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     In this paper, a method is introduced to determine the limit load of general shells using the finite element 
method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic 
material model. A non-linear constrained optimisation problem is solved by using Newton’s method in 
conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend 
subjected to bending moments proves the effectiveness of the algorithm. 
 
1. Introduction 
 
     In practical engineering, the calculation of the load carrying capacity for structures has been a problem of 
great interest to many designers. In the early 20th century, it could be relatively easily obtained by imposing the 
stress intensity at a certain point of the structure equal to the yield stress of the material. This implies that 
structural failure occurs before yielding. However, many materials, for example the majority of metals, exhibit 
distinct, plastic properties. Such materials can deform considerably without breaking, even after the stress 
intensity attains the yield stress. This implies that if the stress intensity reaches the critical (yield) value, the 
structure does not necessarily fail or deform extensively. To this case, in order to permit higher loads, elastic-
plastic structural analysis becomes more general than the classical elastic one. Among the plasticity methods, 
Limit and Shakedown Analysis (LISA) seems to be the most powerful one. In Europe LISA have been 
developed as direct plasticity methods for the design and the safety analysis of severely loaded engineering 
structures, such as nuclear power plants and chemical plants, offshore structures etc. Staat (2002; Staat and 
Heitzer, 2003). Annex B of the new European pressure vessel standard EN 13445-3 is based on LISA (European 
standard, 2005-06), (Taylor et al., 1999) thus indicating the industrial need for LISA software. All design codes 
are based on perfect plastic models. The extension of LISA to hardening materials is no problem (Staat and 
Heitzer, 2002). 
     Shell structures are used in many engineering applications due to efficient load carrying capacity relative to 
material volume. From the engineering point of view, shells often allow to build structures with high strength 
and stiffness and relatively low weight. From the analysis point of view, shell structures stand for a challenging 
problem mostly due to the three-dimensional finite rotations. Plasticity in shell structures is accounted either by 
means of integration of stress over the thickness (layer approach), or stress resultant modelling. By the latter 
approach the yield surface becomes more complicated than with the former approach, thus requiring a special 
consideration in algorithm for updating of the stress resultant. 
     This paper concerns the application of a kinematic formulation for the finite element limit and shakedown 
analysis of general thin shells. The technique is based on an upper bound approach using the re-parameterized 
exact Ilyushin yield surface and a non-linear optimization procedure. The solution of the problem is obtained by 
discretizing the shell into finite elements. It is typical for the direct plasticity methods that the development of 
algorithms for the structural problem is influenced by the material modelling. 
 
2. Plastic dissipation function in term of stress resultants 
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     Let h  be the shell thickness and yσ  the uniaxial yield stress. The non-dimensional ‘engineering’ stress and 

strain resultant vectors are introduced as follows 
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quadratic strain intensities are defined in terms of the incremental ‘engineering’ strain resultant by 
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where P  and its inverse 1−P ,  ( 1,2,3)i i =P  are 
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     Ilyushin (1948) published the derivation of a stress resultant yield surface, describing the case where a cross-
section of a shell is fully plastified. However, this yield surface has not been used because the parametric form in 
which it was described was not amenable to calculation. In order to avoid the difficulties arising with the 
parameterization of the Ilyushin yield surface and to use the exact yield surface in practical computations, 
Burgoyne and Brennan (1993) introduced the parameters 

2,       and   =P P
P P
ε εκ

κ κ

υ β γ υ β= = − −                     (4) 

With these parameters, the plastic dissipation function for a shell structure may be written in the form (Tran et al, 
2007) 
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     It is to be noted that pD  is convex but not everywhere differentiable (Capsoni and Corradi, 1997). In order to 
allow a direct non-linear, non-smooth, constrained optimization problem, a “smooth regularization method” 
should be used by adding to γ  and Pκ  a small positive number, namely 2η . Thus, in this case, equation (6) is 

amenable to a numerical evaluation for all values of pε . 
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3. Upper bound limit and shakedown algorithm for general shell structures 
 

     Consider a convex polyhedral load domain L  and a special loading path consisting of all load vertices k̂P  

( 1,...,k m= ) of L . By discretizing the whole structure by finite elements and application of Koiter’s theorem, 
the shakedown limit, which is the smaller one of the low cycle fatigue limit, and the ratchetting limit may be 
found by the following minimization  
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in which iB  denotes the deformation matrix, u  is the displacement rate vector, iw  is the weighting factor of the 

Gauss point thi  and NG  is the total number of Gauss points in the structure. By introducing some new notations 

 0 0
ˆ,     ,     E

ik i ik ik ik i i iw N wε= = =e t B Bε σ                     (8) 

where ˆ, ,ik ik ie t B  are the new strain rate vector, new fictitious elastic stress vector, and new deformation matrix, 
respectively, we obtain a simplified version for the upper bound shakedown analysis 

 

( )2 2
0 0 1 1 2 2 0

1 1

1

1 1

           min
3

ˆ              1,...,
s.t.:    

1.

m NG

k i

m

ik i
k
m NG

T
ik ik

k i

PN K

i NG

κα ε β β γ β β γ γ+

= =

=

= =

= + + + +

 = ∀ =

 =


∑∑

∑

∑∑

e B u

e t

                 (9) 

     By applying Newton’s method in conjunction with a penalty method and the Lagrangean dual method to 
solve the KKT conditions of system (9) we obtain the Newton directions du  and ikde , which assure that a 

suitable step along them will lead to a decrease of the objective function α+ . If the relative improvement 
between two steps is smaller than a given constant, the algorithm stops and leads to the shakedown limit factor 
(Tran et al., 2007). It is noted, that if there is only one load and this load does not vary, then the load domain 
reduces to a point ( 1k = ). This fact means that the above upper bound of shakedown load factor reduces to that 
of limit load factor. 
 
4. Numerical example 
 
     Consider an 90o  elbow with mean radius r , bend radius of curvature R  and thickness h . One of its ends is 
supposed clamped and the other one is subjected to a constant in-plane closing moment IM  or a constant out-of-

plane bending moment IIM  as shown in figure 1b. The curvature factor is defined as follow 

 2r
Rh

=λ                                                                                                                       (10) 

     Generally, 0.5λ ≤  corresponds to a highly-curved pipe, while λ → ∞  corresponds to a straight pipe. In order 
to evaluate the model, different values of λ  within the range [ ]0.1,  1.2  are examined. Our model that is used for 
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elastic-plastic analysis is meshed by 700 quadrangular flat 4-node shell elements as shown in figure 1a. The 
elastic-perfectly plastic material model is used with 208000 MPaE = , 3.0=ν , 250 MPayσ = . 

Elbow under in-plane closing bending moment  

     We define the limit load factor / s
I I IM Mα = , where IM  is the limit moment of the elbow and s

IM  is the 

limit moment of the straight pipe which has the same radius as the elbow. Calladine (1974) proposed a lower 
bound solution for an infinite, strongly-curved pipe ( 0.5λ ≤ ) 

 2 / 30.9346C
Iα λ= .                                                                                                      (11) 

     This solution is considered in the literature to come close to the experimental limit load factor (Bolt and 
Greenstreet, 1972; Goodall, 1978; Griffiths, 1979). According to Yan (1997), it is a good approximation when 

0.7λ < . For a slightly-curved pipe ( 0.7λ ≥ ), he proposed an approximate solution which is validated by 
numerical analysis 

 cos( )
6
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(b) 

Figure 1. FE-mesh and geometrical dimensions 

 

     In the framework of his PhD thesis, Desquines et al. (1997) proposed a more general analytical solution as a 
lower bound, which can applied for any value of λ  
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     Spence and Findlay (1973) also expressed an analytical solution for the limit load of an elbow  

 0.60.8 ,     1.45SF
Iα λ λ= < .                                                                                         (14) 

     All the foregoing expressions are based on small displacement analysis and assume perfectly plastic material 
behavior. Based on large displacement analysis, Goodall (1978) proposed the maximum load-carrying capacity 
of the elbow subjected to closing bending moment as 
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     Table 1: Limit load factors of elbow under in-plane closing bending moment 

λ  Calladine 
(11) 

Yan 
(12) 

Desquines 
(13) 

Spence & 
Findlay (14) 

Goodall 
(15) 

Touboul 
(16) 

Drubay 
(17) 

Present 
paper 

0.100 0.2013 - 0.1791 0.2001 0.1489 0.154 0.1657 0.2155 
0.200 0.3196 - 0.3422 0.3046 0.2817 0.2445 0.263 0.3279 
0.250 0.3709 - 0.4144 0.3482 0.3401 0.2838 0.3052 0.3900 
0.300 0.4188 - 0.4794 0.3885 0.3947 0.3204 0.3446 0.4614 
0.363 0.4756 - 0.5515 0.4355 0.4593 0.3638 0.3913 0.5200 
0.400 0.5074 - 0.5888 0.4617 0.4955 0.3882 0.4175 0.5589 
0.500 0.5887 - 0.6732 0.5278 0.5879 0.4504 0.4844 0.6260 
0.600 0.6648 - 0.7377 0.5888 0.6741 0.5087 0.5471 0.6930 
0.650 0.7013 - 0.7639 0.6178 0.7153 0.5365 0.577 0.7227 
0.700 0.7368 0.7330 0.7868 0.6458 0.7554 0.5637 0.6063 0.7494 
0.750 - 0.7660 0.8069 0.6732 0.7945 0.5902 0.6348 0.7773 
0.800 - 0.7933 0.8244 0.6998 0.8327 0.6162 0.6627 0.7974 
0.903 - 0.8365 0.8544 0.7525 0.909 0.668 0.7184 0.8341 
1.000 - 0.8660 0.8765 0.8000 0.9782 0.715 0.769 0.8617 
1.200 - 0.9063 0.9093 0.8925 1.1138 0.8074 0.8684 0.9006 
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Figure 2. Limit load factors of elbow under in-plane closing bending moment 
 
 
 

Table 2: Limit load factors of elbow under out-of-plane bending moment 

λ  
Yan  
(18a) 

Yan  
(18b) 

Present 
paper 

0.100 0.2763 - 0.2476 
0.200 0.4188 - 0.4047 
0.250 0.4788 - 0.4709 
0.300 0.5341 - 0.5244 
0.363 0.5989 - 0.5675 
0.400 0.6348 - 0.6063 
0.450 0.6813 - 0.6337 
0.500 0.7257 0.7143 0.6575 
0.550 - 0.7374 0.6924 
0.600 - 0.7591 0.7245 
0.650 - 0.7796 0.7539 
0.700 - 0.7991 0.7808 
0.750 - 0.8177 0.8053 
0.800 - 0.8355 0.8276 
0.903 - 0.8699 0.8674 
1.000 - 0.9000 0.8984 
1.200 - 0.9564 0.9467 
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Figure 3. Limit load factors of elbow under out-of-plane bending moment 
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     Based on the experimental study at CEA DEMT, Touboul et al. (1989) proposed the following equations of 
closing collapse moments of elbows 

 2 / 30.715T
Iα λ= .                                                                                                         (16) 

     Drubay et al. (1995) expressed another closing mode collapse moments of elbows as 

 2 / 30.769Dr
Iα λ= .                                                                                                       (17) 

     Our numerical results are introduced in table 1 and figure 2, compared with these above analytical solutions 
and a numerical solution of Yan (1997). It is shown that our solutions compare well with the other analytical 
solutions, which are based on small displacement theory, but bigger than those which are based on large 
displacement theory. They converge as an upper bound of Calladine’s solution and lower bound of Desquines’s 
solution. 

Elbow under out-of-plane bending moment  

     We define the limit load factor / t
II II IIM Mα = , where IIM  is out-of-plane limit moment of the elbow, t

IIM  

is the torsion limit moment of the axle which has the same radius as the elbow  
By this definition, Yan (1997) proposed an analytical solution for the elbow subjected to out-of-plane bending 
moment 

 0.61.1 ,        0.5Y
IIα λ λ= < ,                                                                                        (18a) 

 1/ 30.9 ,       0.5 1.4Y
IIα λ λ= ≤ ≤ .                                                                               (18b) 

     Numerical results are introduced in table 2 and figure 3, compared with the analytical solution of Yan (1997). 
It is shown that our solutions compare well with Yan’s solution outside the range 0.4 0.7λ≤ ≤ . 
 
5. Conclusions 
 
     The numerical solutions demonstrate that the proposed method is capable of identifying reasonable estimates 
of the limit load factor for a wide range of thin shell problems. It has been tested against several limit loads 
which have been calculated in literature. A numerically very effective method is achieved from the lesser 
computational cost by using shell elements compared with volume elements and by direct plasticity methods 
which achieve plastic solutions in the computing time of only several linear elastic steps. This method seems to 
be particularly suited to comparatively large problems or to the application in structural optimization and 
structural reliability. 
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