
Vol.:(0123456789)

CEAS Aeronautical Journal 
https://doi.org/10.1007/s13272-024-00741-x

ORIGINAL PAPER

Improving local path planning for UAV flight in challenging 
environments by refining cost function weights

Andreas Thoma1,2  · Alessandro Gardi2,3 · Alex Fisher2 · Carsten Braun1

Received: 20 February 2023 / Revised: 20 March 2024 / Accepted: 23 April 2024 
© The Author(s) 2024

Abstract
Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required 
until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency 
on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every 
environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal 
failure, probability interdependencies between the weights of the cost function have to be considered. This dependency 
reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with verti-
cal evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the 
local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for 
horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low 
buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). 
The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choos-
ing these two weights ideal is sufficient to reduce the failure probability below 10%.
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1 Introduction

Unmanned Aerial Vehicles’ (UAV) availability and use cases 
increase steadily [1]. Possible use cases include medical 
applications (first-aid drug delivery, delivery of defibrillators, 
tele-doctors), civil protection (search and rescue of large open 
areas, caves, and mines, disaster reaction, bushfire detection), 
military use (target identification, kamikaze drones, slaughter 
bots) and industry (inspection, maintenance, videography, and 
photography) [2, 3]. Whereas currently, most UAVs operate in 
Visual Line of Sight (VLoS) of their pilot, most use cases ben-
efit or require operation beyond VLoS (BVLoS). Reliable and 

efficient obstacle avoidance algorithms add a layer of safety 
to piloted flight operations and enable fully autonomous or 
unpiloted UAV operations. Nonetheless, avoiding static and 
dynamic obstacles is still an unsolved challenge, especially for 
UAVs operating in confined, urban environments [4]. Small 
UAVs (sUAV) below 25 kg still have a huge unused potential 
because of their limited flight time, sensor range, and payload. 
Therefore, developing better obstacle avoidance algorithms 
accelerates the usability of sUAV and UAVs in various fields.

Path planning is commonly known as finding feasible 
paths between a given position and a goal point [5, 6]. A 
global path planner identifies a suitable path between a 
start point and a goal point based on given and complete 
information about the environment between the start and 
the goal. However, traditional global path planners cannot 
react to unknown or unforeseen obstacles. On the contrary, 
local path planners find suitable paths between the current 
position and the goal based on information gathered by a 
sensor system. Traditional local path planners do not have 
any additional information about the environment.

Some algorithms build or update a map while explor-
ing the environment, known as Simultaneous Localization 
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And Mapping (SLAM), and are still the focus of current 
research, e.g., [7]. In general, many different algorithms 
exist, including local and global path planning elements, 
sometimes extended by memory or (sliding) map strategy. 
Nonetheless, no algorithm is reliable and efficient enough 
to solve all path planning problems.

Many foraging animals prove that path planning based on 
local information gathered by their sensor systems (odomet-
rical, visual, acoustic, olfactory information) works reliably, 
safely, and energy-efficient [8]. Therefore, we follow this 
approach and focus on local path planners. We investigate 
and optimise one of the most promising local path planning 
algorithms, the 3DVFH*, in the px4 avoidance implementa-
tion [9]. Like many other algorithms, this algorithm heav-
ily relies on cost functions to identify the best path from 
several alternatives. Unfortunately, these cost functions rely 
on several weighting factors which need to be user-defined. 
We investigate the influence of the most relevant weighting 
factors on the failure probability of the 3DVFH* in multiple 
environments. We also propose the ideal weighting factors 
for every environment. We followed a three-step approach 
to identify the ideal parameter settings: first, we identified 
the most influencing weighting factors in a single param-
eter sweep of all factors. Second, we investigate the most 
influencing pairs of weighting factors for certain types of 
environments. Third, we optimise groups of environments 
in batches by choosing the best combination of the two most 
influencing parameters and redoing steps one and two with 
frozen parameters optimised in the previous optimisation 
steps. Finally, we investigate the interaction of the three 
parameters with the most considerable influence on the 
failure probability. To increase generalizability, we tested 
some characteristic dependencies with a second, heavier and 
dynamically different UAV.

The next section gives a detailed explanation of the meth-
odology of this work. Section 3 shows and discusses the 
results, followed by a broad conclusion in Sect. 4.

2  Methodology

2.1  Boundary conditions

2.1.1  Algorithm

Most local path planners have multiple control parameters 
to adapt them to a particular situation. The algorithms often 
compare multiple alternative paths and choose the best 
path based on costs. Usually, these costs represent different 
aspects of local path planning, e.g., proximity to obstacles, 
path smoothness, deviation from a global path or the direct 
goal direction. By weighing these costs against each other, 

the relevance of the belonging aspect of path planning is 
defined mathematically.

Therefore, a local path planner with various costs also 
differentiates between various aspects of path planning. Con-
sequently, a path planner with many different costs allows a 
more detailed investigation of the relevance of the aspects 
of path planning than an algorithm with few costs. Besides 
the pure number of cost terms, the capability to plan in 3D 
is highly relevant for investigating UAV flights.

Several local path planning algorithms exist. Most local 
path planners either rely on a sampling or an optimisation 
approach. Both share several commonalities. In general, 
sampling-based approaches explore several solutions in 
parallel and choose the first one fulfilling several criteria. 
Optimisation-based approaches systematically improve a 
candidate solution. Optimisation-based local path planners 
show better performance than sampling-based approaches. 
Some very capable algorithms are TopoTraj [10], FASTER 
[11] and the 3DVFH* [9]. TopoTraj uses a path-guided opti-
misation to identify topologically distinct paths. However, 
TopoTraj is designed to work out of the box with no inter-
face to control its behaviour. The original authors are also 
unsure about its theoretical optimality and are still working 
on improvements [10]. FASTER always considers two paths 
in parallel. One safe path which lies completely in the known 
space. One opportunistic path, which lies in the known and 
unknown space. If a newly identified obstacle blocks the 
opportunistic path, FASTER switches to the safe path until 
a new opportunistic path is generated. This approach allows 
FASTER flight speeds. However, the interaction of the two 
trajectories increases the difficulty of investigating the effect 
of a specific change.

The literature review showed that the 3DVFH* and its 
implementation in the px4 avoidance fulfil the abovemen-
tioned requirements best. The 3DVFH* and its implemen-
tation are discussed in detail in [9]. The 3DVFH* uses a 
Vector Field Histogram (VFH [12]) to represent the environ-
ment. The VFH in the 3DVFH* represents the environment 
with a three-layered, 2D raster grid. Every cell of the raster 
grid represents a Volume in the real world. A binary layer 
contains the information on whether an obstacle occupies 
the Volume or is accessible. This information is based on 
a distance measurement of a sensor system. Another layer 
includes the distance between the sensor system and the 
detected obstacle—if an obstacle is present in this cell. The 
third layer contains information on the age of the distance 
measurement. The field of view moves with a moving robot. 
The 3DVFH* uses translational and rotational information 
to determine the distance to obstacles that were previously 
in the field of view but now lie outside the field of view.

The 3DVFH* uses the A* algorithm [13] to identify sev-
eral candidate paths. The cost of every candidate path is 
estimated with a cost function.
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The weighting factors kyaw , kpitch , ksmooth and kobstacle 
weight the importance of the different costs against each 
other. cyaw , cpitch , csmooth , cobstacle and cheuristic represent the 
respective cost terms. A high yaw cost weight kyaw penalises 
horizontal evasion, whereas a high pitch cost weight kpitch 
penalises vertical evasion. A high ksmooth leads to smoother 
paths and kobstacle ensures a safe distance from obstacles. 
cheuristics represent the heuristic cost of the candidate point. 
The idea of heuristic costs is derived from the algorithm A*, 
which estimates the total cost of the path from the current 
position to the goal position. Heuristic cost increases the 
algorithms’ goal driven behaviour.

2.1.2  Evaluating the 3DVFH*

Investigating the relevance of path planning aspects in vari-
ous environments requires flight tests in multiple environ-
ments. Simulation of flights and environments allows exten-
sive testing far beyond the testing capabilities of real-world 
flight testing. We use Gazebo Simulator [14] to simulate the 
environment and sensor data. Gazebo Simulator combines 
the Open Dynamics physics Engine (ODE) with OpenGL 
(Open Graphics Library). OpenGL is a programming inter-
face to render 2D and 3D vector graphics. Gazebo Simulator 
allows the simulation of objects, a physics-based UAV and 
realistic sensor data (including sensor noise).

We define three categories of environment, each with 
several criteria describing each environment. Every cat-
egory has multiple worlds representing this environment. 
Each category defines the primary type of obstacles. The 
first category, the simple obstacle environment, consists of 
flat rectangle obstacles in various dimensions on the ground 
and floating in the air (compare Fig. 1a). The second cat-
egory, the natural obstacle environment, consists of tree-like 
structures on flat grounds, hills, or valleys (compare Fig. 1b). 

(1)
ctotal = kyaw ⋅ cyaw + kpitch ⋅ cpitch + ksmooth ⋅ csmooth

+ kobstacle ⋅ cobstacle + cheuristics

The third category, the urban obstacle environment, consists 
of cuboidal blocks in various dimensions aligned in rows 
similar to street buildings (compare Fig. 1c). Each category 
has several subcategories sharing the same criteria, e.g., all 
worlds with very tall buildings belong to the subcategory 
of large city centres, which is a subset of the urban environ-
ments. We use the subcategories to group the worlds more 
specifically and investigate the relevant aspects of path plan-
ning on a more detailed level. An overview of the subcatego-
ries is given in Table 5 in the Appendix.

2.1.3  Evaluation criteria

Safety is the most critical criterion in the aviation industry. 
Therefore, this work focuses purely on safety. We define 
safety as a minimal failure probability p , according to:

With nfailed as the number of failed flights over the total 
number of flights ntotal . A flight fails if the path planner fails 
to reach the goal in a reasonable amount of time. The rea-
sons for this failure are irrelevant, e.g., if the UAV crashes or 
the path planner gets stuck in a no-progress loop. The simu-
lation terminates prematurely if the UAV hovers at a fixed 
position for more than 5 s, circles multiple times in front of 
obstacles or flies up and down the same path multiple times. 
It also terminates if the UAV does not reach the goal in the 
distance d to the starting point in a reasonable time Tmax:

However, the maximum flight time Tmax is only a back 
up, in case none of the other conditions are fulfilled but the 
UAV is not able to reach the goal in a reasonable amount of 
time. Some exemplary flight paths are visualized in Fig. 2.

A standardised take-off manoeuvre (vertical climb to 5 m) 
is performed at the beginning of each flight. The path plan-
ner receives the goal position only after successful take-off. 

(2)p =
nfailed

ntotal

(3)Tmax = 60s + d ⋅ 2 sm−1

Fig. 1  Example environments. Every ground tile is 1  m  ×  1  m a 
simple obstacle environment with 40 obstacles randomly placed. b 
nature-inspired environment with medium dense forest on a small 

hill. c City-inspired environment with up to 70-storey buildings and 
4-lane main streets (left to right)



 A. Thoma et al.

The UAV usually requires around ten to fifteen seconds from 
arming until moving towards the goal. During the final goal 
approach, the UAV occasionally circles around the goal, 
reducing flight speed or altitude. In extreme cases, this 
manoeuvre takes up to 45 s. Therefore, we assume 60 s for 
take-off and final goal approach in Eq. 3. Additionally, we 
assume an average flight speed of 4 m  s−1. The maximum 
flight speed is 5 m  s−1. Several test flights in various environ-
ments showed that the UAV usually flies at top speed. The 

average flight speed was always above 4 m  s−1. We define a 
path more than eight times longer than the distance between 
the start and the goal point as unacceptable. This definition 
leads to an acceptable time progress of 2 s  m−1.

2.1.4  Parameters

The px4 avoidance has several control parameters; all rep-
resent weighting factors relevant to path planning. Table 1 
shows the control parameters discussed in this work.

We define proper weighting ranges based on a pre-study 
with randomly chosen worlds showing the general sensitiv-
ity of the weights, the information in [9], and the px4 avoid-
ance default values. Table 2 shows the investigated range of 
the different weighting factors.

2.1.5  Simulated UAV

Our simulations used the 3DR Iris + UAV Quadcopter as 
a UAV model. The UAV was around 0.55 m in diameter 
(motor to motor) and weighs around 1.2 kg, including the 
battery. The UAV had three depth cameras looking front, 
left, and right. The sensor range of the depth cameras was 
18 m.

2.2  Approach

Combining all possible weighting values leads to 213.840 
different combinations. Simulating one setting in all envi-
ronments takes around three days per computer. We had 
ten computers available, giving a total simulation time of 
64.152 days or 175 years for all weighting value combi-
nations. This simulation time was not acceptable. We also 
considered a Design of Experiments (DOE) approach. How-
ever, some of the weights or their interactions may be highly 

Fig. 2  Example flight paths. Grey boxes are obstacles. The green 
flight path is successful. The orange one is too long and reaches the 
flight time Tmax. The red one meanders in front of some obstacles 
without progress towards the goal (Color figure online)

Table 1  Investigated cost function weighting factors and their descriptions

Weight Description

Pitch cost This sets the coefficient (weight) for direct heading in the cost function. The higher the coefficient is, the higher the system 
behaviour will be aligned to direct heading (Most direct path)

Yaw cost This sets the coefficient (weight) for constant heading in the cost function. The higher the coefficient is, the higher the 
system behaviour will be aligned to constant heading (minimizing attitude changes)

Velocity cost This sets the coefficient (weight) for path smoothness in the cost function. The higher the coefficient is, the higher the 
system behaviour will be aligned for path smoothness, e.g., enough space (radius) for a smooth turn at a junction

Obstacle cost This defines after which distance (approximately) to an obstacle the other parameters of the cost function will be overruled 
by the obstacle distance term (safety aspects). Effectively the minimum distance to obstacles can be defined; (Approxi-
mate distance from obstacle (m) when the obstacle distance term dominates the cost function)

Smoothing speed xy Defines the response speed of the smoothing system in horizontal direction (xy) based on the cost function (set to 0 to dis-
able). The higher the value is set to, the faster the system reacts

Smoothing speed z Defines the response speed of the smoothing system in vertical direction (z) based on the cost function (set to 0 to disable). 
The higher the value is set to, the faster the system reacts

Smoothing margin Defines which data points to consider for obstacle cost param based on cost histogram (smoothing radius for obstacle cost 
in cost histogram)
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nonlinear. Additionally, a full-surface DOE would take quite 
a long time and is still limited to two-dimensional dependen-
cies. Therefore, we chose a three-step approach to reduce the 
number of parameter combinations and the overall computa-
tion time while investigating multiple dependencies.

First, we performed a single parameter sweep in which 
we set all parameters to the default values except one that 
varied according to the parameter range and step size in 
Table 2. This process was repeated for all weights. The goal 
of this first step was the identification of the influence of the 
weighting factors. Weights that strongly influence the failure 
probability were considered relevant; weights that merely 
influence the failure probability were considered irrelevant. 
Steps two and three focused only on relevant weights. Addi-
tionally, this single parameter sweep identified the best 
weightings for the different environmental categories and 
subcategories.

Second, we investigated the interaction of the most influ-
ential weight pairs per subcategory and identified the best 
weighting values for those two weights. We investigated this 
interaction by simultaneously varying both weights around 
their optimum for the single parameter sweep of step one. 
For example, pitch and yaw weight influenced the failure 
probability in European-style cities with few skyscrapers but 
many medium-sized buildings and narrow streets the most. 
We then varied both weights simultaneously around their 
optimums of the single parameter sweep to identify their 
combined optimum. The found ideal weights were defined 
as the new default values. If the failure probability was more 
than 5%, step 1 was repeated for the considered subcategory. 
The two new default values were excluded from the param-
eter sweep, and only those that were not altered were varied 
again. If no weight of the second single parameter sweep 
reached a failure probability of zero, step two was repeated 
with a combined parameter sweep of the following two most 
influential weights. Again, the two weights with the lowest 
failure probability were fixed and set as new default values. 
If the failure probability was over 5%, step one was repeated 
once again, and so on.

Third, four weights stood out in the first and second steps 
and mainly contributed to the overall failure probability. 
These weights were investigated in more detail by vary-
ing these four in combination. We also investigated if these 
weights show any dependencies on each other.

3  Results and discussion

This section presents the three levels of investigation in three 
subsections. First, the single parameter sweep is discussed, 
focusing on investigating the most influential weights. Sec-
ond, the consecutive double parameter sweep is presented, 
aiming to reach a minimal failure probability by optimising 
weights in groups of two, starting with the two most influen-
tial weights, followed by the subsequent two most influential 
weights, etc. Finally, the relevant weights are investigated 
further in a broad parameter sweep to identify the param-
eter’s dependencies and find a globally optimal solution. The 
discussion focuses on subcategories of environments that 
share the same criterion to identify weaknesses and strengths 
of the algorithm for specific environments.

3.1  Single parameter sweep

This section presents and discusses the influence of every 
single weight on the overall failure probability. The discus-
sion includes the minimal achievable failure probability by 
varying one weight and the sensitivity of the weights, i.e., 
the difference between the highest and lowest failure prob-
ability. The discussion differentiates between different sub-
categories of environments.

We define a statistical significance level α of 0.05. The 
standard deviation of the baseline is 0.253%. This means 
that any sensitivity over 0.24% is statistically significant. 
However, this slight difference does not yield any practical 
relevance. Therefore, we define a practical relevance of 10% 
for the sensitivity. Additionally, we define a minimal failure 
probability below 10% as sufficient.

The following section discusses the sensitivity and the 
minimal failure probability of every weight in every envi-
ronmental subcategory regarding their practical relevance. 
Overall, we define three regions. The first region contains 
subcategories with high sensitivity, i.e., high variability in 
failure probability between different weight values but a 
low minimal failure probability of the investigated weight. 
These subregions are sensitive to correct weight values, but 
the path planner can achieve low failure probabilities if set 
correctly. The second region contains subcategories with 
medium sensitivity and medium failure probabilities. The 
third region contains subcategories with high minimal fail-
ure probabilities and low sensitivity. The investigated weight 
hardly influences the failure probability in the subcategories 

Table 2  Investigated interval for the different weighting factors plus 
the default value also tested

Weight Minimum Maximum Interval Default

Pitch cost 1 21 5 25
Yaw cost 1 10 3 3
Velocity cost 100 30,100 6000 6000
Obstacle cost 1 21 2 8.5
Smoothing speed xy 3 15 3 10
Smoothing speed z 1 11 2 3
Smoothing margin 20 60 20 40
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in this region and has, therefore, only a weak influence on 
the failure probability of this type of environment.

Smoothing speed xy and smoothing speed z weights 
hardly influence the failure probability of the 3DVFH*. 
Figures 3a and b show that the sensitivity of these weights 
is 10% or lower in all environmental subcategories, yield-
ing no practical relevance to the overall failure probability. 
Subcategory 13 is the only category slightly above the 10% 
threshold. However, the sensitivity of subcategory 13 is sig-
nificantly higher for other parameters (see Fig. 3g). There-
fore, smoothing speed xy and smoothing speed z are not 
investigated further.

Figure 3c shows that velocity cost weight has a much 
higher sensitivity than smoothing speed xy and smoothing 
speed z weights. Multiple subcategories have a sensitivity 
of around 50%, meaning that at least every second flight 
fails if the velocity cost weight is wrong. However, Fig. 3c 
also shows that the minimal failure probability in most sub-
categories is higher than 10% and, therefore, even in the 
best cases, is too high. Because of the high minimal failure 
probability, velocity cost weight will only be used if other 
parameters fail to optimise.

Figure 3d shows that the smoothing margin weight greatly 
influences the sensitivity of the 3DVFH*. It also allows for 
very low minimal failure probabilities below 10%. In fact, 
only two subcategories are in region 3, with low variability 
and a high minimal failure probability. Another six subcat-
egories are above the acceptable minimal failure probability 
of 10%. In total, smoothing margin weight can reduce the 
minimal failure probability in half the subworlds to <10%. 
However, five of the eight subcategories with acceptable 
minimal failure probability have an unacceptable sensitivity 
above 10%. Therefore, smoothing margin weight is crucial 
for many subcategories and will be investigated further.

Figure 3e shows that pitch weight can significantly reduce 
the failure probability. Eleven out of 16 subcategories have 
a minimal failure probability below 10%, whereas only two 
subcategories have a failure probability above 50%. How-
ever, several subcategories are very sensitive to the correct 
choice of pitch weight. Two subcategories in Fig. 3d have a 
very high minimal failure probability.

Fortunately, these two subcategories have an acceptable 
minimal failure probability in Fig. 3e. The two subcatego-
ries in region 3 in Fig. 3e are in region 1 in Fig. 3d. Even 
though the minimal failure probably is not acceptable there, 
it is still much lower. Therefore, pitch weight is subject to 
further investigation.

(a)

(b)

(c)

(d)

(e)

Fig. 3  Minimal failure probability and sensitivity of different subcat-
egories for different cost function weights. a smoothing speed xy, b 
smoothing speed z, c velocity cost, d smoothing margin, e pitch cost, 
f yaw cost, g obstacle cost

▸
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Figure 3f shows that yaw weight has a high sensitivity. 
Substantially, more subcategories lie in region one than 
for the other parameters. Additionally, most subcategories 
in region 3 are around the maximally possible sensitivity 
concerning their relatively high minimal failure probability. 
Moreover, yaw weight has several subcategories with an 
acceptably low minimal failure probability. Therefore, yaw 
weight is subject to further investigation.

Figure 3g shows that obstacle cost weight has a similar 
sensitivity and minimal failure probability as pitch weight 
for most subcategories. Here, 11 of 16 subcategories have an 
acceptable minimal failure probability of 10% or less. How-
ever, 6 of these 11 subcategories also have a high sensitivity 
(region 1). Once again, the wrong choice of obstacle cost 
weight leads to a drastically increased failure probability. 
Two subcategories are in region 3; these two are the same 
subcategories as both subcategories in region 3 for smooth-
ing margin degrees. The two subcategories in region 1 above 
the acceptable minimal failure probability for obstacle cost 
weight are also in region 3 and above the acceptable minimal 
failure probability in smoothing margin weight. This rela-
tionship suggests that obstacle cost and smoothing margin 
weights cannot solve a specific type of problem during the 
flight. Nonetheless, obstacle cost weight shows high sensi-
tivity and acceptable minimal failure probabilities for most 
subcategories. Therefore, obstacle cost weight is subject to 
further investigation.

Figure 3 shows that smoothing margin and yaw weights 
have a medium sensitivity and medium potential to reduce 

the failure probability to an acceptable level. Figure 3 also 
indicates that pitch and obstacle cost weights have a high 
sensitivity and potential to reduce the failure probability 
in many subcategories to an adequate level. However, no 
weight alone can reduce the failure probability in all sub-
categories to an acceptable level.

Figure 4 clearly shows that the greatest reduction in mini-
mal failure probability is achieved during the first step by 
choosing the optimal value for the most influential weight. 
Unfortunately, this weight and the optimal value differ 
between multiple subcategories. Therefore, the following 
section further analyses the different weights and values in 
those subcategories with high failure probabilities.

3.2  Consecutive double parameter sweep

The most relevant parameters for every subcategory are 
identified after identifying the minimal failure probability 
and sensitivity of all parameters. Next, the two cost func-
tion weights with the lowest minimal failure probability are 
varied around their single parameter sweep optimum—this 
is done separately for every subcategory.

Figure 4 shows the development of minimal failure prob-
ability over the optimisation course of the subcategories, 
which have an unacceptable failure probability after the first 
optimisation step. Taking the second most influential weight 
into account and choosing the optimal value for both values 
combined leads to another reduction in failure probability. If 
two weights are optimally selected for the particular subcat-
egory, four more subcategories have a failure probability of 
0%. However, after optimising one weight, these subcatego-
ries already have a failure probability below 10%. All other 
subcategories need further optimisation. Setting the optimal 
combination of the two most influential weights and varying 
all other weights in the predefined region leads to a minimal 
failure probability of <10% for the remaining subcategories. 

(f)

(g)

Fig. 3  (continued)

Fig. 4  Failure probability of various subcategories over the optimisa-
tion step. Every line represents another environment. Table  3 gives 
the weights used in the various optimisation steps. Step zero is the 
failure probability of the baseline with default values
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Combining the most influential weights of the remaining 
weights leads to 0% failure probability in all subcategories.

Figure 4 shows the potential of the 3DVFH* if the cost 
function weight is adequate for the environment. It also 
shows the various ideal values required for zero failure prob-
ability in the subcategories. The 3DVFH* reaches an accept-
able failure probability of less than 10% in all subcategories 
after optimisation step 3. All subcategories, except number 
15, have a failure probability below 5%, and most have a 
failure probability of 0%. Here, two questions arise. First, 
is it possible to find one combination of weights that works 
perfectly in all environments? This is impossible because 
the weights leading to the low failure probabilities in Fig. 3 
differ significantly. Second, is it possible to define depend-
encies to find optimal weights easier? These dependencies 
might be either between weights, such that the algorithm’s 
overall number of control parameters is reduced. Alterna-
tively, dependencies on the environment allow choosing the 
weights adapted to the environment. These dependencies 
will be discussed in Sect. 3.3.

Figure 4 also shows that the failure probability increases 
in some cases. We varied obstacle cost weight in increments 
of 2. However, the default value for obstacle cost is 8.5, 
while the closest value during our parameter study is 9. 
Therefore, in some cases, the failure probability increases 
slightly.

3.3  Dependencies

Table 3 shows the weights, which mainly contribute to reduc-
ing the failure probability below 10% or even to zero. Investi-
gating Table 3 shows that out of the seven investigated weights, 
only five are required to reduce the failure probability signifi-
cantly. Additionally, only a few pairs of weights lead to high 

reductions in failure probability. The second step, the double 
parameter sweep, shows that obstacle cost, pitch, and smooth-
ing margin weighting interact in some way such that the failure 
probability can be reduced to zero. However, pitch and yaw 
weight in tall buildings’ subcategories seem more relevant.

The actual weights leading to the lowest failure probability 
differ. Therefore, the relationship of these weights is studied 
in a broader parameter study. Here, we have two goals. First, 
defining better default values leads to an overall reduced fail-
ure probability. Second, define dependencies between dif-
ferent weights so that the overall number of weights (and 
therefore control parameters of the algorithm) is reduced. 
A reduced number of weights is beneficial if the local path 
planner is used in environments that require different weights. 
We focus our discussion only on those subcategory environ-
ments which show a clear minimum and high sensitivity to 
the correct choice of parameters. Those subcategories which 
are less sensitive to the right choice of weight are neglected 
because optimal values in the more sensitive subcategories 
also lead to minimal failure probabilities in the less sensitive 
subcategories.

Subcategory 11 has a very high failure probability of 92% 
before optimisation. Choosing the correct weight for obstacle 
cost weight is crucial in this environment. However, the proper 
weight strongly depends on the weight for the smoothing mar-
gin, as seen in Fig. 5.

Figure  5 shows that a minimal failure probability is 
achieved if

where Smooth denotes the smoothing margin weight and 
Obstacle Weight the obstacle cost weight in subcategory 11. 
However, Fig. 6 shows that a higher pitch weight is also 

(4)Smooth = 87◦ − 13.3
◦

m
⋅ Obstacle Weight

Table 3  Overview of the weights with the lowest failure probability from a broad parameter sweep with a single parameter and the consecutive 
double parameter sweep

Optimization 
step 

Sub- 
1. step 

single parameter 
2. step 

double parameter 
3. step 

Single parameter 
category Parameter Parameter 1 Parameter 2 Parameter 

5 
Obstacle cost, pitch 

cost, smoothing 
margin 

Obstacle cost Pitch cost - 

7 Pitch cost Pitch cost Obstacle cost - 
9 Obstacle cost Obstacle cost Smoothing margin Smoothing speed z 

10 Pitch cost Pitch cost Yaw cost - 
11 Obstacle cost Obstacle cost Smoothing margin Velocity cost 
12 Obstacle cost Obstacle cost Smoothing margin - 
14 Pitch cost Pitch cost Yaw cost - 
15 Obstacle cost Obstacle Cost Smoothing Margin Velocity Cost 

For clarity, obstacle cost is marked blue, pitch cost is marked green, and smoothing margin is marked purple. Other weights are marked yellow, 
grey indicates that no further optimization was required
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necessary for a low failure probability in this subcategory. 
Generally speaking, a mediocre obstacle cost weight, medio-
cre to high pitch weight, and small smoothing margin weight 
lead to a minimal failure probability in environments like 
typical American city centres with very tall buildings (up 
to 75 stories) and wide streets. Here, horizontal avoidance 
maneuvers should be preferred.

Subcategory 15 shows very similar regions for optimal 
parameters. Subcategory 15 has the same type of buildings. 
However, the streets are much smaller than in subcategory 
11. Subcategory 12 is less sensitive than subcategory 11: The 
valley seen in Fig. 5 is much wider for subcategory 12 and 
spans a minimum plateau for obstacle cost between 5 and 
10, regardless of the smoothing margin weight. Subcategory 
12 has small buildings and wide streets. All statements for 

subcategory 11 hold for these other subcategories, so these 
diagrams are not shown here.

All subcategories investigated so far benefit from higher 
pitch weight. Unfortunately, this does not work for subcat-
egories with medium–tall but dense buildings, similar to 
many larger European cities. Figure 7 shows that, relatively 
independent of obstacle cost, a lower pitch weight is required 
for subcategory 14. If looking at subcategory 10, which has 
the same obstacles as subcategory 14, the picture is the same 
as in Fig. 7. This contradiction means there is no general 
optimum for pitch weight. However, specific common char-
acteristics of the environment seem to demand certain cost 
weightings.

Considering yaw weight and its relation with pitch weight 
does not significantly improve the overall situation. Higher 
yaw weight reduces the failure probability in subcategories 
with medium–high buildings like subcategories 10 and 14 
only slightly and only if pitch weight is poorly chosen (see 
Fig. 7). In general, environments require low pitch weight 
benefit from high yaw weight and vice versa. This relation-
ship makes sense as both weights define the tendency to 
overfly obstacles or fly around them. Low pitch cost and 
high yaw weights lead to a high tendency to overfly, while 
high pitch and low yaw cost lead to a strong tendency to 
fly around. However, reasonably high yaw cost weight can-
not diminish the negative effect of too high pitch cost for a 
certain situation.

3.4  Generalizability

Parts of the above discussed dependencies were also investi-
gated with a second, different UAV. We used a generic flight 
model of a bigger UAV, inspired by the DJI Matrice 600 
(15.5 kg MTOM, 18 m/s max flight velocity). The heavier 

Fig. 5  Failure probability over smoothing margin and obstacle cost 
weight for subcategory 11. The red line indicates the default values. 
Colours indicate the failure probability (Color figure online)

Fig. 6  Failure probability over obstacle and pitch cost weight for subcat-
egory 11. The red line indicates the default values (Color figure online)

Fig. 7  Failure probability over obstacle weight and pitch cost weight for 
subcategory 14. The red line indicates the default values (Color figure 
online)
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UAV was also equipped with a heavier (and better) sensor 
system with a maximum range of 120 m. The tendencies and 
dependencies identified for the Iris discussed above could be 
confirmed for the heavier, faster UAV.

The dependency between smoothing margin degrees and 
obstacle cost for subcategory 11 is very similar (see Fig. 8 
and compare to Fig. 5). As seen in Fig. 8 the valley in failure 
probability is shallower than the one for the lighter UAV, still 
the same characteristic relation between obstacle weight and 
smoothing margin is found.

The dependency between yaw and pitch weight in sub-
category 10 was also found for the new, heavier UAV (see 
Fig. 9 and compare to Fig. 10). Here, the dependency on the 
pitch weight is weaker—the highest failure probability is 
lower—still the same tendency that a low failure probability 
is only achieved with a low pitch weight in subcategory 10 
also applies for the heavy UAV.

The second UAV also displays the tendency that a low 
pitch weight is beneficial in subcategory 14 (see Fig. 11 and 
compare to Fig. 7).

In general, the flight paths of the heavier UAV are not 
substantially different from the paths of the light IRIS ini-
tially presented. The heavier UAV is faster but is also more 
agile. Therefore, both UAV also show similar behaviours in 
their failure probability when varying the different weights.

4  Conclusion

The 3DVFH* is a commonly used path planning algorithm 
that can fly safely and successfully through any environment. 
Our investigation showed that the algorithm found a path in 
all 2400 environments. However, the algorithm requires the 
correct choice of cost function weights to complete its flight 
missions successfully. We showed that yaw and pitch weight, 

obstacle cost weight, and smoothing margin weight are the 
most influential parameters of the 3DVFH*. However, the 
influence of each parameter and good values for each weight 
heavily depend on the environment. While we could reduce 
the failure probability in all environments to an acceptable 
level by optimising multiple weights for each environment 
specifically, we could not find a single optimum for all 
worlds. We showed that smoothing margin and obstacle cost 
weights requires a specific ratio to lead to minimal failure 
probability. However, we also showed that pitch weight, 
independent of all other weights, has different optima in 
different environments. Environments with tall American-
style city centres benefit from high pitch weights, whereas 
European-style city centres with lower buildings benefit 
from low pitch weights. We also showed that yaw weight 

Fig. 8  Failure probability over smoothing margin and obstacle cost 
weight for subcategory 11 with the heavier UAV. Colours indicate the 
failure probability (Color figure online)

Fig. 9  Failure probability over yaw and pitch cost weight for subcat-
egory 10 with the heavier UAV

Fig. 10  Failure probability over yaw and pitch cost weight for sub-
category 10. The red line indicates the default values (Color figure 
online)



Improving local path planning for UAV flight in challenging environments by refining cost…

slightly influences pitch weight. However, the influence is 
insufficient to diminish a poorly chosen pitch weight effect.

This work recommends an obstacle cost weight of 3 and 
a pitch weight of 1 for environments with lower obstacles 
below roughly ten-story buildings. For environments with 
multiple significantly taller obstacles, like larger American 
city centres, a pitch cost weight of 15 and an obstacle cost 

weight of 5 lead to a considerably lower failure probabil-
ity than the setting for more minor obstacles. All other 
weights should remain as the px4 Avoidance default val-
ues. This compromise leads to failure probabilities below 
10% in all environments with the least possible parameter 
variations. However, flights performed with this general 
recommendation might fail in certain situations. A fail-
ure probability of zero requires a more specific choice of 
parameters depending on the environment. Table 4 gives 
an overview of the best settings for various environments. 
Partly, these settings contradict some of the general state-
ments previously made. Other weights that comply with 
the general statements might be equally good and lead to a 
0% failure probability in the given environments. However, 
the combinations of weights shown in Table 4 reached 
a failure probability of zero in the given environmental 
subcategories.

The differences in optimal weights indicate that an 
automated analysis, e.g., with a neural network for image 
analysis, might enable the full potential of the 3DVFH* by 
automatically choosing the ideal weights based on features 
of the current environment. Investigating the influence of 
the most influential weights of the 3DVFH* in algorithms 
with fewer parameters but generally better local path 

Fig. 11  Failure probability over obstacle weight and pitch cost weight 
for subcategory 14 with the heavier UAV

Table 4  Weight combinations 
of the 3DVFH* without any 
failed flights in the given 
environments

Weight environment Obstacle cost Smoothing 
margin

Pitch 
cost

Yaw cost Velocity cost

Stories: 2–3
Streed width: 9 m

3 60 25 3 18,000

Stories: 2–8
Streed width: 9 m

8.5 40 1 1 6000

Stories: 2–75
Streed width: 9 m

3 40 25 3 18,000

Stories: 2–3
Streed width: 12 m

3 60 25 3 6000

Stories: 2–8
Streed width: 12 m

3 40 25 3 6000

Stories: 2–8
Streed width: 15 m

8.5 40 6 7 6000

Stories: 2–8
Streed width: 15 m

3 40 25 3 18,000

Forest 8.5 40 16 16 6000
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planning performance, e.g., FASTER [11], also yields a 
high potential for further reduction of failure probability.

Appendix

See Table 5 below.
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