio‑inspired path planning

Bio-inspired algorithms utilize the behavior of animals, 
plants, or evolutional aspects to find the best path. Path plan-
ning usually consists of different available paths and a cost 
function to evaluate them and decide on the best available 
path. The minimization of the cost function also poses an 
optimization problem. In the scope of optimization prob-
lems, several bio-inspired algorithms exist, which can be 
classified into evolutionary algorithms, swarm intelligence-
based algorithms, behavior-based algorithms, and neuronal 
network inspired algorithms [20]. As a great number of these 
algorithms exist, this work will only highlight a few impor-
tant algorithms. Evolutionary algorithms, for example the 
Genetic Algorithm (GA), introduced by Holland [21], use 
aspects of evolution as selection, cross-overs, and mutations 
for the evaluation of possible paths. The genetic algorithms 
starts with a random initial starting population, evaluates 
them with a cost function, and then creates a new population 
using mutations and cross-overs. Using mutations and cross-
overs ensure a higher probability of avoiding local minima. 
Various implementations and variations of evolutionary 
algorithms in UAV applications exist [22, 23].

Another category of bio-inspired path optimization algo-
rithms is based on swarm intelligence, as for example the 
Particle-Swarm-Optimization (PSO), or Ant Colony Optimi-
zation (ACO) [24]. The ACO is inspired by the pheromone 

(3)costvelocity = kvel ∗

(
|v| −

pnode
||pnode||

⋅ v

)
.

costobst = 5000 ∗

�
1 +

d
√
1 + d ∗ d

�

(4)d = kobst − dhistogram.

(5)costtotal = costyaw + costpitch + cost�������� + costobst.

communication of ants, which helps them to find the shortest 
path between their home and a feeding source [14].

Other algorithms use the bio-inspiration in the obstacle 
avoidance part of the path planning problem. They adapt 
obstacle avoidance behavior of animals or plants to find the 
best path. This usually implies the adaption of the visual sys-
tem of animals, as for example in [9], where honeybees serve 
as an inspiration. The behavior of plants can also serve as 
bio-inspiration. In [25], the authors propose a plant-inspired 
path planning approach for obstacle avoidance in a UAV 
scenario. They tested their algorithm in simple simulations 
and flight test, but have not analyzed the behavior in a clut-
tered environment.

3  Method

Experiments with bumblebees performed by A.Thoma 
et al. showed that they tend to evade an obstacle vertically 
if detected as far away and horizontally if the obstacle is 
close [10], which suggests that a vertical evasion strategy 
is more efficient for far-off obstacles than a horizontal eva-
sion strategy. A. Thoma et al. implemented this knowledge 
by changing the yaw and pitch cost weighting factors of the 
3DVFH* [26]. They concluded that this adaption of the 
yaw and pitch cost weighting factors was not very useful 
for complex city-like environments, because the weighting 
factors’ adaptions are very sensitive. However, the general 
results that altering the weighting cost parameters for a ver-
tical evasion strategy can improve the success rate indicate 
that the strategy of vertically evading obstacles is promising 
to improve the success rate of flight missions. However, it 
must also be further developed to work in city scenarios. 
Two steps must be followed to implement the findings from 
the bumblebee experiments into the 3DVFH*: First, it must 
be defined when to follow different evasion strategies. Sec-
ond, it must be defined how these strategies, focusing on the 
vertical evasion strategy, can be introduced in the 3DVFH*.

3.1  Defining behavior change distances

The bumblebee flights in [10] showed that bumblebees use 
a vertical evasion strategy for far-away obstacles and a hori-
zontal evasion strategy for close obstacles. In between, they 
tend to mix horizontal and vertical evasion strategies. Dif-
ferent evasion zones can be determined from these experi-
ments, in which different evasion strategies apply. The bum-
blebee flights are further analyzed to derive the boundaries 
for these evasion zones.

Resulting from the bumblebee experiments in [10], A. 
Thoma et al. defined the relationship between distance to 
the obstacle and evasion strategy Bumblebees had to fly 
through a tunnel containing one obstacle. The dimension 
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and placement of the obstacle in the tunnel varied. The 
bumblebees evaded the obstacle of a size of 20 cm*25 cm 
(width*height) horizontally if their distance to the obstacle 
was 15 cm. If their distance to the obstacle was 40 cm, the 
bumblebees vertically evaded it. In another situation, the 
bumblebees had to avoid an obstacle with a dimension of 
25 cm*25 cm. The bumblebees also evaded this obsta-
cle vertically if the distance to the obstacle was 40 cm, 
but they evaded it horizontally if it was about 5 cm away. 
These findings must be transferred to the UAV scenario. 
Therefore, the sizes of the bumblebees and the UAV are 
considered to approximate the decision distance, at which 
the UAV needs to decide which strategy it applies. The 
wingspan of a bumblebee, bombus terrestris, is about 
2.8 cm [27]. The diameter of the UAV is about 50 cm. 
Considering the distance for vertical evasion for the bum-
blebees results in a rounded decision distance dvertical for 
the vertical evasion strategy of 7 m, which can be calcu-
lated with the following equation:

This is done analogically for the horizontal evasion 
strategy, which results in a decision distance for horizon-
tal evasion dhorizontal of 3 m. This can be traced with the 
following equation:

The 3 m resulted from the obstacle with the dimen-
sions 20 cm*25 cm (w*h). This represents an obstacle 
that is rather high than wide. For the other obstacle with 
the dimension 25 cm*25 cm equation 7 gives a distance 
of 1 m for horizontal evasion.

Therefore, two categories for the decision distances 
defining the zones in which different evasion strategies 
are applied exist, summarized in Table 1. These two cat-
egories lead to two algorithms, now called 3DVFH*b-a 
and 3DVFH*b-b.

If an obstacle is more than 7 m away, the UAV should 
evade vertically; if an obstacle is closer than 3 m or 1 m 
(depending on the algorithm), the UAV should evade 
horizontally. A mixture of horizontal and vertical evasion 
strategies is applied between those zones, performed by 
linear interpolation.

(6)dvertical = 50cm ∗
40cm

2.8cm
= 714cm ≈ 700cm.

(7)dhorizontal = 50cm ∗
15cm

2.8cm
= 268 ≈ 300cm.

3.2  Implementing the climb strategy

After defining the flight behavior zones, the next step is 
determining how the UAV will adapt its flight behavior to 
them. The pitch cost parameter is modified to get a strategy 
that enables the UAV to climb in different areas and adjust 
its pitch angle. The pitch cost function in Eq. (2) consid-
ers the difference between the pitch of a node and the goal 
direction, leading to a constant draw of the UAV toward the 
goal level. Specifically, the pitch cost function in Eq. (2), 
which calculates the difference between the pitch of a node 
and the goal direction, is adjusted to prevent the UAV from 
being constantly drawn toward the goal level. Instead, the 
UAV should be guided toward a different pitch angle that 
allows it to navigate over obstacles. The optimal pitch angle 
should direct the UAV to a point above the obstacle, allow-
ing it to continue its flight safely. The pitch anglepitchgoal , 
in the pitch cost function, is therefore replaced by an angle, 
pitchoptimal, that lies above the detected obstacle

The maximum angle the UAV can detect obstacles in is 
22° up and 22° down due to its sensor limits in this work. A 
maximum of 35° is blocked in the histogram with the sphere 
avoidance. As this would result in a low climb rate, an offset 
of 40° is added. This ensures a better avoidance of obstacles 
with bigger dimensions.

In the transition area where a combination of vertical 
and horizontal evasion is applied, the optimal pitch angle 
is altered to be on a linear function between the optimal 
angle above an obstacle and the goal direction. Whether the 
UAV is closer to the vertical or horizontal evasion area, the 
optimal angle is closer to the optimal pitch angle above the 
obstacle or to the goal pitch angle. If no obstacle is detected, 
the UAV applies the horizontal evasion strategy because 
climbing would be inefficient if no obstacle is seen. The 
algorithm decides which strategy to follow for each timestep 
based on the distance to the obstacle in goal direction.

The weighting factors for the cost parameters are also 
significant for the success of the path planning algorithm. 
The default values of the 3DVFH* are displayed in Table 2. 
For the novel algorithm, the pitch cost weighting factor 
remains at 25, supporting the novel strategy of following a 

(8)costpitch = kpitch ⋅
(
pitchnode − pitchoptimal

)2
.

Table 1  Categories for the 
decision distances

Algorithm dhorizontal dvertical

3DVFH*b-a 3 m 7 m
3DVFH*b-b 1 m 7 m

Table 2  Values of 3DVFH* and 3DVFH*b

Parameter 3DVFH*–default 3DVFH*b

Pitch cost 25 25
Yaw cost 3 10–3
Velocity cost 6000 6000
Obstacle cost 8.5 7
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new angle. The obstacle cost weighting factor is changed to 
7, as a prior study evaluated this value as better suited than 
the previous value of 8.5. The yaw cost weighting factor is 
changed to 10 in the vertical evasion zone and remains at 3 
for the horizontal evasion zone. The velocity cost weighting 
factor also remains at 6000.

3.3  Parameter study

The parameter setting greatly influences the failure prob-
ability of the path planning algorithm [28]. Therefore, a 
parameter study is conducted to analyze the effect of the 
parameters yaw cost, obstacle cost, and velocity cost on 
the failure probability. The choice of the parameter val-
ues was derived from the work in [28]. The values for 
the obstacle cost parameter are 5 and 8.5. The velocity 
cost values are 6000 and 18,000. As the yaw cost directly 
influences flight behavior, the values are changed sepa-
rately for the flight strategies. The first value describes 
the vertical flight strategies value, and the second value 
describes the horizontal flight strategies value. The values 
for the yaw cost are: 10–3, 10–1, 7–3, and 7–1. Combining 
all parameter values for the three chosen cost parameters 
leads to 16 combinations. Table 3 presents all parame-
ter combinations. Additionally, a seventeenth parameter 

combination resulting from averaging the cost parameter 
values completes a full factorial surface Design of Experi-
ments (DoE). Six further center points of the edges of the 
DoE are chosen to analyze the influence of the parameter 
combinations more deeply (Combinations 18 to 23).

3.4  Experimental setup

Flight missions in two different environments, here 
referred to as “worlds”, are simulated in a Software-In-
The-Loop simulation in Matlab/Simulink using the novel 
algorithms. S. Seker created 1408 city-like worlds, and 
900 simple worlds [29]. The simple worlds consist of thin 
cuboids representing walls, whereas city worlds contain 
larger cuboids that represent houses in towns or blocks in 
larger cities. Figure 3 shows an example of a simple and 
city world. Different characteristics of the worlds vary, 
for example, the number of cuboids and the size of the 
obstacle field. The city worlds contain a random num-
ber of cuboids, which are lined up, so that they represent 
streets. In the city worlds, the height of the obstacles and 
the number of streets vary, for example. Figure 4 shows an 
example of a flight path in a city world.

Table 3  Parameter combinations for the parameter study

No Yaw cost Obstacle cost Velocity cost

1 10–3 5 6000
2 10–3 5 18,000
3 10–3 8.5 6000
4 10–3 8.5 18,000
5 10–1 5 6000
6 10–1 5 18,000
7 10–1 8.5 6000
8 10–1 8.5 18,000
9 7–3 5 6000
10 7–3 5 18,000
11 7–3 8.5 6000
12 7–3 8.5 18,000
13 7–1 5 6000
14 7–1 5 18,000
15 7–1 8.5 6000
16 7–1 8.5 18,000
17 8.5–2 7 12,000
18 10–3 7 6000
19 10–3 7 12,000
20 10–3 7 18,000
21 7–3 7 6000
22 7–3 7 12,000
23 7–3 7 18,000

Fig. 3  Examples of two worlds: a represents a simple world, and b 
represents a sector of a city world

Fig. 4  Example of city world with flight path
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3.5  Evaluation criteria

Each world is simulated once for each algorithm or param-
eter combination. The failure probability serves as a meas-
urement to evaluate the different algorithms. A flight fails 
if the UAV does not reach the goal, which means that the 
path planning algorithm cannot find a path to the goal in 
that specific world. Therefore, a flight either failed or was 
successful. In a group of flights n , there is a group of failed 
flights nf  , which represents the flights that did not reach the 
goal or crashed. The following equation defines the failure 
probability f  of a set of flights n as

The baseline for the evaluation is the implementation of 
the original 3DVFH* in MATLAB/Simulink, as described 
and validated in [28]. The group of flights in the simple 
worlds has a failure probability of 18.1% and a failure prob-
ability of 70.7% in the city worlds.

4  Results and discussion

For evaluating the novel algorithm 3DVFH*b in its two vari-
ants, flights were simulated using the experimental setup 
described in 3.4. The best of these two versions builds the 
foundational algorithm for the parameter study. The param-
eter study only performs in the city worlds, because these 
worlds present higher obstacles that challenge the algorithm.

4.1  3DVFH*b

For the first evaluation of the novel 3DVFH*b algorithm, 
the failure probabilities of the two algorithm variants in the 
simple worlds are displayed in Fig. 5. The baseline has a 
failure probability of 18.1% in the simple worlds. Thirty-
three worlds failed using the 3DVFH*b-a, leading to a 
failure probability of 3.67%. The 3DVFH*b-b has a failure 

(9)f =
nf

n
.

probability of 1.4%, which equals 13 failed worlds. Both 
variants of the 3DVFH*b algorithm greatly reduced the fail-
ure probability of the 3DVFH* in the simple worlds. The 
3DVFH*b-b showed a greater effect on reducing the failure 
probability than the 3DVFH*b-a, which implies the superi-
ority of a shorter horizontal evasion zone and, therefore, an 
enhanced vertical evasion strategy in the in-between zone.

 Figure 6 shows the failure probabilities of the three algo-
rithms in the city worlds. The baseline has a failure probabil-
ity of 70.7%. The 3DVFH*b-a reaches a failure probability 
of 19.6% and the 3DVFH*b-b has a failure probability of 
18.6%. The low failure probabilities show that both variants 
of the 3DVFH*b algorithm notably reduced the failure prob-
ability of the 3DVFH* baseline algorithm.

The analysis of the failure probabilities of the 3DVFH*b 
variants shows that the 3DVFH*b-b performed better in both 
world types. This shows that a smaller horizontal evasion 
zone, and, therefore, following the vertical evasion slightly 
longer, yields better results in terms of failure probability.

Furthermore, the traveled distance and the energy content 
of the two variants of the new algorithm are essential factors 
when analyzing the efficiency of a flight path. These two 
values are compared in the worlds where both algorithms 
could find a path to the goal. Both traveled distance and 
energy are considered better for one algorithm, lower than 
5% of the respective value. Both algorithms perform equally 
in terms of traveled distance in the simple worlds. 76% of the 
successful flights have the same traveled distance and each 
algorithm has shorter flight paths in 12% of the flights. In the 
city worlds, the 3DVFH*b- a produces shorter flight paths in 
40% of the flights, compared to 2% for the 3DVFH*b-b. In 
74% of the shorter flights of the 3DVFH*b-a, the maximum 
flight height was also lower for the 3DVFH*b-a. This shows 
that the 3DVFH*b-b tends to fly higher than the 3DVFH*b-
a, which then produces longer flight paths.

Comparing the energy also underlines the statement that 
the paths of the 3DVFH*b-a are more efficient. Flights in 
773 out of the 900 worlds were successful using both algo-
rithms. Here, the 3DVFH*b-a has a lower energy consump-
tion in 27% of the successful flights, compared to 11% of the 

Fig. 5  Failure probabilities of the baseline, the 3DVFH*b-a, and 
3DVFH*b-b in the simple worlds

Fig. 6  Failure probabilities of the baseline, the 3DVFH*b-a, and 
3DVFH*b-b in the city worlds
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flights in which the 3DVFH*b- b performs better energy-
wise, which is displayed by Fig. 7. The other 52% of flights 
do not show a significant difference in energy consumption. 
In 98% of cases where the 3DVFHb-a has lower energy than 
the 3DVFHb-b, it also has a lower flight height, indicating a 
relationship between maximum flight height and energy con-
sumption. A comparison of energy levels for the city worlds 
also confirms these findings. Figure 7 shows the comparison 
of energy consumption for both simple and city worlds. In 
44% of the flights, the 3DVFH*b-a produces more energy-
efficient paths, while 98% of these flights were shorter, and 
73% of the flights reached a lower maximum flight height. 
The 3DVFH*b-b only produced more energy-efficient paths 
in 1.2% of the flights. This shows that the tendency to go 
back to a horizontal evasion maneuver earlier, as done by 
the 3DVFH*b-a, produces paths with a lower energy con-
sumption than an evasion strategy focusing more on vertical 
evasion.

4.2  Parameter study

As the 3DVFH*b-b shows a more prominent effect on reduc-
ing the failure probabilities, it builds the foundational algo-
rithm for the parameter study.

The seventeenth combination represents the center point 
of the DoE and is simulated twice to analyze the signifi-
cance of the simulations. In the first run, 135 worlds failed, 
and 136 in the second run. The failure probabilities of these 
two runs lead to a standard deviation of 0,000355. As the 
standard deviation is very low, it can be concluded nearly 
any difference in failure probability is significant without 
further testing.

 Figure 8 displays the failure probabilities of the 16 
combinations from Table 3. It visualizes the influence of 
different yaw-cost settings depending on the weighting 
factors of obstacle and velocity costs. On the x-axis is the 
difference between the yaw-cost setting in the vertical and 

horizontal zones. The data points with a kyaw difference 
of four, for example, represent the combinations with a 
yaw cost value of 7 in the vertical zone and a value of 
3 in the horizontal zone. The connected lines have the 
same value in the vertical evasion zone. The dashed lines 
represent combinations with a velocity cost weighting fac-
tor of 18,000, whereas the solid lines represent combina-
tions with a velocity cost weighting factor of 6000. The 
blue lines represent an obstacle cost weighting factor of 
8.5, and the red lines represent an obstacle cost weight-
ing factor of 5. For the combinations using a kyaw of 10 
in the vertical zone ( kyaw difference of 7 and 9), the influ-
ence of the kyaw value in the horizontal zone is minimal, 
because the failure probabilities do not change much with 
a higher kyaw difference. For the combinations using a cyaw 
of 7 in the vertical zone ( kyaw difference of 4 and 6), the 
influence of the kyaw value in the horizontal zone is higher 
for most combinations, because the failure probabilities 
change more with a higher kyaw difference. In Fig. 8, it 
becomes evident that the higher velocity cost weighting 
factor 18,000 produces lower failure probabilities for most 
combinations than the combinations using 6000. A higher 
velocity cost weighting factor indicates that a change of 
direction has a higher cost. As the higher velocity cost 
weighting factor reduces the failure probability, a higher 
velocity cost value supports the vertical evasion strategy 
as it produces smoother paths.

 Figure 8 also shows that a lower obstacle cost weighting 
factor of 5 produces slightly lower failure probabilities in 
most combinations, except for combinations using a kyaw of 
10 in the vertical evasion zone and a velocity cost weighting 
factor of 6000, where the higher kobst of 8.5 produced lower 
failure probabilities. The obstacle cost weighting factor 
indicates the distance at which the obstacle costs increase. 
Therefore, a lower obstacle cost weighting factor indicates 
that the planner can plan closer to obstacles. As the failure 
probability is lower for most combinations with the obstacle 
cost weighting factor of 5, a lower obstacle cost value is 
favorable. The best parameter combination is combination 

Fig. 7  Comparison of energy consumption using 3DVFH*b-a and 
3DVFH*b-b in simple and city worlds. The blue bar represents the 
percentage of successful worlds, in which the 3DVFH*b-a leads to 
flight paths with lower energy consumption, while the red bar rep-
resents the percentage, in which the 3DVFH*b-b has a lower energy 
consumption

Fig. 8  Failure probabilities for combinations 1–16 of parameter study. 
O = obstacle cost; V = velocity cost. Markers indicate data points. The 
green line represents the failure probability of the 3DVFH*b-b
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eight and has a failure probability of 6.9%. The weight-
ing factor setting for this combination is kyaw = 10 − 1 , 
kobst = 5, kvel = 18000.

Combinations 18 to 23 were chosen to analyze the influ-
ence of the velocity cost weighting factor. Their failure prob-
abilities are displayed in Fig. 9. With a constant obstacle cost 
of 7 and a yaw cost combination of 10–3 (combinations 18 to 
20), the failure probability increases with decreasing veloc-
ity cost weighting factor, showing a linear behavior. The 
combinations with a constant obstacle cost of 7 and a yaw 
cost combination of 7–3 (combinations 21 to 23) show simi-
lar behavior (Fig. 9), which shows that higher values for the 
velocity cost weighting factor produce lower failure prob-
abilities. The planner follows a chosen direction longer with 
higher velocity costs, which creates smoother paths. Higher 
velocity cost weighting factors are, therefore, favorable.

Additionally, the traveled distance and energy consump-
tion are assessed for the parameter combination with the 
lowest failure probability, combination eight (PC8), and the 
baseline 3DVFH*b-b algorithm. 1127 worlds were success-
ful in both algorithm adaptions, which serve as a baseline for 
traveled distance and energy comparisons. Considering the 
traveled distance, PC8 produces significantly more shorter 
flight paths in the same worlds–68.7% in the improved ver-
sion (PC8), whereas only 1.7% were shorter using the base-
line version of the 3DVFH*b-b. About 55% of the shorter 
flights using PC8 also had a lower maximum flight height, 
which shows that height has no great influence in this case.

Comparing the consumed energy, PC8 produced paths 
with a lower energy consumption compared to the baseline 
3DVFH*b-b in 75% of cases. This highlights that varying 
the parameters yaw cost, obstacle cost, and velocity cost 
greatly influences the energy consumption of a flight path. 
In 98.5% of the worlds with lower energy consumption, the 
traveled distance is also lower, underlining the correlation 
between energy and traveled distance. The parameters of 
PC8—a high difference in yaw cost in the different evasion 
zones, low obstacle cost, and high-velocity cost—imply 
a strong support of the vertical evasion maneuver in the 
vertical evasion zone and a strong focus on following a 

chosen direction, also in the horizontal zone. Therefore, 
smoother paths are more favorable regarding energy con-
sumption. The average reduction of energy consumption 
using PC8 is 28%.

5  Conclusion

This work presented a novel, bio-inspired local path 
planning algorithm based on the 3DVFH*. From bum-
blebee experiments, zones depending on the distance 
to the obstacle in the goal direction were developed, in 
which either a vertical or a horizontal evasion strategy is 
applied. Two definitions of the distances defining these 
zones exist, resulting in two algorithms, the 3DVFH*b-a 
and 3DVFH*b-b. The vertical evasion strategy alters the 
favorable pitch direction in the cost function from goal-
driven to climb-driven. The 3DVFH*b-b with a shorter 
horizontal evasion zone reduced the failure probability 
in simple worlds from 18.1% to 1.4% and in city worlds 
from 70 to 18.6% with mediocre parameters. Compar-
ing the traveled distance and energy consumption in the 
worlds that were successful in both algorithm variants—
3DVFH*b-a and 3DVFH*b-b—showed that the focus on 
the vertical evasion strategy leads to longer flight paths 
and higher energy consumption, but with the strongly posi-
tive aspect of reaching the goal more often.

A parameter study was conducted to optimize the 
3DVFH*b-b further and identify the best parameter setting 
for the cost function’s weighting factors. Higher velocity 
cost weighting factors produce lower failure probabili-
ties, because they support a chosen direction and produce 
smoother paths. Lower obstacles cost weighting factors 
produce lower failure probabilities, because they indicate 
that the planner can plan closer to obstacles. The weight-
ing factor setting for the best combination is kyaw = 10 − 1 , 
k = 5, kvel = 18000 , which reduces the failure probability 
in city worlds to 6.9%. This parameter combination also 
reduces energy consumption in 75% of successful flights, 
highlighting that a better parameter combination signifi-
cantly reduces consumed energy and failure probability.
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