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SUMMARY 
 
The nonlinear scalar constitutive equations of gases lead to a change in sound 
speed  from  point to point as would be found in linear inhomogeneous (and time 
dependent) media. The nonlinear tensor constitutive equations of solids introduce 
the  additional local effect of solution dependent anisotropy. The speed of a wave 
passing   through a point changes with propagation direction and its rays are 
inclined  to  the  front. It is an open question whether the widely used operator 
splitting   techniques achieve a dimensional splitting with physically reasonable 
results for these multi-dimensional problems. 
 
Maybe this is the main reason why the theoretical and numerical investigations 
of  multi-dimensional wave propagation in nonlinear solids are so far behind gas 
dynamics.   We hope to promote the subject a little by a discussion of some 
fundamental   aspects of the solution of the equations of nonlinear elastodynamics. 
We   use   methods of characteristics because they only integrate mathematically 
exact  equations which have a direct physical interpretation. 
 
 

INTRODUCTION 
 
Many characteristic-based methods have been devised for the solution of 
hyperbolic  problems with more than two independent variables (e.g. two- and 
three-dimensional wave propagation). Most of them (e.g. GODUNOV-Type-Methods 
and  GLIMM's Random-Choice-Method) use schemes developed for one-dimensional 
wave propagation by various operator splitting techniques. Maybe this is 
the  reason,  why  promising results are only known for nonlinear media with 
scalar constitutive equations so far. 
 
The mechanical state variables for solids are second order tensors, and thus 
only   physically one-dimensional problems can be modelled by scalar laws, 
whereas   tensor constitutive equations describe the material behaviour in multi-
dimensional   problems. Thereby a strong coupling of the different spatial 
directions  may  result and, if the material is nonlinear, local effects of anisotropy 
may   occur. Such effects are probably best known from magnetohydrodynamics 
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and  from  optical and mechanical waves in linear anisotropic solids [1, 2]. Due 
to   the   dependence on the solution, the situation is even more complicated for 
nonlinear  elastic and plastic waves in solids. A scalar nonlinear constitutive equation 
introduces a solution dependent inhomogeneity. Nonlinear tensor constitutive 
equations cause the additional local effect of solution dependent anisotropy. 
 
For a numerical treatment of these nonlinear problems, methods of nearcharacteristics 
have   been devised. which become methods of bicharacteristics, if the local 
scheme  uses  the axes of symmetry of the local wave fronts of point disturbances 
[3, 4].    The complete set of PDE's describing a general nonlinear elastic 
solid  can  be  solved numerically for arbitrary large deformations and large displacements. 
For convenience we restrict our discussion to hyperelastic materials. 
One  can  easily  dispense with the lengthier treatment of CAUCHYelastic materials 
as  included in [4], since in a purely mechanical theory every stable passive elastic 
material   is hyperelastic (or GREEN-elastic) [5]. Furthermore we exclude all 
physical   situations for incompressible solids that do not permit longitudinal 
waves, e.g. plain strain problems but not plain stress problems. 
 
 

BASIC EQUATIONS 
 
The material points of a body are denoted by their coordinates in a possible 
reference  configuration *B *B

a
 and the actual configuration  in space and time by 

point-coordinates ξ  and  ( aax 0, 1, 2, 3= ), respectively. The time-like 
coordinates    are    ξ =  and 0 cτ 0x ct t=  with time τ = , and some constant 
speed    c .    Co-and    contravariant basis vectors are introduced in both 
configurations   in   the   usual manner. The material points with position vector 

 575

* 0
0= ξ +r g r     in *B  are moved by a displacement field ( )*

* 0
0x= +r g

u r  into their 
position     with + ur =r r . The dyadic notation of the material 
displacement of a field ( )*f r  over *B  is given by 
 

( )* 0f : f : ,    0, 1, 2, 3
c

α
α∇ = +∇ = α =

∂τ ∂ξ
g gD D1 f f∂ ∂ ,              (1) 

 
The local approximation of the bijective mapping in space ( )i 1 20 3x , , ,ξ ξ ξ ξ , 

 is the deformation gradient i 1, 2, 3=
:= ∇F r .                   (2) 

 
Other useful kinematic tensors are the displacement derivative H , the 
positive   definite   right CAUCHY-GREEN-tensor  or the GREEN-deformation 
tensor G . With the purely space-like unit dyadic  we have 

C
E

 
: ,    = ∇ = − =H u F E H Fδ δ ,                (3a) 

T T 2: ,    ,    III : det det 0= = = =C F F C C C F ≠ ,            (3b) 

( ) ( )T T1 1:
2 2

= − = + +G C E H H H H .               (3c) 



To any of these deformation tensors, there is a conjugate stress tensor which 
is  a  single  valued tensor function of the deformation for elastic media. For hyperelastic 
materials the simultaneous invariant of the pairs of conjugate tensors is the 
stored energy density. 
 
For an elastic material the stress tensor is a single valued function of  and 
thus  also  a  deformation measure. This makes the theory of elasticity mathematically 
attractive, although in the nonlinear theory there is no analytical presentation 
for    the    inverse function, [6]. For an isotropic elastic solid the second 
PIOLA-KIRCHHOFF-stress 

C

σ  is an isotropic tensor function of C . In three space 
dimensions we use the following presentations for compressible or incompressible 
solids, respectively: 
 
( ) 2

0 1 2′ ′ ′= ϕ + ϕ + ϕσ G E G G ,                (4a) 
 
( ) 1

0 1 p −′ ′= ψ + ψ −σ C E C C .               (4b) 
 
Here , ,  and ,  are scalar functions of the invariants of  and C , 
respectively. Note, for an incompressible solid only the deviatoric stress is 
determined  from the deformation in three dimensions, since . In this case 
the   hydrostatic pressure  can be calculated as the solution of a boundary value 
problem.  Furthermore, the incompressible solid allows no longitudinal waves in 
three   dimensions. We therefore exclude this special case from our discussion. 
For  the  plane stress problem of a plate one can calculate 

0′ϕ 1′ϕ 2′ϕ 0′ψ

p

1′ψ G

III 1=

( ), II IIp I  - where I ,  
are  principal invariants of  - and thus obtain for the compressible and incompressible 
solid the formally similar representations 

C

 
( ) 0 1= ϕ +G E ϕσ G ,                 (4c) 

 
( ) 0 1= ψ +ψσ C E C .                (4d) 

 
It is understood that now σ , ,  are tensors in two-dimensional space. The 
one-dimensional stress 

G C

1σ 1:= σ Dg g  may be calculated from a scalar law 
   with   ( )fσ = ε 1 1:ε = g Gg . But  is still three-dimensional (with cylindrical 

symmetry).  Only the trivial hydrostatic stress reduces the constitutive equation to a scalar 
law, where both 

G

σ  and G  are spherical tensors. There are longitudinal 
waves   in   an   incompressible plate, due to the variation of its thickness. Therefore 
we  exclude plane strain for those materials. In the local balance of momentum, 
written in the reference configuration (multiple dots denote multiple transvection), 
 

( ) ( )* *c :ρ ∇ − ∇v E σ E b 0− ρ = ,                (5) 
 
appears the first PIOLA-KIRCHHOFF-stress σ , 
 

TT = FσF: ,   =σ Fσ σ ,                  (6) 
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which is a single valued tensor function of F  by eqs. (3), (4). , v ρ ,  are the 
particle   velocity, the mass density in the reference configuration and the density 
of   body   force, respectively. The material is called hyperelastic if the stress 
function   can   be derived from a stored energy density . This imposes some 
integrability   conditions upon eq. (4). With the fourth order stiffness 

b

U
( )A F , 

the constitutive equations may be written in the form 
 

:δ = δσ A F ,                  (7a) 
 
where  can be derived from  for hyperelastic solids: A U
 

2: : Uδ δ = ρδF A F .                (7b) 
 
From eqs. (3a), (5) and (7a) we have the final balance of momentum 
 

( )* * T,    : c A= = ρ ∇ − ∇ − ρ#l 0 l v E H b .           (8a) 
 
In addition, RICCI's lemma on the second covariant derivative of an integrable 
displacement field * *( )  ( )=u r u r  reduces to SCHWARZ's lemma if the 
RIEMANN-CHRISTOFFEL-curvature tensor vanishes everywhere. Then it holds 
also for the jumps on an acceleration wave front. It reads 
 

( ) ( )* * *
0,    : c= = ∇ − ∇L 0 L v E H* g           (8b) 

 
and 
 
( ) ( )*

k l l k: ,    k, l 1,2,3∇ − = =D DH g g g g 0 ,           (8c) 
 
on a purely spatial and a time-like manifold, respectively. Given initial fields of 
displacement and velocity, a ( )u r  and a ( )v r t  , at time aτ =  we have the conditions 
 

a a a a( , t ) ,    ( , t )− = − =vu r u 0 v r 0 .              (8d) 
 
Boundary conditions shall be given for place on the part vB∂  (points with 

v=r r )   and   for   traction on the part of Bσ∂  (points with σ=r r ) of B∂ , 
v σB B B∂ = ∂ ∂∪ ,  v σB B = ∅∩∂ ∂ . 

 
The boundary condition of place at a point * 0

v 0:= vξ +r g r  shall be 
 

*
v b( ) − =v r v 0             (8e) 

 
with velocities *

v( )v r  prescribed on *
vB∂  for all values of time. With a load 

vector   *( )σk r    prescribed on *Bσ∂  ( * 0
0: σξ +gσ =r ) the typical boundary value 

condition of traction is the nonlinear equation 
r
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( ) ( )1
b b* * * *: :

 det −

σ b
σ= =

=r r r r
σ n k F n C n ,           (8f) 

where  bn   is  the  outer  normal  on  B∂ .  Eq.  (8f)  calls  for  an  iterative  solution,  [4]. 
 
A  is strongly elliptic for materials that are infinitesimally stable in 
HADAMARD's   sense   in statics. Then the boundary value problem derived from 
eqs.  (8a,  b,  c,  e,  f) is elliptic and the initial-boundary value problem eqs. (8a - f) 
is   hyperbolic. Therefore we apply the theory of characteristics to derive exact 
qualitative results and to develop numerical solution schemes. 
 

METHOD OF CHARACTERISTICS 
 
It is well known that systems of hyperbolic equations exhibit undetermined 
derivatives   in   certain normal directions *n  in space and time. These normals 
define   singular surfaces (so-called characteristic manifolds), on which interior 
derivatives  are continuous, but jump discontinuities of certain exterior derivatives 
are   admitted. The conclusive equations - the characteristic condition and 
the   so-called   compatibility equations - may be derived from the general 
eigenvalue problem associated with the PDE's. We make the ansatz 

*
0:

c
υ

= − −n g n                   (9) 

for the system (8a - c) and find the characteristic condition 

( ) ( )( )2 2
0 12

10 det ,    L,Tε= υ − ρυ ε =
ρ

Q n n E 2,T           (10) 

where ( )Q n  is the acoustic tensor, defined by 
( ) ( ): : : μ λ

λ μ= D DQ n Dg n A g n g g .          (11) 
 
The condition (10) may be taken as the equation for the time-like component υ  
of   *n ,   with   an  arbitrary   choice   of   all   components   of   the   spatial   normal   n , 
≠n 0 . 

 
Besides  one obtains solutions 0 0υ = ( )ευ n  of eq. (10) from the eigenvalue problem of the 
acoustic tensor  which, in contrary to the locally isotropic wave propagation in 
compressible fluids, depends on the spatial direction 

Q
n . 

 
Therefore, for every spatial direction n  one has a specific eigenvalue problem. 
For   hyperelastic materials ( )Q n

2
ευ

 is symmetric and positive definite, and thus 
   is   positive. The eigenvectors ( )εq n  of ( )Q n  are real and orthogonal for 

any   normal   n  at a point. This situation holds even for multiple eigenvalues. 
n     and    ( )ε nq  are normalized. Then in three-dimensional space n

0

 has 
two  independent  components. Furthermore, the υ , ευ  are first order homogeneous 
functions of n . If one varies the components of n  as parameters at a material point, 
the vectors 
 

* *
0 0,   

c
ε

ε
υ

= = − +n n n g n                (12) 
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generate the normal hypercones  *
0N , *Nε . The according local characteristic 

hyperplanes   envelope the local MONGE-hypercones  . The lines of 
tangency   are   given by the bicharacteristics 

*
0M , *Mε

*
0m *, εm  (generators of , *

0M *Mε ). 
The   local   characteristic hyperplanes represent plane wave fronts and the 
MONGE-hypercones represent the wave fronts emanating from a point 
disturbance   at   their apex. For two space dimensions and time the situation is 
demonstrated in Fig. 1. It shows typical calculated wave fronts emanating from 
point  in an isotropic plate under pure stretch. 9P
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The normal *

0n  is purely spatial and thus defines a material singular surface. 
Crossing   it   the lowest order discontinuous derivative is purely spatial. The 
according    MONGE-cone degenerates to the particle path line. The normals 

*
εn ,   define   acceleration waves with possibly discontinuous time-like derivatives 

( )* *
ε∇ H n ,   ( )* *

ε∇ v n . From the orthogonality of the eigenvectors ( )ε nq  one 
deduces   that   the jumps on different MONGE-hypercones through a point are 
orthogonal   to each other. But these waves are purely longitudinal and transversal 
only    on    the axis of symmetry of the cones, because only there ( )q n  
is  parallel  to  n .  These axes are called acoustical axes and waves propagating in 
these    directions are called principal waves. In a deformed isotropic elastic 
material   the   eigenvectors of σ  and C  or G  are collinear with the acoustical 
axes   

1−
= e Fee .   Transformation into the actual configuration is via e F . If 

some   initial   amplitude of the jump discontinuity is known, its future magnitude 
can be calculated from the transport equation, [7]. 
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Definition (11) allows  to be written in terms of principle wave speeds, 
which   can   be   found from ultrasound wave speed measurements. Unfortunately, 
not   all   components may be measured from sound disturbances superimposed 
on  the  standard uniaxial tension test. There are two principal axes 

A

1e , 2e  in two- 
dimensional  stress  given  by  eqs.  (4c, d).  Taking  care  of  ( ) ( )T 1 T 2 T:= υ = υe eυ  
we have 
 

( ) ( )

( )
( )

2 2
L 1 1 1 1 1 L 2 2 2 2 2

2
T 2 1 2 1 1 2 1 2

2
1 1 2 2 1 1 2 2

1 :

.

= υ + υ
ρ

+υ +
+κ +

A e e e e e e e e e e

e e e e e e e e
e e e e e e e e

D D D D D D

D D D D D D
D D D D D D

           (13) 

 
In three-dimensional stress fields the values of Tυ  are different in different principal 
directions generally. The component 2κ  can neither be interpreted as wave 
speed   nor   be   calculated from wave speeds (except for special constitutive 
equations   such   as for linear isotropic elastic material in small deformation 
theory).   Both   local effects, the difference ( ) ( )L 1 L 2υ − υe e  and the rotation 
of   e

*m *

   have   been used for a pointwise measurement of stress fields [8]. A small 
point   disturbance in a deformed istropic elastic body will only propagate on 
spherical   wave fronts if the underlying stress is hydrostatic (or the body is made 
from a material with a special form of the constitutive equation). 
 
The anisotropy of the local wave propagation depending on the local deformation 
may    lead to self-intersections of the quasi-transversal MONGE-cones 
and   to   crunodes   and cusps with local focussing on their conics. These phenomena 
result    in gaps which were called lacunae by PETROWSKY [9] and lie 
like   islands   in   the domain of dependence. For linear anisotropic media, various 
criteria   for the existence of lacunae behind the wave fronts of point disturbances 
have   been found [1, 4, 9, 10]. But no direct results are known for the 
nonlinear   case   except by arguments for the locally linearized equations [11]. 
Further   information on anisotropic wave propagation in solids may be found in 
[12] for linear elastic deformation and in [13] for compressible plastic deformation. 
 
There are infinitely many ways to describe the propagation of a plane wave. 
We use the bicharacteristics  and 0 εm  with the rays εm  in space, 
 

*
0 0: c=m g ,          (14a) 

 
* * * *

0 0 0
1: :

2
ε

ε ε ε ε ε
ε

∂υ ∂
= + = + = +

∂ ρυ
Qm m m m m m q q

n n
D

∂
,        (14b) 

 
and the nearcharacteristics *

εs  with the normal velocity εs , 
 

* * * *
0 0 0

1:ε ε ε ε ε ε
ε

= + = + υ = +
ρυ

s m s m n m m q q Q nD D: . ,          (15) 
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Any other time-like vector in the characteristic hyperplane tangent to the 
MONGE  cone   is also called near-characteristic, but will not be needed here. 
For   plane problems the space-like tangent t  and either 

*Mε
*
εm  or *

εs  span the 
characteristic  surface elements. By the vectors *

εm  and *
εs  two total time derivatives 

in a characteristic hyperplane can be introduced, 

( ) ( )* * ff : fε
∂

∇ = ∇
∂τ

m m               (16a) +

 
and the so-called -time derivative δ
 

( ) ( )* * ff : fε
∂

∇ = + ∇
∂τ

s s

f M

,             (16b) 

 
also known as displacement derivative. The discussion was only local so far. In 
finite   time   a point disturbance propagates along MONGE-conoids which may be 
twisted.  For the integration of some function  on ε  one may use the canonical 
HAMILTON equations for the HAMILTONIan ευ . With n  normalized and ευ  as 
a function of n , r , τ  we derive the special form of the HAMILTON equations 
 
( ) ( )* *

ε∇ = − ∇n m n n ED ευ ,              (17a) 

( )* * ε
ε

∂υ
∇ =

∂
r m

n
.              (17b) 

 
Different proofs of these equations were given in [4,  14]. Instead of 
eqs. (17a, b), we get for *sε  
 
( ) ( )* *

ε ε∇ = − ∇υn s n n ED ,              (18a) 

( )* *
ε ε∇ = υr s n .              (18b) 

 
Different proofs of the famous HAYES-THOMAS-formula (18a) may be found in 
[4, 15, 16, 17, 18]. It is assumed that the equation of the wave surface in space and 
time   has continuous second derivatives in space. Thus eqs. (17a), (18a) do not 
hold   on   cusps. In [4] it is shown that no torsion of the wave front occurs in 
plane problems. 
 
The purpose of the discussion of point disturbances is to replace the initial set 
of   PDE's   (8a, b) by a linearly independent set of so-called compatibility equations 
in  which no undetermined derivatives appear. These equations only hold in characteristic 
surfaces. On M  one gets for *

0
* =n n0  

 
*=0 L t ,                (19a) 

 
and on  for *Mε

*
εn  

 
( ) ( ) (( ))*0 ε ε= υ −q n n l A n LD: .            (19b) 
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In a more extended notation for plane problems, 
 

( ) ( )* * *
0:= ∇ − ∇0 H t m vD t ,              (20a) 

 
( )( )
( )( )

* *

* *

0 : :
     : : :
      ,

ε ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε

= ρυ + − ρυ ∇
− + υ −
− ρυ

q m q n At t m t q t v
q n A m q t A t m t q n A t H

q b

D D D D
D D D D D D #∇         (20b) 

 
one can see that only interior derivatives remain. These are the cross derivatives 
in   direction of *

ε
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t  and the derivatives in characteristic directions m  which may 
be replaced by *sε  in a near-characteristics method. Using 0=εs t  eq. (20b) becomes 
 

( )
( )

* *

* *

0 : :
     : :  .

ε ε ε ε

ε ε ε ε ε ε

= ρυ + ∇
− + υ ∇ − ρ

q s q n At t v
q n A s q t A t H q b

D D D
D D D D # υ

A

atτ = 0P 0t

         (20c) 

 
To this end all equations are exact and hold for arbitrary large deformation and 
large    displacement of a general isotropic nonlinear hyperelastic body. The 
assumption   of   the existence of a stored energy density was a mere simplification 
of notation. Its only effect is the symmetry imposed upon  by eq. (7b). 
 
 

NUMERICAL SOLUTION 
 
Given the initial data at points of a suitable mesh on the initial value plane at 
time   ,   the solution at a point  on the plane τ = + Δτ

0P
0

 may be 
computed   numerically by integrating the HAMILTON equations (17a, b) and the 
compatibility equations, which are given for the plane problem by equations 
(20a,  b).  We  actually integrate the simplified equations (18a, b) and (20a, c). From 
Fig.  1  it is clear that a near-characteristics method uses points outside the 
analytical  domain of dependence. Therefore, we integrate in characteristic hypersurfaces 
which are principal waves at point . For principal waves, the two 
integration  paths  are  equivalent In the limit Δτ→ , since * *=ε εm s

0P

A

0P  

. The principal 
axes   at  depend on the iterative solution. Therefore, we have to rotate 
the  local  basis  in each iteration step. This expense is compensated by the 
condensed  presentation (13) of . In the initial value surface all functions and 
the  cross  derivatives may be calculated from a constrained least squares approximation 
with constraints following from eq. (8c). If the cross derivatives at 
are  considered  as  additional unknowns, eqs. (18a,b), (20a,c) contain only total 
time  derivatives in directions *

0s  and *
εs

0P

. These ODE's may be integrated by 
HEUN's  second order method. It can be shown that the number of linearly 
independent  difference equations derived from eqs. (20a,c) is less than the number 
of   unknown functions including the cross derivatives at  Therefore, we 
integrate  the  non characteristic balance of momentum (8a) along the path line to 
get   two   additional  equations.   This  was  suggested  for  problems  of  linear  elasto- 



dynamics in [19] and for gas dynamics in [20]. On the path line all derivatives 
in  (8a)  are  continuous because it is a material singular surface. Fig. 2 shows the 
scheme   we use for an interior point of the plate. The numbers of the points in 
the   scheme   correspond to the indices written in the difference equations. Fig. 1 
and  Fig.  2  indicate that the CFL stability condition is satisfied. Note that the 
iteration    may    be started with the first order EULER-CAUCHY-integration of 
(8b)   along   the path line to give 0H 0P 0v at , since a first guess of  is not 
needed   in   elastodynamics. The algorithm may be read from Fig. 2 and the 
following formulas: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1ξ

2ξ

 
 
Praedictor (first guess):  with ( )i 1 1 9= 0 0υ =  for i 9=  
 

( ) ( ) ( )0* 0 *
i 9 0ε= + Δτ υ⎡⎣r r e e ⎤⎦ ,        (21a) 

 
and from the compatibility equation along the path line 
 

( )0
0 9= + Δτ∇H H v9 .         (22a) 

 
Corrector ( k -th iteration step): 
 

( ) ( ) ( )( ( )k 1* k *
i 9 i 02

) −

ε ε
Δτ ⎡= + υ + υ⎣r r e e e ⎤⎦ ,      (21b) 

 
( ) ( )k
0 9 9 02

−Δτ ⎡= + ∇ +∇⎣H H v v k 1 ⎤
⎦ .       (22b) 
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We derive the difference equations for principal waves arriving at point  (see 
Fig.  2)   from the compatibility equations on the quasi-longitudinal cone  and 
the   quasi-transversal cone . The appropriate choices of 

0P
*
LM

*
TM 0i (n  ( )i 1 ) and 1 4=

0 jn ( )j 5 1 8=   ( ) are 1e , 2e , 1−e , 2e− . We give an example of the difference 
equations on each cone. 
 
From the compatibility equation on the quasi-longitudinal cone  with *

LM 0i 1:=n e  
and 0i 2:=t e  and ( )=q q e i 1Li Li 1  for =  it follows: 
 

( )k 1−( ) ( ) ( )

( )

( ) ( ) ( )

( )( ) ( )

( ) ( )( )( ) ( )

( )( )( )

( ) ( ){
( )

k
L0 1 1 Li 1 Li 0

k 1
k2 2

L0 1 1 1 0 2 2 Li 1 Li 1 i 0

k 12 k
00 2 2

k 1 k2 2
0L0 1 T0 1 2 2 0 2 1 2

k 1
L0 1 1 0

L0 1 1 Li 1 Li i

2 2
L0 1 1 1 0 2 2

1 : :

:

=

    

−

−

−

−

υ + υ⎡ ⎤⎣ ⎦
⎡ ⎤

− υ + κ + υ⎢ ⎥ρ⎣ ⎦
⎡−Δτ − ∇κ⎣

+ ∇υ υ + κ
⎤+ υ ⎦

υ + υ⎡ ⎤⎣ ⎦

− υ + κ

e e e q v

e e e e e e q e A H

ve e
He e e e e e e

e e b
e e e q v

e e e e e

D D D

D
#D D D D

D D

          (23) 

( )

( ) ( )
( )

Li 1 Li 1 i i

Li 1 i 2 2 i

k 1

Li 1 Li 2 i 2 i Li 1 Li 0

1 : :

1 : :    

1    : .
−

⎡ ⎤
+ υ⎢ ⎥ρ⎣ ⎦

⎡ ∇− Δτ ⎢ρ⎣
⎫+ υ ∇ + υ ⎬ρ ⎭

e q e A H

q e A e e v

e q e A e H e q b

D

D D

D D #

 
From the compatibility equation on the quasi-transversal cone  with *

TM
0 j 1:=n e  and 0 j 2:=t e  and ( )=q q e j 5=  it follows: Tj Tj 1  for 

 
[ ]( ) ( )k 1 k−

( )
( )

( )( ) ( )

( )( )( )( ) ( )

( )( )

[ ]{

T0 2 Ti Li 0
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We complete the difference equations with the balance of momentum 
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( )( )
k 1

kk T T
0 0 0 0 9 9 9

1 :
2 2

−⎡ ⎤⎛ ⎞ ⎛Δτ Δτ
− ∇ + = + ∇⎢ ⎥⎜ ⎟ ⎜ρ ρ⎢⎝ ⎠ ⎥ ⎝ ⎠⎣ ⎦

v A H b v A H 9
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+ ⎟b
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.         (25) 

 
If we are not interested in the gradients at  we may eliminate them by linear 
combinations of the difference equations and just calculate  and 

0P
0H

at
. After the 

solutions   at all points at time τ = + Δτ  are calculated they may be used as 
initial data for the following time step. 
 
On boundaries some difference equations are not needed. But only in linear 
problems   they   may be replaced by boundary values. The schemes for the nonlinear 
problem use the approximation of 0H 0P

0′ψ 1

∇  at , [4]. They also need some iteration 
to   solve   (8f). The only reason for both disadvantages is the nonlinearity of the 
boundary condition (8f). 
 
 

NUMERICAL EXAMPLES 
 
Fig. 3a shows the simple elongation strain path of a typical rubber-like material 
using  TRELOAR's approximation with data from [21]. The functions  and ′ψ  
in  eq.  (4b) are approximated by second degree polynomials in the eigenvalues of 

.   Up   to point 3 lower degree polynomials would result in roughly the same 
curve  since  the  geometrical nonlinearity is predominant. But this is not the case 
for  the  wave speeds [4]. Obviously only 

C

( )L 1υ e

2ve
2ve

1ve

 can he deduced from the uniaxial 
stress-strain curve. Fig. 3b represents the related principal wave speeds. For 
three   different   homogeneous states of stresses (uniaxial pressure (1), no stresses 
(2),   uniaxial tension (3)). Fig. 3c shows typical wave fronts of infinitesimal 
point   disturbances in a plate, i.e. lines of intersection of the MONGE-cones with 
a   space-like plane. The state (3) was used for a numerical test, where a small 
shear   deformation was superimposed by an initial disturbance of the velocity 
component   . Both of the MONGE-cones come out nicely and the two wave 
types   seem decoupled. The amplitudes of  are approximately ten times higher 
than   those of . In another example, for a plate made of a compressible 
material, we found a strong coupling of the two types of waves [4]. 
 
Since at the state 1 ( )L 1υ e  increases steeply with growing pressure one expects 
pressure   waves to form shocks quickly. The initial profile of the wave in Fig. 4 
changes   in   the predicted way while moving to the right. Clearly, there is also an 
equalisation in the transverse direction. 
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