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Abstract
Companies often build their businesses based on product information and therefore try to automate the process of information
extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load
techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges
of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of
the different document types. This paper provides a distributed microservice architecture pattern that enables the automated
generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc
generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated
quality determination of each available pipeline and controls the integration of new microservices based on their impact on
the business value. The introduced system enables fast prototyping of the newest approaches from research and supports
companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated
pipelines always meet defined business requirements when they come into productive use.

Keywords Architectural design · Model-driven software engineering · Software and systems modeling · Enterprise
information systems · Information extraction · Document classification · Feature detection · Software metrics and
measurement

Introduction

Product information often builds the basis for the businesses
of modern companies, e.g., comparison portals that offer
specific product rankings based on customer preferences.
Therefore, one crucial part of the companies’ daily business is
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extracting relevant information. Information Extraction (IE)
involves extracting structured information from unstructured
sources [1]. To achieve maximum success, the automation of
the IE processes is a major business goal.

Product providers often publish information as PDF doc-
uments in which tables contain relevant information like
prices or contract periods. Since these providers try to
address potential customers individually, the documents vary
enormously in content and format. Hence, the source of
required product information is very heterogeneous, and
classic extract, transform, load (ETL) techniques are not suf-
ficiently suitable for process automation. Companies must
adopt the newest research approaches to tackle these chal-
lenges and gather structured data automatically.

The heterogeneous data basis, the possible upcoming of
entirely new formats and the complexity of concrete IE tasks
require a vast number of different solution strategies. Fur-
thermore, the continuous improvement of techniques based
on new findings from research creates a need for a very flexi-
ble and emergent architecture. In table analysis, e.g., several
hundred approaches were introduced in 2019 [2]. As a result,
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companies frequently have to adjust their strategies to react
to critical environmental changes.

Identifying the optimal solution strategy and generating
the corresponding IE pipeline depends on the specific input
document. Any table-based solution strategy will not create
appropriate results if there is an input document that does
not contain tables. Hence, opportunity costs may arise if the
concrete IE process does not consider particular document
characteristics.

Such complex and rapidly changing environments require
flexible software architectures. Systems that enable evolution
by adding code rather than changing existing code ensure
the adaption of new situations [3]. Microservice architec-
tures (MSA) are scalable, easy to maintain and extendable
[4]. Due to that, they can be used to implement emergent and
flexible software systems [5]. Furthermore, agile develop-
ment approaches like extreme programming or scrum allow
fast prototyping and are suitable for creating proofs of con-
cept quickly [6, 7].

In this paper, we extend our previous work presented in
Refs. [8, 9] by integrating performance optimizations for the
auto-configuration of our system, i.e. caching of intermedi-
ate frequently requested component results. Furthermore, we
make the system more flexible by replacing the three rigid
interfaces Converter, Decomposer and Extractor
with a generic one. This reduces the number of components
required and thus the effort involved in development.We pro-
pose a distributed MSA pattern for the automated generation
of IE pipelines and provide a prototype implementation in
the German energy industry domain to prove its applicabil-
ity. The main focus of this architectural pattern is supporting
service providers in automating their complex IE processes
to avoid opportunity costs and gain business value.

The paper is structured as follows: “Motivation” describes
themotivational use case for the introduced system. “Related
Work” describes relatedwork. “Concept Definitions” defines
the main concepts and “Architectural Pattern” introduces the
architectural pattern. “Experimental Evaluation” presents the
results of the experimental evaluation while “Conclusion”
concludes the paper.

Motivation

The provided pattern is domain-independent and adjustable
to different use cases because of itsmicroservice-based archi-
tecture and the corresponding generic concepts. However, it
is especially suitable in situations lacking document stan-
dards. This section introduces a concrete use case in the
German energy industry as a motivating example.

Although electricity and gas are commodities, about 3150
different suppliers offer more than 15,000 products in Ger-
many. Usually, energy suppliers customize their products

several times per year and publish about 25,000 documents
containing relevant information [10]. Since there is no doc-
ument standard, each supplier uses its own custom format,
which may change over time.

Specialized service providers like ene’t GmbH1 or
verivox2 collect information about these suppliers and prod-
ucts to offer services for energy customers, e.g., price
comparison portals. For this purpose, employees extract
information from heterogeneous and non-machine readable
PDF documents by hand. Figure1 shows the simplified result
of a typical IE process.
The following steps are typical for the manual domain-
specific IE process and are also shown in Fig. 2:

• Identifying the related supplier base data record:
Each product is related to a supplier. An extractor will
have to create a record containing the supplier’s base
information if there is no existing one.

• Identifying the number of products: Documents can
describe several products. Therefore, the extractor has to
identify the number of products and relate each piece of
information to the correct product.

• Identifying relevant document parts: Particular doc-
ument parts contain relevant information. The extractor
must identify these parts before extracting the relevant
information.

• Understanding table semantics: Product information
often is part of tables. The extractor must understand
the tables’ semantic meaning to extract the information
correctly.

• Understanding text semantics: Information can be part
of natural text. The extractor has to understand the context
to capture relevant information.

• Inferringnon-explicit information: If a specific content
is not present, extractors will have to infer non-explicit
information. Figure1 shows an example: if there is no
explicit limit B, its value will be 100,000.

The heterogeneous data basis and the complexity of the IE
tasks make process automation very difficult. Furthermore,
if there are suitable solution strategies for specific document
types,missing knowledge about the type of an unknown input
document will complicate the identification of the optimal
solution strategy. The following document characteristics,
also called features, can heavily influence the optimal way
of processing:

• Presence or absence of price tables: If the document
contains tables that store relevant information, pipelines

1 https://www.enet.eu/.
2 https://www.verivox.de/.
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Fig. 1 Structured data as result
of an information extraction
from a PDF document [8]

Fig. 2 Steps of the manual
information extraction process

will have to be table-based, i.e., integrate specific table
decomposers. In case of table absence, pipelines have to
be text-based.

• Scanned or screenshot documents: Usually, the input
of IE processes are scanned or screenshot documents.
Pipelines will have to integrate specific pre-processing
components, e.g., a text recognition.

• Page segmentation: If documents havedifferent columns
to present information, e.g., booklets or flyers, pipelines
will have to integrate specific segmentation decomposers
to keep the correct ordering.

• Price representations: Documents can present prices
in different representations. While gross and net prices
are typical in every domain, there can be more domain-
specific representations, e.g., net excluding transporta-
tion. The result of the IE process has to contain such
prices only once.

• Consumption-based prices: Products can have
consumption-based prices. If customers consume 2.500
kWh per year, e.g., they will have to pay 25.45 ct/kWh.
If they consume more than 2.500 kWh per year, they will
have to pay 26.34 ct/kWh. In these cases, the result of an
IE process must contain additional information.

• Time-variable prices: Products can have time-variable
prices. The price for a consumed kWh can be 26.34 cents
between 06:00 and 22:00, and 25.54 cents between 22:00
and 6:00. This requires additional extraction steps.

• Presence or absence of previous prices: Sometimes,
suppliers provide prices from the product history to
present a price development. Since these prices are irrel-
evant, extractors have to ignore them during extraction.

• Presence or absence of regional limits: Suppliers can
limit their products to specific regions like cities or
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streets. Additional extraction steps are required to gather
this information.

The automation of the IE processes requires an architec-
ture that, on the one hand, ensures the fast prototyping of
new approaches and dynamic variation of strategies. On the
other hand, it must enable the automated identification and
generation of optimal document-specific pipelines. Hence,
an architecture combining these features can support service
providers in automating their time-consuming and expensive
manual IE processes to gain business value.

RelatedWork

Despite all benefits of MSA, some challenges exist using
them as an architectural basis. Since microservices are
autonomous, building dependable systems is challenging.
The meaning of specifications needed for the service compo-
sitionmay differ for the underlying technologies [11]. Failing
compositions lead to more complexity and unexpected run-
time errors [12]. Furthermore, verifying microservice func-
tionalities is challenging [13].

Enterprise integration patterns (EIP) provide approaches
for software integration from a theoretical point of view [14].
Frameworks like Apache Camel or Spring Integration bring
these approaches into practice providing concrete implemen-
tations [15, 16]. Richardson provides microservice patterns
to transfer the ideas of EIP into MSAs [17].

Orchestration and choreography are two approaches
addressing the challenge of service composition [18]. While
the basis for orchestration is a centralized unit that controls
the communicationbetween composedmicroservices, chore-
ography offers a decentralized communication using events.
Our provided pattern uses orchestration since one centralized
component identifies the optimal solution and generates the
corresponding pipeline by composing microservices.

Based on provided functionalities or technical criteria, ser-
vice discovery enables the automatic detection of services
[17]. In contrast to existing approaches, the provided pat-
tern optimizes the service composition based on functional
criteria, i.e., the extraction quality.

Fowler points out that softwaremetrics should always link
to business goals [19]. Schreiber et al. provide an approach
that focuses on business-specific metrics to measure the soft-
ware quality of research prototypes [20]. Schmidts extended
the work of Schreiber by introducing the automated con-
tainerization of research prototypes [21]. However, these
approaches still require manual management effort and do
not solve the problem of automated decision-making for the
productive use of prototypes. Hence, they are not suitable for
automated pipeline generation in production.

ETL techniques are rule-based and support information
gathering from structured formats, e.g. CSV, XML, or JSON
files [22]. However, since the required information is not
available in a structured way, it is necessary to extract the
information with an IE application.

IE applications often try to solve non-deterministic prob-
lems. Since, for these problems, boundary conditions may
be unstable, Seidler et al. suggest an approach to make these
applications more flexible [23]. Since this approach does
not focus on the complete process, it leaves out essential
steps like conversion. Furthermore, it is limited to extracting
information from text and does not provide functionalities to
integrate table processing components.

Ontology-based information extraction (OBIE) systems
also focus on the IE from unstructured text [24] and are not
designed to process PDF documents [25]. Therefore, in our
case, the existing systems are not suitable.

In the field of robotic process automation (RPA), robots
minimize human efforts by automating interactions with
Graphical User Interfaces (GUI) [26]. Robots adapt rule-
based behaviors by observing users interacting with affected
systems [27]. Since our focused problems deal with an infi-
nite set of possible document types, those rule-based solution
strategies are insufficient.

The provided system must be able to classify input docu-
ments to identify and generate the optimal document-based
pipeline. Jiang and Lilleberg introduce different algorithms
to aim at a feature-based text classification [28, 29]. These
approaches work on already-known features. In our case,
detecting the features themselves is the key, while the clas-
sification is a downstream step.

Concept Definitions

In this section, we define the main concepts of our approach
as a basis for the architectural pattern.

Artifact object model:We provide a standardized object
modelwithArtifact as its abstract root (c.f. Fig. 3). Themodel
allows the definition of different objects that are part of the
IE process, e.g. input documents like PdfDocuments or spe-
cific document elements like Tables. Furthermore it enables
the definition of Information objects. These objects repre-
sent pieces of domain-specific information the system should
extract, e.g. CommodityPrice.

Document feature: A document feature describes a
particular document property, e.g., whether the document
contains tables or not.

Gold data: A gold data document combines an already
processed input document with its extracted information and
document features. These documents serve as a basis to test
the system’s functionalities. The set of all gold data docu-
ments is called gold data (c.f. Fig. 4).
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Fig. 3 Object model with artifact as root

Fig. 4 Contents of gold data [8]

Fig. 5 Input document and feature-enriched input document

Fig. 6 Input and result of a feature detector

Input document and feature-enriched input docu-
ment:An input document is unknown and serves as input for
the actual IE process. A feature-enriched input document is
a pre-processed input document containing a list of detected
document features (c.f. Fig. 5).

Feature detector:A feature detector is a softwaremodule
that detects the value of a specific feature for an unknown
input document, e.g. if the document contains a table (c.f.
Fig. 6). Combining all detected features from different detec-
tors results in a feature-enriched document.

Component: The IE from heterogeneous documents
requires the solution of different tasks, e.g. the conver-
sion from non-machine readable PDF documents into any
machine readable representation like plain text, or the detec-
tion of tables in PDF documents. A component is a software
module that solves exactly one of these specific IE tasks by
consuming a specific artifact and producing specific artifacts
(c.f. Fig. 7).

Pipeline: A pipeline combines several components. A
pipeline is valid if the in- and outputs of these components
are consistent, meaning that the output type of the previous

Fig. 7 In- and output of a
component

Fig. 8 Construction of a pipeline

Fig. 9 Core concepts of the architectural pattern

componentmustmatch the input type of the subsequent com-
ponent. In our specific case, the input of a pipeline is always
a PdfDocument, while the output is always a specific kind of
information, e.g. CommodityPrice (c.f. Fig. 8).

Architectural Pattern

The following section introduces our architectural pattern
called ARTIFACT. Figure9 illustrates its core concepts.

The ARTIFACT system can extract relevant informa-
tion from unknown input documents through the concept of
automated document processing. Developers can push new
components to the system to trigger the automated system
configuration.

Automated System Configuration

The goal of the automated system configuration is enabling
the system to generate and execute the best document-
specific pipeline for the IE from an unknown input document.
Hence, it is a prerequisite for the automated document pro-
cessing described in “Automated Document Processing”.
The process of the automated system configuration includes
the gold data-, the feature detection- and the pipeline auto-
configuration (c.f. Fig. 10).

Gold Data Auto-Configuration

The set of gold data must always represent real-world bound-
ary conditions. Therefore, the documents of the set have to
be balanced. The ratios of document types must correspond
to those in reality. Furthermore, conditions may change over
time, and the gold data documents must always be up to
date to represent all changes. To ensure actuality, we intro-
duce the document manager that frequently updates the set
of gold data by deleting old documents and storing new ones
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Fig. 10 Overview of the automated system configuration

Fig. 11 Document manager keeping gold data up to date [9]

Fig. 12 Registration of a feature detector [9]

from the centralized data warehouse (c.f. Fig. 11). The doc-
ument manager ensures the automated detection of possible
concept drifts.

Feature Detection Auto-Configuration

Developers can deploy updated or new feature detectors to a
feature detector registry. This registry manages all available
detectors and ensures that a registering detector fulfills the
required quality criteria. The registry requests the feature
detector quality determiner to achieve this (c.f. Fig. 12).

The feature detector quality determiner tests the specific
detector against the set of gold data to determine the qual-
ity of a feature detector. As a result, the number of correctly
detected values divided by the number of gold data docu-
ments determines the quality of the detector. Domain experts
or managers can define criteria for each feature that a detec-
tor must at least reach to be registered. If the registration is
successful, the feature detector registry will inform the map-
ping generator (c.f. Fig. 13), which is explained in “Pipeline
Auto-Configuration”.

The introduced concept ensures that the system only takes
those features into account that it can reliably detect.

Fig. 13 Quality determination of a feature detector [9]

Fig. 14 Defining quality criteria for the goals

Pipeline Auto-Configuration

For business success, the system must generate and execute
the optimal pipeline for each input document. To achieve
this, we introduce the pipeline auto-configuration concept
and provide its building blocks in the following.

Definition of subgoals and quality criteria: Since IE
processes are often very complex, our pattern enables the
definition of subgoals. A subgoal can be an atomic informa-
tion part of the target data model.

A valid pipeline always results in extracted information
defined by a subgoal or the target data model itself. To
ensure that the system always meets business requirements
in extracting information, domain experts or managers can
define different quality criteria (c.f. Fig. 14).

Our system introduces Full Automatic Processing (FAP)
of documents. The IE processes often integrate manual
approval steps tominimize errors in captured data. In the case
of FAP, these manual approval steps are omitted. Accord-
ingly, the FAP-Limit defines the percentage of passed tests
against the gold data a pipeline has to reach for the FAP of
documents. A manual approval step will be required if the
system does not reach the FAP-Limit.

The system can use a single pipeline for automated extrac-
tion if this pipeline reaches the N1-Limit of passed gold
data tests. In this case, a subsequent manual approval step
is required.

The N2-Limit brings pipelines into productive use that
perform below the N1-Limit, and which therefore do not
work reliable enough. Two different pipelines must at least
reach the N2-Limit to confirm each other’s results. If those
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Fig. 15 Component registering at the component registry

Fig. 16 In- and output of the pipeline generator

results match, the system will accept them for automation
with subsequent manual approval.

If the systemdoes not reach anydefined limit, an employee
will have to extract information by hand before a second
employee approves the result. Due to this principle, the sys-
tem always meets defined business requirements.

Goal-specific pipeline generation:Analogous to the fea-
ture detector registry, the system provides a component
registry thatmanages and validates available pipeline compo-
nents. Developers can implement any component and deploy
it to the registry. The registry validates the component by
requesting it with dummy data. If the in- and output arti-
facts match, the component registration was successful (c.f.
Fig. 15).

The component registry always informs the pipeline gen-
erator microservice about newly registered components. The
pipeline generator automatically generates all valid pipelines
based on the available components and defined subgoals
(c.f. Fig. 16). The pipeline generation is based on backward
matching of consumed and produced artifacts.

Pipeline generation algorithm: In the following, we
introduce an algorithm that generates all valid pipelines for
the given in- and output artifacts. The algorithm is split into
a main part and a recursive part. The main part builds the
foundation to call the recursive part and returns the overall
results. The recursive part generates all pipelines depending
on a given intermediate list of ordered components.

Figure17 shows the main steps of the algorithm that
expects three input parameters:

1. A list of allowed input artifact types (inputArtifacts)
2. A list of allowed output artifact types, i.e. domain-specific

information (outputArtifacts)
3. A list of components available for pipeline generation

(components)

In the main part, the algorithm generates a list of possible
starting components that consume any of the defined input

artifacts. Additionally, it generates a list of possible ending
components that produce any of the defined output artifacts.
Afterwards, it iterates over the list of starting components
and calls the recursive part for each of them.

Figure18 shows the recursive steps of the algorithm that
expects the following input parameters:

1. A pipeline draft containing already added components
(pipelineDraft)

2. A list of remaining components not used in the pipeline
draft yet (remainingComponents)

3. A list of possible ending components (endingCompo-
nents)

With each call of the recursive part, the algorithm extends
an incomplete list of ordered components (pipelineDraft)
until its last element is a possible and previously determined
ending component. The goal of the recursion is to perform a
new depth-first search from each last element of a pipeline
draft, i.e. a list of ordered components.

In the following, we show the results of our algo-
rithm using an example focusing on three artifacts, namely
PdfDocument, TextDocument and ProductName,
and four components (c.f. Table 1).

In our example, the input parameters for the main part of
the algorithm look as follows:

• inputArtifacts: [PdfDocument]
• outputArtifacats: [ProductName]
• components: [PdfToTextC, TextPreProc,
ProductNameEx1, ProductNameEx2]

Following the described steps, the algorithm generates the
following pipelines and ensures that each component occurs
only once in the list of ordered components:

• PdfToTextConv → TextPreProc
→ ProductNameEx1

• PdfToTextConv → TextPreProc
→ ProductNameEx2

• PdfToTextConv → ProductNameEx1
• PdfToTextConv → ProductNameEx2

Automated gold data extension: To be able to generate
optimal document-specific pipelines, the system has to find
appropriate document types. To achieve this, we introduce
the automatic gold data extension that forms the basis for
finding these document types. The pipeline generator informs
the label extender about valid pipelines, which tests each of
these pipelines against the set of gold data documents. As
a result, it extends each gold data document with a list of
suitable pipelines (c.f. Fig. 19).
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Fig. 17 Main part of the
generation algorithm

Fig. 18 Recursive part of the
generation algorithm
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Table 1 Example components

Component Input Output

PdfToTextConv PdfDocument TextDocument

TextPreProc TextDocument TextDocument

ProductNameEx1 TextDocument ProductName

ProductNameEx2 TextDocument ProductName

Fig. 19 Automated label extension of gold data documents [9]

Fig. 20 Generation of document-specific pipeline qualities [9]

Automated mapping generation: The mapping genera-
tor supports the system in its decision-making by generating
mappings based on the extended gold data documents.
A mapping links a specific document type to a quality-
ranked list of suitable pipelines. These mappings serve as
a basis to decide which pipeline the system should execute
if an unknown input document comes into the process (c.f.
Fig. 20).

Due to the adaptability of themicroservice-based architec-
ture, developers can implement custommapping strategies to
define document types. In our case, the mapping generator
creates unique combinations of boolean features to describe
specific document types.

Based on the introduced concepts, the system config-
ures itself with any update of existing or addition of new
microservices. The system ensures that components come
into productive use as soon as they gain business value. Com-
bined with the formalized quality criteria, the architecture
minimizes business risks by integrating new prototypes from
research.

Fig. 21 Steps of the automated document processing

Fig. 22 Enrichment of an input document through feature detection [9]

Automated Document Processing

The overall goal is to extract information from unknown
input documents automatically. To achieve this, we introduce
three steps during document processing. First, the system
pre-processes the input document to detect relevant features.
Second, the system performs the actual IE based on the
feature-enriched input document. Third, the system routes
the results (c.f. Fig. 21). In the following, we explain the
steps in detail.

Feature Detection

Figure22 shows the step of feature detection. The document
processor receives an unknown document as input that con-
tains no additional information.Thedocument processor now
requests the feature detector registry to enrich the simple
input document with relevant features. As a result of the
feature detection auto-configuration explained in “Feature
Detection Auto-Configuration”, the registry knows which
features it candetectmeetingbusiness requirements. For each
of these features, the registry requests the specific detector
for detection. After the registry has detected all features, it
responds to the document processor with a feature-enriched
document. The document processor can now trigger the
document-specific IE as the second step explained in “Infor-
mation Extraction”.

Information Extraction

Figure23 shows the step of information extraction in detail.
The document processor requests the component registry to
extract information from the previously generated feature-

SN Computer Science



  833 Page 10 of 19 SN Computer Science            (2023) 4:833 

Fig. 23 Information extraction from a feature-enriched document [9]

enriched document. The component registry processes the
document by matching the list of features with the ones of
the document-specific pipeline qualities. If there is an exact
match, the component registry will pick the pipelines accord-
ing to the defined FAP-, N1- and N2-Limits. Otherwise, the
registry will use the alternative with the minimal distance. In
this case, the affected documents are not qualified for FAP.
Developers can implement minimal distance functions that
fit best for the focused problem. In our case, the minimal dis-
tance functionfinds the alternativewith the highest number of
equal features. If there are several ones with the same number
of equal features, it will randomly pick one of them. The reg-
istry responds with the extracted information and measured
pipeline quality.

Result Routing

Figure24 shows the step of result routing. The document
processor checks if the received pipeline quality from the
component registry reaches the FAP-Limit. If it reaches the
limit, the document processor will directly route the result to
the data transfer microservice that persists the information
into the centralized data warehouse. If the pipeline quality
does not reach the FAP-Limit, the document processor will
route the results to the extractor application. Employees use
the extractor app for manual IE and result approval. Based on
the formalized quality criteria, the concept of result routing
enables the FAP of documents to eliminate manual efforts
entirely.

Experimental Evaluation

In this section, we demonstrate the practical application of
our architectural pattern in the project motivated by “Motiva-
tion”. As described in “Architectural Pattern”, the provided
system is extensible and highly adjustable. Developers can
implement specific components and detectors for their indi-
vidual use case. Also, they can customize the mapping

Fig. 24 Document processor routing results

Table 2 Achieved feature detector qualities

Feature Detector quality (%)

HAS_TABLES 86

IS_SCREENSHOT 56

IS_COLUMN_SEPARATED 45

HAS_EXACTLY_ONE_PRODUCT 86

HAS_GROSS_PRICES 91

HAS_NET_PRICES 91

HAS_OTHER_PRICE_REPRESENTATIONS 87

HAS_STAGGERED_PRODUCTS 92

HAS_TIME_VARIABLE_PRODUCTS 92

HAS_REGIONAL_CONDITIONS 45

strategy and minimal distance function to find appropriate
document types.

Document Features

The system must detect relevant document features to gen-
erate optimal document-specific IE pipelines. Table 2 shows
the relevant features for our specific use case and the achieved
quality of available feature detectors. Since we define a qual-
ity criterion of 80%, the system can take seven out of 10
features into account when finding appropriate document
types. The system will also consider the red-marked features
as soon as the corresponding detectors reach the desired qual-
ity.

Subgoals and Quality Criteria

The IE process aims to extract information regarding electric-
ity products from PDF documents. As a whole, this product
information forms a complex target datamodel. According to
“PipelineAuto-Configuration”,we split the target datamodel
into information parts representing subgoals. For these sub-
goals, we define the quality criteria stated in Table 3.

The automated extraction for each subgoal supports the
overall automation and therefore gains business value. How-
ever, since the individual subgoals are of different importance
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Table 3 Defined subgoals and quality criteria

Subgoal FAP-Limit (%) N1-Limit (%) N2-Limit (%)

DateOfValidity 95 90 75

BasicPrices 95 90 75

CommodityPrices 95 90 75

SupplierName 95 90 75

ProductName 95 80 65

CustomerGroups 95 80 65

MeteringPrices 95 80 65

ProductType 95 70 55

ProductCategory 95 70 55

from a business point of view, we also define different quality
criteria.

DateOfValidity, e.g., describes at which point in time a
customer can order a specific product. Since it is essential
for downstream analysis, we define more sensitive quality
criteria. Suppose any pipeline reaches the FAP-Limit of 95%
during the automated quality determination, the system will
directly route the result of the pipeline to the data transfer
microservice as described in “Result Routing”. If there is no
pipeline reaching the FAP-Limit but the N1-Limit of 90%,
the system will use this pipeline solely to route the result
to the extractor app for manual approval. Below this limit,
two independent pipelines at least reaching the N2-Limit of
75% must confirm each other’s results so that the system
can route this result for manual approval. In any other case,
employees have to extract theDateOfValidity in the extractor
app by hand. Afterwards, a second employee must approve
the manual extraction.

Implemented Artifacts and Components

In addition to the domain-specific information artifacts, the
concrete application of our work presented in Refs. [8, 9] led
to the implementation of the following artifacts processed
during IE:

• PdfDocument represents a PDFdocument andmarks the
input of IE process.

• TextDocument represents machine readable text docu-
ments containing a simple string.

• ImgDocument represents images containing their binary
information.

• OdtDocument represents ODT documents containing
their binary information.

• Paragraph represents a text paragraph as part of a Text-
oder OdtDocument.

• Table represents a structured andmachine readable table.

Furthermore, our previous work required compliance
with three firmly prescribed component interfaces, namely
Converter, Decomposer and Extractor, leading
to the implementation of 24 different components. The
extraction strategies reach from more complex ones based
on Named Entity Recognition (NER), e.g., NerSupplier-
NameEx, to more simple strategies based on classic Regular
Expressions (Regex), e.g., DictSupplierNameEx. During the
concrete application of our system presented previously in
Refs. [8, 9], we realized that the mandatory compliance with
the prescribed interfaces limits the flexibility of our system
and requires the implementation of unnecessary artifacts and
components.

In our specific application, the text-based extractors
like NerSupplierNameEx work on simple strings. There-
fore, first we had to implement an Element containing
a string, namely Paragraph. Second, we had to addi-
tionally implement a Decomposer that only transforms a
TextDocument into a Paragraphwith exactly the same
content. However, since the extractors process simple strings,
it is technically irrelevant how these strings are encapsu-
lated. Therefore, we replaced the prescribed interfaces with
a generic one to improve the flexibility of our system and to
reduce the effort involved in development. In our concrete
use case, we were able to reduce the number of artifacts and
components without affecting the scope of covered function-
alities (cf. Table 4).

Achieved Results

We evaluated the system introduced above in three stages:

1. We started without distinguishing document types, i.e.
without feature detection (cf. “ExtractionResultsWithout
Feature Detection”).

2. We integrated the pre-processing step of feature detec-
tion to achieve a more document-specific IE process (cf.
“Extraction Results With Feature Detection”).

3. We enhanced our previous work described in Refs. [8,
9] by reducing the number of prescribed interfaces and
extending the system with caching concepts to optimize
the performance of the auto-configuration (cf. “Perfor-
mance Optimization”).

In the following, we present the system’s results in the dif-
ferent stages.

Extraction Results Without Feature Detection

There are several possible pipelines per information depend-
ing on the implemented components. The larger the number
of components - the more unmanageable the manual com-
position of possible pipelines. Table 5 shows the number of
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Table 4 Implemented
components

ID Name Input artifact Output artifact

C1 PopplerPdfToText PdfDocument TextDocument

C2 TesseractPdfToText PdfDocument TextDocument

C3 LibrePdfToOdt PdfDocument OdtDocument

C4 OdtToText OdtDocument TextDocument

C5 PopplerPdfToImg PdfDocument ImgDocument

C6 TextPreProcessor TextDocument TextDocument

C7 TableBankDec ImgDocument Table

C8 CamelotTableDec PdfDocument Table

C9 TabulaTableDec PdfDocument Table

C10 SimpleRegexDovEx TextDocument DateOfValidity

C11 ComplexRegexDovEx TextDocument DateOfValidity

C12 RegexBasicPriceEx TextDocument BasicPrice

C13 TableBasicPriceEx Table BasicPrice

C14 RegexCommodityPriceEx TextDocument CommodityPrice

C15 TableCommodityPriceEx Table CommodityPrice

C16 NerSupplierNameEx TextDocument SupplierName

C17 DictSupplierNameEx TextDocument SupplierName

C18 NerProductNameEx TextDocument ProductName

C19 NerCustomerGroupEx TextDocument CustomerGroup

C20 RegexMeteringPriceEx TextDocument MeteringPrice

C21 TableMeteringPriceEx Table MeteringPrice

C22 NerProductTypeEx TextDocument ProductType

C23 NerProductCategoryEx TextDocument ProductCategory

Table 5 Pipeline qualities per informationwithout feature detection [8]

Output artifact Possible
pipelines (%)

Achieved
quality

Reached limit

DateOfValidity 10 91 N1

BasicPrice 8 59 –

CommodityPrice 8 54 –

SupplierName 10 77 N2

ProductName 5 51 –

CustomerGroup 5 55 –

MeteringPrice 8 34 –

ProductType 5 55 –

ProductCategory 5 55 –

possible pipelines per information and their qualities without
feature detection.

Since there are pipelines forDateOfValidity and Supplier-
Name that at least reach the N2- but not the FAP-Limit, the
system routes the extraction result to the extractor app.Due to
the quality assurance step of the manual approval, we could
collect data about the extraction correctness shown in Table
6. For the SupplierName, the number of Matches describes
cases in which two independent pipelines confirmed each
other’s result.

Table 6 Results in production [8]

Information Documents Matches Correct Quote (%)

DateOfValidity 126 – 117 93

SupplierName 94 65 60 92

The results of the independent pipelines for SupplierName
matched in 65 of 94 cases, so 29 documents had to be pro-
cessed manually. In the case of the 65 matched results, the
system extracted 60 correctly. Hence, in 92% of the cases
for SupplierName, the registry decided correctly to return
the automatically extracted result. Focusing on DateOfVa-
lidity, the system correctly extracted information in 117 of
126 cases using a single pipeline. This result leads to a quote
of 93%.

Extraction Results With Feature Detection

In the second stage, we integrated the steps of feature
detection to achieve a more document-specific process. As
described in “Pipeline Auto-Configuration”, we generate all
possible feature combinations to find appropriate document
types. With seven features, we get 27 = 128 unique com-
binations. Based on the domain knowledge about exclusive
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Table 7 Pipeline qualities per information with feature detection [9]

Output artifact Achieved
quality (%)

Reached limit Improvement
(%-pts.)

DateOfValidity 91 N1 0

BasicPrice 77 – + 18

CommodityPrice 74 – + 20

SupplierName 85 N2 + 8

ProductName 69 – + 18

CustomerGroup 84 N1 + 29

MeteringPrice 66 – + 32

ProductType 82 N1 + 27

ProductCategory 86 N1 + 31

Table 8 Example of a document type reaching FAP

Feature Value

HAS_TABLES False

HAS_EXACTLY_ONE_PRODUCT True

HAS_GROSS_PRICES True

HAS_NET_PRICES False

HAS_OTHER_PRICE_REPRESENTATIONS False

HAS_STAGGERED_PRODUCTS False

HAS_TIME_VARIABLE_PRODUCTS False

mutual characteristics of these features, we know that the
number of occurring combinations is much smaller in reality.
Hence, the system determined 35 unique feature combina-
tions in 1300 gold data documents, each with at least 30
related documents.

Table 7 shows the results of the automated IE with feature
detection.

Excluded DateOfValidity, the quality for each subgoal
increased, and the system reached the N1-Limit for Cus-
tomerGroup, ProductType, and Product Category.

Furthermore, the system detected six document typeswith
specific feature combinations forwhich the pipelines perform
extraordinarily well, measured by the defined FAP criteria.
Table 8 exemplary shows one of these types.

For each of the six document types, there are pipelines that
reach the required FAP-Limits. Hence, no manual extraction
or approval effort is necessary. 174 documents of the gold
data set belong to one of these document types, so the system
identifies a potential for FAP of about 13% in the set of gold
data.

The system processed 524 documents with feature detec-
tion, and related 76 of them to one of the six mentioned
document types. The system processed all of these 76 with-
out any manual effort, which leads to a quote of 14% FAP in
practice.

Fig. 25 Pipeline executor reusing cached results

Performance Optimization

In the third stage, we integrated concepts to optimize the
performance of the system’s auto-configuration. Since each
feature or component registry change triggers the auto-
configuration, the system runs this process very frequently.
The number of possible pipelines and documents increases
with the number of components and feature detectors. There-
fore, the effort for the auto-configuration may increase
exponentially. We extended the system by integrating caches
in bottlenecks to avoid performance issues.

The system has to execute pipelines during the process-
ing of unknown input documents and the auto-configuration.
Therefore, we introduce the pipeline executor that executes
a specific pipeline for a particular input document. As shown
in Fig. 25, the component registry and the label extender can
request the pipeline executor to receive the extraction result
for the combination of a pipeline and a feature-enriched doc-
ument. While the component registry sends a completely
unknown input document, the label extender sends a gold
data document.

The pipeline executor stores each component result rep-
resented by the specific input document, the component’s
version and the created output artifacts in the cache. Before
requesting the next component, the pipeline executor tries to
reuse cached results. Appropriate results must match already
generated output artifacts of preceding components as input
artifacts for the next component. If there are no matching
results in the cache, the pipeline executorwill request the cor-
responding component to generate new results. Afterwards,
it stores the new results in the cache.

Since the component registry always requests the execu-
tion for an unknown input document, there are no cached
results. However, the label extender always requests the
execution for the same set of documents. Therefore, the
implementation of this caching mechanism strongly opti-
mizes the auto-configuration performance. Table 9 shows
an example comparison of the duration without and with
caching to determine the qualities for the DateOfValidity
subgoal. The pipelines contain components introduced with
Table 4. The system always determines the pipeline qualities
in the same order so that the results are comparable.

SN Computer Science



  833 Page 14 of 19 SN Computer Science            (2023) 4:833 

Table 9 Duration for the determination of document-specific pipeline
qualities

No. Pipeline W/o caching With caching Diff.
(min) (min) (min)

1 C1, C10 5:11 5:06 − 0:05

2 C1, C6,C10 6:02 1:12 − 4:50

3 C2, C10 10:31 10:28 − 0:03

4 C2, C6, C10 11:01 1:28 − 9:33

5 C3, C4, C10 6:44 6:45 + 0:01

6 C1, C11 5:02 0:49 − 4:13

7 C1, C6, C11 6:36 1:16 − 5:20

8 C2, C11 10:55 0:50 − 10:05

9 C2, C6, C11 11:47 1:13 − 10:34

10 C3, C4, C11 6:52 0:46 − 6:06

It is noticeable that results 1, 3, and 5 are almost identical
with- and without cached results because the system initially
has to create and store results before reusing them. The dif-
ference is enormous in the following cases where the system
can reuse cached results. Since the conversion steps are time-
consuming, integrating the provided caching strategy leads to
huge performance optimization when developers push new
components into the system.

Implementation

In the following subsection, we present an exemplary imple-
mentation of our architectural pattern introduced in “Archi-
tectural Pattern”.

Due to the nature of microservices, it is not necessary to
use one single programming language for all microservices.
The communication between these microservices happens
programming language-independent in the form of Repre-
sentational State Transfer (REST) calls over the Hypertext
Transfer Protocol (HTTP) protocol.

In our implementation, we used a Python stack for the
components, pipeline generator, feature detectors, feature
detector quality determiner, label extender, mapping genera-
tor, and pipeline executor. Each Python microservice runs a
FastAPI3 web service that provides REST endpoints for the
other microservices to call. For the remaining microservices,
namely the component registry, feature detector registry, and
document processor, we used a Java stack with Maven4 and
Spring Boot.5

We made heavy use of OpenAPI6 to define data trans-
fer objects (DTO) and REST endpoints in a programming

3 https://fastapi.tiangolo.com/.
4 https://maven.apache.org/.
5 https://spring.io/.
6 https://swagger.io/specification/.

language-independent way. The OpenAPI schema enabled
us to use the OpenAPI Generator7 to generate server and
client SDKs for the Python and Java microservices.

To ensure that theweb serviceswork the sameway regard-
less of the surrounding infrastructure, we used Docker8 to
containerize each microservice. Containerization allows us
to deploy these microservices in a container orchestration
system such as Kubernetes.9

Feature Detectors

Feature detectors are microservices the system uses to detect
a specific feature inside a document, e.g., the presence
or absence of price tables. To easily add and modify dif-
ferent feature detection strategies, we implemented each
feature detector as a separate microservice. Also, this allows
developers to choose the most appropriate language and
framework for a specific detection problem.

Each feature detector microservice offers two endpoints.
The first endpoint performs the detection of the specific fea-
ture by receiving a document and returning a boolean flag
that indicates the value of the feature. The second endpoint
provides information about the detector’s name, version and
the feature it can detect.

Code Listing 1 shows the implementation of the informa-
tion endpoint of a feature detector. The returned information
tells the feature detector registry that this detector can deter-
mine whether a document is an original PDF document or a
screenshot.

@router.get("/info", response_model=
↪→ DetectorInfo)

def get_info(self):
return DetectorInfo(

name="is-screenshot-detector",
version="1.0.0",
detects=DocumentFeatureKeyEnum.

↪→ IS_SCREENSHOT
)

Code Listing 1 Information Endpoint of a Feature Detector

Feature Detector Quality Determiner

As stated in “Feature Detection Auto-Configuration”, we
need to evaluate the quality of each feature detector. There-
fore,we implemented aweb service that tests a detector based
on the set of gold documents by detecting the particular fea-
ture in each gold document.

Code Listing 2 shows the quality determination of a fea-
ture detector. For each gold document, the quality determiner

7 https://github.com/OpenAPITools/openapi-generator.
8 https://www.docker.com/.
9 https://kubernetes.io.
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requests the feature detector and compares its result with
the expected one of the gold document. The determiner cal-
culates the resulting quality dividing the number of correct
results by the number of gold documents.

def determine_quality(feature_detector):
correct_results =0
for gold_document in self._gold_documents:

gold_document_feature =self.
↪→ _get_gold_document_feature(
↪→ gold_document, feature_detector.
↪→ detects)

feature_response =requests.post(
↪→ feature_detector.endpoint, data=
↪→ gold_document.json())

if gold_document_feature ==DocumentFeature
↪→ .parse_obj(feature_response.json())
↪→ :

correct_results +=1
return correct_results /len(self.

↪→ _gold_documents)

Code Listing 2 Determine Feature Detector Quality

Feature Detector Registry

As also mentioned in “Feature Detection Auto-Configura-
tion”,we implemented aweb service thatmanages the feature
detectors. Once we defined the required quality criteria for
the features shown in Table 2, we can start registering detec-
tors in the feature detector registry.

Code Listing 3 shows the registration of a feature detector.
Whena feature detector attempts to register, the feature detec-
tor registry queries the information endpoint of the detector
to determine the detectable feature. The registry then queries
the feature detector quality determiner for the detector’s qual-
ity. If the received quality reaches the defined threshold, the
registry will inform the mapping generator by forwarding all
relevant features.

void addDetector(InetSocketAddress address){
FeatureDetectorInfo detectorInfo =

↪→ requestDetectorInfo(address);
FeatureDetectorQuality quality =

↪→ requestDetectorQuality(detectorInfo,
↪→ address);

if (hasRequiredQuality(quality)) {
Detector detector = new Detector(address,

↪→ quality);
addresses.put(detector.getName(), detector

↪→ );

List<String> allFeatures = addresses.
↪→ values().stream()

.map(Detector::getDetects)

.toList();
notifyMappingGenerator(allFeatures);

}
}

Code Listing 3 Registration of New Detectors [9]

Components

Analogous to feature detectors, we implemented each com-
ponent as a separatemicroservice that provides an endpoint to
execute its specific task. In addition, each implemented com-
ponent microservice must provide an information endpoint.
This endpoint returns the name and version of the microser-
vice, the endpoint to request processing, as well as the types
of the consumed and produced artifacts.

Code Listing 4 shows the implementation of the infor-
mation endpoint of a component. The returned information
signals the component registry that this component can
convert a given PDF document into a text document. The
component shown in this example internally uses Tesser-
act10 to extract text from the PDF document using optical
character recognition (OCR).

@controller.get("/info", response_model=
↪→ ComponentEndpointInfo)

def get_info():
return ComponentEndpointInfo(

name="TesseractPdfToText",
consumes="PdfDocument",
produces="TextDocument",
version="1.0.0",
endpoint="/process"

)

Code Listing 4 Information Endpoint of a Component

Component Registry

As stated in “PipelineAuto-Configuration”, we implemented
a microservice that manages components. The registration
process is mainly analogous to that of the feature detector
registry.

Code Listing 5 shows the registration of a new compo-
nent. When a component tries to register, the component
registry queries the component’s information endpoint to
determine the type of task it implements. The registry will
test the component’s endpoint with example data and com-
pletes the registration if this check is successful. After the
registration, the registry forwards all relevant component
information to the pipeline generator. This procedure trig-
gers the re-generation of all valid pipelines.

@SneakyThrows
public void addComponent(String address, int

↪→ port) {
InetAddress inet = InetAddress.getByName(

↪→ address);
InetSocketAddress sock = new

↪→ InetSocketAddress(inet, port);

ComponentEndpointInfo info =
↪→ requestComponentInfo(sock);

10 https://github.com/tesseract-ocr/tesseract.
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if (verifyEndpoint(info, sock)) {
Component comp = new Component(sock,info);
allComps.put(comp.getName(), comp);

pipelineGeneratorService.notify(allComps);
}

}

Code Listing 5 Registration of New Components [8]

Pipeline Generator

The pipeline generator is a FastAPI web service that real-
izes the goal-specific pipeline generation stated in “Pipeline
Auto-Configuration”. It implements the algorithm shown in
Figs. 17 and 18.

Code Listing 6 illustrates the main part of the pipeline
generation algorithm. We first generate the list of starting
components by selecting all components that consume any
defined input artifact. Analogously, we generate the list of
ending components by selecting all components producing
any defined output artifact. Next, we iterate over the list of
starting components and call the recursive part of the pipeline
generation algorithm. The recursive function returns a list of
all valid pipelineswithmatching in- andoutputs. The result of
the shown implementation is a complete list of valid pipelines
based on all possible component permutations for the given
in- and output artifacts.

@staticmethod
def build_pipelines(

input_artifacts: List[str],
output_artifacts: List[str],
components: List[Component]

) ->List[Pipeline]:
generated_pipelines =[]

starting_components =[c for c in components
↪→ if c.consumes in input_artifacts]

ending_components =[c for c in components if
↪→ c.produces in output_artifacts]

for starting_component in
↪→ starting_components:

ordered_components =[starting_component]
remaining_components =[c for c in

↪→ components if c !=
↪→ starting_component]

generated_pipelines.extend(
build_pipeline_recursive(

ordered_components,
↪→ remaining_components,
↪→ ending_components

)
)

return generated_pipelines

Code Listing 6 Pipeline Generation

Label Extender

The label extender microservice implements the label exten-
sion introduced in “Pipeline Auto-Configuration”. After the
system has performed the label extension, the label extender
triggers the mapping generator service.

Code Listing 7 shows the steps to perform the label exten-
sion for all gold documents. The extender runs each pipeline
against each document for all subgoals. A pipeline will be
suitable for the document if the output matches the expected
information of the gold data document.

def extend_labels(self):
extended_docs =[]
for gold_doc in self.get_gold_documents():

suitable_pipelines =[]
for info in DomainModel.information:

for pipeline in self.
↪→ get_pipelines_for_information(
↪→ info):

result =PipelineExecutor.
↪→ execute_pipeline(

pipeline=pipeline,
gold_document=gold_doc

)
if result ==gold_doc.get(info):

suitable_pipelines.append(pipeline)
extended_docs.append(

LabeledGoldDocument(
gold_document=gold_doc,
suitable_pipelines=suitable_pipelines

)
)

return extended_docs

Code Listing 7 Label Extension of Gold Documents [9]

Mapping Generator

As stated in “Pipeline Auto-Configuration”, the mapping
generator determines the best document-specific pipelines.
To achieve this, we use a rule-based strategy in our current
implementation.

In Code Listing 8, we illustrate the first step to gener-
ate mappings that link document types to suitable pipelines.
For each feature combination, we select all gold documents
thatmatch this combination representing a specific document
type.We then calculate the quality of each pipeline per docu-
ment type by counting its occurrences in the lists of all corre-
sponding documents divided by the number of corresponding
documents. For each document type, this operation creates
a list of suitable pipelines and their qualities. In the second
step, the mapping generator ranks the suitable pipelines for
each document type based on their quality. The results of
this step represent the required document-specific pipelines.
After completing both steps, the component registry receives
all mappings from the generator. This information allows the
registry to handle incoming documents appropriately.
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def generate_mappings(self, labeled_docs:
↪→ List[LabeledGoldDocument]):

document_type_pipeline_mappings =[]
for feature_combination in self.

↪→ generate_feature_combinations():
suitable_pipelines =[]
matching_gold_docs =self.

↪→ match_labeled_documents(
↪→ labeled_docs, feature_combination)

for labeled_doc in matching_gold_docs:
suitable_pipelines.extend(labeled_doc.

↪→ suitable_pipelines)
for suitable_pipeline in set(

↪→ suitable_pipelines):
document_type_pipeline_mappings.append(

DocumentPipelineMapping(
features=feature_combination,
pipeline=suitable_pipeline,
quality=suitable_pipelines.count(

↪→ suitable_pipeline) /len(
↪→ matching_gold_docs)

)
)

return document_type_pipeline_mappings

Code Listing 8 Mapping Generation [9]

Pipeline Executor

As mentioned in “Performance Optimization”, the pipeline
executor is amicroservice that executes pipelines during pro-
duction and auto-configuration. It also implements the result
caching.

Code Listing 9 shows the execution of a single pipeline.
The method iterates over each component of a pipeline. It
determines the input artifacts for the current component. For
the first component, the input is the incoming document.
The following components receive the matching artifacts of
the previous components. Afterwards, the system determines
whether the cache already contains the result of the current
component and the specific input artifact. If the cache already
contains the result, the systemwill not need to perform further
actions on this component. Otherwise, the pipeline executor
will query the current component and cache the result. After
the method repeats this process for all components, the exe-
cution finishes.

def execute_pipeline(self) ->
↪→ PipelineExecution:

ordered_component_results =[]
for component in self._pipeline.

↪→ ordered_components:
matching_artifacts =self.

↪→ _get_matching_artifacts(component,
↪→ ordered_component_results)

for artifact in matching_artifacts:
component_result =self._cached_results.

↪→ get_result(component, artifact)
if not component_result:

component_response =requests.post(
↪→ component.endpoint, data=
↪→ artifact.json())

component_output_artifacts =[]
for output_artifact in

↪→ component_response.json():
component_output_artifacts.append(

↪→ ARTIFACTParser.parse_obj(
↪→ output_artifact))

component_result =ComponentResult(
component=component,
input_artifact=artifact,
output_artifacts=

↪→ component_output_artifacts
)
self._cached_results.save_result(

↪→ component_result)
ordered_component_results.append(

↪→ component_result)
return PipelineExecution(

↪→ ordered_component_results)

Code Listing 9 Pipeline Execution

Document Processor

The document processor is a Java Spring Boot web service
and provides a Camunda11 process engine. As mentioned in
“AutomatedDocument Processing”, the document processor
manages the overall process and runs the FAP of documents,
depending on the IE quality.

After the user uploads a document for IE, the document
processor calls the feature detector registry to determine
relevant features. This step results in a feature-enriched doc-
ument the processor forwards to the component registry for
IE. The document processor receives the extracted informa-
tion and its estimated quality. The extracted information can
be processed automatically if the resulting quality is high
enough (see Table 3). Otherwise, employees must check the
information manually.

Code Listing 10 shows a Camunda service task that
enriches a document from theDOCUMENT variable with its
detected features and stores it in the variable ENRICHED_
DOCUMENT. In subsequent service tasks, this variable is
used to query the component registry for the actual IE.

@Override
void execute(DelegateExecution exec) {

FileValue docFile = exec.getVariableTyped("
↪→ DOCUMENT");

Document document = toDocument(docFile);

FeatureEnrichedDocument serverResult =
↪→ sendDocumentToServer(document);

exec.setVariable("ENRICHED_DOCUMENT",
↪→ serverResult);

11 https://camunda.com/.
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}

Code Listing 10 Detection Service Task [9]

In Code Listing 11, the following Camunda service task
receives theENRICHED_DOCUMENT variable and requests
the extraction of all information within the document.

@Override
void execute(DelegateExecution exec) {

ObjectValue docFile = exec.getVariableTyped(
↪→ "ENRICHED_DOCUMENT");

FeatureEnrichedDocument document = docFile.
↪→ getValue(FeatureEnrichedDocument.
↪→ class);

List<InformationWithQuality> result =
↪→ sendDocumentToServer(document);

if (result.isEmpty()) {
throw new RuntimeException("No results

↪→ received!");
}

double overallConfidence = result.stream()
.mapToDouble(InformationWithQuality::

↪→ confidence)
.min().orElse(0);

List<Information> information = result.
↪→ stream()

.map(InformationWithQuality::information)

.toList();

exec.setVariable("FULLY_AUTOMATED_PROCESSING
↪→ ", overallConfidence >= 0.95);

exec.setVariable("RESULT", information);
}

Code Listing 11 Extraction Service Task [9]

Conclusion

Product information is the basis for many businesses. Often,
there are no document standards, and companies have to
extract this information by hand. The automation of affected
processes requires many different solution strategies to cover
the possible document formats. To gain business value,
companies need a system that independently finds optimal
pipelines to process documents automatically. To tackle this
problem, we introduced a distributed microservice archi-
tecture pattern that enables the automated generation of IE
pipelines.

The provided architectural pattern is domain-independent
and adaptable to use cases focusing on IE from non-
standardized documents. On the one hand, the extensible
object model allows domain experts to define custom doc-
ument, element, and domain-specific information types. On

the other hand, the introduced registries enable developers
to implement microservices that are most suitable for their
focused problem.

The automated system configuration ensures that the sys-
tem independently figures out how to optimally process a
specific type of document. Gold data documents build the
basis for the system to test valid pipelines and determine their
qualities. To achieve this, we introduced several microser-
vices: The document manager always keeps the gold data
documents up to date to ensure that the set always repre-
sents real-world conditions. The pipeline generator generates
valid pipelines based on the in- and output of components.
The label extender finds suitable pipelines for each gold data
document as preparation for the determination of document
types. The mapping generator finds appropriate document
types with suitable pipelines ordered by their document-
specific quality.

The document processor manages the automated docu-
ment processing. First, it enriches a simple input document
with a list of features by requesting the feature detector reg-
istry. Second, it requests the component registry to extract
information. Dependent on formalized business require-
ments as quality criteria, the document processor afterwards
routes the generated results. If the quality is sufficient, it will
route the results to the data transfer microservice, completely
eliminating manual effort. Otherwise, it will route the results
to the extractor application, where employees can extract and
approve information by hand.

We evaluated the introduced approach by applying it to a
concrete problem in the German energy industry. The evalu-
ation shows that the implemented system successfully helps
our industry partner to automate its IE process and integrate
the newest research findings as early as possible.

Furthermore, the evaluation shows that the integration of
the pipeline executor and result caching improves the perfor-
mance of the auto-configuration enormously. Also, replacing
the three rigid interfaces Converter, Decomposer and
Extractor with one generic interface reduced the num-
ber of required components and thus the development effort.
In future research, we will try to further optimize the
performance of the system by automating the scaling of com-
ponents with higher loads, such as conversion components.
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