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Summary. A procedure for the evaluation of the failure probability of elastic-plastic thin 
shell structures is presented. The procedure involves a deterministic limit and shakedown 
analysis for each probabilistic iteration which is based on the kinematical approach and the 
use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the 
non-linear problems may be efficiently solved by using the First and Second Order Reliability 
Methods (FORM/SORM). This direct approach reduces considerably the necessary 
knowledge of uncertain technological input data, computing costs and the numerical error. 

1 INTRODUCTION 
In the design-by-analysis context, the need to account for uncertainties has long been 

recognized in order to achieve reliable design of structural and mechanical systems. There is a 
general agreement that advanced computational tools have to be employed to provide the 
necessary computational framework for describing structural response and reliability. Current 
structural reliability analysis is typically based on the limit state of initial or local failure. 
However, this gives quite pessimistic reliability estimates, because virtually all structures are 
redundant or statically undetermined. Progressive member failures of such systems reduce 
redundancy until finally the statically determined system fails. The more effective method of 
structural reliability analysis is probabilistic limit and shakedown analyses, which is based on 
the direct computation of the load-carrying capacity or the safety margin. 

This paper presents an algorithm of probabilistic limit and shakedown analysis for thin 
plates and shells, which is based on the kinematical approach. The loading and material 
strength are to be considered as random variables. Non-linear sensitivity analyses are 
performed with FORM/SORM in order to get the failure probability of the structure. 

2 DETERMINISTIC LIMIT AND SHAKEDOWN ANALYSIS 

Let h  be the shell thickness and yσ  the uniaxial yield stress. For our purpose to deal with 
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the probabilistic problem, the yield limit yσ  and the loads are considered as random 
variables. Let us restrict ourselves to the case of homogeneous material such that 0y Yσ σ=  

where 0σ  is a constant reference value and Y  is a random variable. The non-dimensional 
‘engineering’ strain resultant vector is introduced as follows 
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0 0 ) /(1 Eε σ ν= −  and 0 04 / hκ ε=  are the normalized 
quantities. The quadratic strain intensities are defined in terms of non-dimensional stress 
resultants by 
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In order to avoid the difficulties arising with the parameterization of the Ilyushin yield 
surface and to use the exact yield surface in practical computations, Burgoyne and Brennan1 
introduced the parameters 

2
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P P
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κ κ

υ β γ υ β β β β= = − − = − = + β  (4)

With these parameters, the plastic dissipation function for a shell structure may be written 
in the form2 

( )2 2
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3
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 (5)

Consider a convex polyhedral load domain  and a special loading path consisting of all 
load vertices  ( ) of . By discretizing the whole structure by finite elements 
and application of Koiter’s theorem, the shakedown limit, which is the smaller one of the low 
cycle fatigue limit, and the ratcheting limit may be found by the following minimization 

L
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By applying Newton’s method to solve the KKT conditions of system (6) we obtain the 
Newton directions d  and , which assure that a suitable step along them will lead to a 
decrease of the objective function 

de
α+ . If the relative improvement between two steps is 

smaller than a given constant, the algorithm stops and leads to the shakedown limit factor. 

3 PROBABILISTIC LIMIT AND SHAKEDOWN ANALYSIS 
In this paper FORM/SORM are used for structural reliability analysis. The limit state 

function separating the safe and failure regions is defined directly as the difference between 
the obtained limit load factor and the current load factor. If we defined the limit load factor 

lim limP / Pα =  where ,  are limit load and actual load of the structure, then after being 
normalized with the actual load P , the limit state function becomes 

limP P

lim 1g α= − . The 
calculation of the design point in the standard Gaussian space u  leads to a non-linear 
constrained optimization problem as follows3 
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A general method called the Sequential Quadratic Programming (SQP) was used to solve 
the above problem. This method has proved to be suitable for tasks in the area of the 
reliability theory After each deterministic step, the Jacobian and the Hessian of the limit state 
function, which are needed for FORM/SORM, are obtained directly from a mathematical 
analysis with no extra computational cost4. 

4 NUMERICAL APPLICATION 

Consider a square plate with central circular hole which has the ratio  and is 
subjected to a uniaxial tension 

/ 0.R L =
p  which can be constant or can vary within the range 

[ ]max0, p y. Both yield limit σ  and load p  are supposed to be log-normal distribution random 
variables. For this case, the exact plastic collapse limit and the numerical shakedown load are 
given by p ( )lim 1 / yR L σ= − 0.60332, sh yp σ= . Numerical results of failure probabilities fP  
are introduced in tables 1, compared with the exact solutions3. The FORM and SORM results 
are identical within 4 digits which demonstrates the linearity of the limit state function in the 
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shakedown approach. 
 

Limit analysis Shakedown analysis 

/
yp σμ μ  fP  (anal.) fP  (FORM/SORM) /

yp σμ μ fP  (anal.) fP  (FORMSORM) 

   0.2 2.501E-15 1.817E-15 
0.3 1.790E-12 1.704E-12 0.3 3.661E-07 3.404E-07 
0.4 4.473E-07 5.097E-07 0.4 1.788E-03 1.533E-03 
0.5 4.315E-04 5.205E-04 0.5 9.151E-02 8.708E-02 
0.6 2.071E-02 1.814E-02 0.6 4.844E-01 4.716E-01 

   0.60332 5.000E-01 4.883E-01 
0.7 1.719E-01 1.604E-01 0.7 8.540E-01 8.481E-01 
0.8 5.000E-01 4.794E-01 0.8 9.773E-01 9.760E-01 
0.9 7.981E-01 7.839E-01 0.9 9.977E-01 9.976E-01 
1.0 9.431E-01 9.373E-01 1.0 9.998E-01 9.998E-01 
1.1 9.880E-01 9.867E-01 1.1 9.999E-01 9.999E-01 
1.2 9.979E-01 9.976E-01    
1.3 9.997E-01 9.997E-01    

Table 1: Numerical results and comparison for log-normal distributions with , ,0.1p pσ σμ=  σ

5 CONCLUSIONS 
The advantages of this method are that the failure under cyclic loading is treated as a time-

invariant problem and that the limit state function becomes (nearly) linear. Moreover, 
sensitivity analyses are obtained directly from the mathematical optimization solution of the 
deterministic problem with no extra computational cost. The proposed method appears to be 
capable of identifying good estimates of the failure probability, even in the case of very small 
probabilities. 
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