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Abstract

Limit and shakedown theorems are exact theories of classical plasticity for the di-
rect computation of safety factors or of the load carrying capacity under constant
and varying loads. Simple versions of limit and shakedown analysis are the basis
of all design codes for pressure vessels and pipings. Using Finite Element Methods
more realistic modeling can be used for a more rational design. The methods can
be extended to yield optimum plastic design. In this paper we present a first im-
plementation in FE of limit and shakedown analyses for perfectly plastic material.
Limit and shakedown analyses are done of a pipe–junction and a interaction diagram
is calculated. The results are in good correspondence with the analytic solution we
give in the appendix.

1 NOMENCLATURE

b body force
���

max. plastic dissipation
n outer normal vector �������
	��	���������� load, limit and shakedown factor
p surface traction � actual strain��� ��� � reference load ��� elastic strain� � density of plast. dissipation �����! � � plastic strain and rate"

time ��# thermal strain
x coordinate vector $%�&$�'(��$*) parameters+ 	 element compatibility matrix ,��- , residual stress and rate. �0/1�324�32 � �32�5 dimensions of the pipe–junction , 	 dicrete eigen–stress vector
E elasticity tensor 6, time–independent residual stress798

number of Gaussian points : actual stress7<;
number of load vertices = � yield stress� � �?> ��� �?> ��@BAC�D	FE actual and elastic pressure : � fictitious elastic stressGIH "&J � � �
	��	�� load and limit pressure : �	 discrete fict. elast. stress vector� @ �LKMKLKB� �ON actual stresses P yield function

�Q��� > � actual and elastic temperature R , S-R structure and its boundary
� 	 ��� @ inner and outer temperature T load domain

1 Introduction

Passive components in power plants are designed on a structural mechanics basis for
internal pressure, additional mechanical loading, and thermal loading. Mechanical and
thermal stress respectively decrease and increase with wall-thickness. The elastic range is
bounded by allowable stress. If design is based on elastic stress assessment, the minimum
total stress UWVXU%Y[Z0\^]-_`U?aD]bZ&c3Y may define the optimum wall-thickness of a heat exchanger
tube for given heat flow density.
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The elastic strain range is rather small. It is impossible to design a structure with
considerable thermal loading within the elastic range. Thermo-shock or other residual
stresses may push stress further into the plastic range locally. Therefore plastic analysis
is used in design of passive components made of ductile material. Plastic design cannot
be based on stress assessment, because there is no stress to bound the plastic range from
failure domains. Instead plastic design has to consider the characteristic development of
plastic strains towards structural failure [?]:

� Instantaneous collapse by unrestricted plastic flow at limit load.

� Incremental collapse by accumulation of plastic deformations over subsequent load
cycles (ratchetting).

� Low Cycle Fatigue (LCF) by alternating plasticity.

� Plastic instability of slender compression members (limit analysis does not apply
for this failure mode).

The above optimum wall-thickness may not be a rational choice for inelasticity. Plastic
failure modes cannot be assessed from the state of stress, because different stresses inter-
act in a nonlinear way towards structural failure. Design codes try to maintain the stress
assessment by introducing e.g. the concept of primary and secondary stress. Secondary
stress is defined to have no influence on the limit load. There is little guidance for the
designer how to recognize secondary stress. However, it is known from limit analysis that
thermal stress and all other residual stresses are secondary stresses, provided they do not
significantly alter the geometry of the structure or the yield surface of its material [?] (for
experimental evidence see [?]).

In principle the possible structural failure may be reproduced in a detailed incremen-
tal plastic analysis if it can be continued towards the limits. Generally this is prohibitively
expensive in the design stage and the necessary details of load history or or of the con-
stitutive equations may not be available. If computation is stopped away from the limit,
any prediction of failure is based on extrapolation. In particular the elastically computed
stress may be of little use in limit load prediction, because limit load is independent of the
elastic constants (Young’s modulus, Poisson ratio) [?].

To avoid the above short-comings ”Limit- and shakedown load form - in this or an-
other way - the basis of the design concept of modern design codes such as ASME-Code,
Section VIII-Division 2, British Standard 5500, ISO-DIS 2694 and the AD-Merkblätter.”
([?], translated from the German). Load is the most modern word in this quotation. Com-
ponent geometry, dimensions and design operation are determined by the allowable load.
This design load may not be simply derived from the detailed knowledge of stress and
strain history. The interpretation of stress and stress components is not self-evident [?].
The direct computation of the load carrying capacity is the objective of limit- and shake-
down analyses (not applicable for the stability problem). They are used for design in the
form of rules to derive allowable stress intensities [?], limit load formulae [?], and inter-
action diagrams (like Bree and Brussels diagrams, [?]). This current design practice rests
on simplifying assumptions for geometry, loading and constitutive equation.
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We will show in this contribution how these assumptions may be avoided by using
the Finite Element Method (FEM) for limit- and shakedown analysis. Some twenty years
ago the Pressure Vessel and Piping Division of ASME has invited researchers to develop
software for design by limit analysis using the FEM [?]. But until recently this approach
was limited to relatively small Finite-Element-Models [?]. We have implemented limit
and shakedown analysis into the general purpose FEM program PERMAS employing a
subspace technique which can handle large models. FEM based limit and shakedown
analyses may be used to compute interaction diagrams for any complex component under
two-parameter loading. These may be used to decide on allowable loading ranges for
the structure. More complex loading may be analysed. But they cannot be represented
in a similarly visual manner. The analyses may be performed at computing times and
costs of only 2-10 standard elastic FEM analyses. Thus design variants may be compared
and an optimum choice be made [?]. The present FEM implementation of this ongoing
research is restricted to ideal plasticity with constant material coefficient. The extension
to hardening material will be one of the next steps.

Limit and shakedown analysis may be extended towards optimum plastic design.
This option was e.g. realized by the program CEPAO (Calcul Elasto-Plastique, Analyse-
Optimisation) for plane frame structures [?]. The optimum cross sections of the beams in
the structure are obtained and checked for buckling of compression members. A devel-
opment towards optimum plastic design could be a follower of the present project. From
the computational burden it is clear that the highly effective limit and shakedown analysis
will be the only possible approach for a long time [?].

Limit and shakedown theorems provide rules and guidance for design. It is e.g. eas-
ily shown that adding of weightless material may not decrease the limit load [?]. In the
appendix we prove, that for a structure made of linear kinematic hardening material which
fails locally under proportional loading (e. g. pressure and temperature), the shakedown
range is obtained by expansion of the elastic range by a factor of 2. This simple result is
independent of the hardening exponent and holds also for perfect plastic material. There-
fore the kinematic hardening effect bears no profit for such structures (e. g. pipe–junction,
plate with a hole, see [?]).

2 Theorems of limit load and elastic shakedown

Although being simplifying methods limit and shakedown analyses are exact theories
of plasticity, which do not contain any restrictions or assumptions other than sufficient
ductility of the material. Simplicity is achieved with respect to the required input data
and to reduced computational effort. This is reached by restricting analysis to the direct
computation of the safety factor.

Static theorems are formulated in terms of stress and define safe structural states
giving an optimization problem for safe loads. The maximum safe load is respectively,
the limit load avoiding collapse and the (elastic) shakedown load avoiding ratchetting and
LCF. Alternatively, kinematic theorems are formulated in terms of kinematic quantities
and define unsafe structural states yielding a dual optimization problem for the minimum
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of limit or shakedown loads. Any admissible solution to the static or kinematic theorem
is a true lower or upper bound to the safe load, respectively. Both can be made as close
as desired to the exact solution. If lower and upper bound coincide the exact solution is
found. To obtain conservative solutions the static approach is used, which is also numeri-
cally more convenient.

Static limit load theorem:
An elastic–plastic structure will not collapse under monotone loads if it is
in static equilibrium and if the yield function is nowhere violated. The limit
load is the maximum safe load.

Static shakedown theorem:
An elastic–plastic structure will not fail with macroscopic plasticity under
time variant loads if it is in static equilibrium, if the yield function is nowhere
and at no instance violated, and if all plastic deformations fade away, i.e. if�����
a����

	
������� V�� . The shakedown load is the maximum safe load.

If observation starts after few cycles, there may be no difference between pure elastic
behaviour and shakedown, because in elastic shakedown the material becomes eventually
elastic. A difference can only be made if the plastic part of the load history is known.

To make them operational we will now formalize the static theorems. The given
structure � is assumed to be composed of material points denoted by their coordinate
vectors ����� . In the geometrically linear theory an additive decomposition in elastic,
plastic and temperature strains of the strains 
 is possible.


 V 
�� _ 
�� _ 
���� (1)

The elastic strains 
 � V  "!$#&%(' are obtained from the inverse of the fourth–order
elasticity tensor E by Hooke’s law. For an elastic, perfectly plastic material plastic strains
 � occur if a yield function ) reaches the yield stress U+* (and a loading condition is
satisfied). The von Mises yield function is chosen. This function is prefered because it
is continuous differentiable. But most theorems of plasticity theory hold also for Tresca
yield function. Material stability in the sense of Drucker’s postulate is assumed. Thus the
yield surface bounded by , V U.-* is convex.

For a load increasing with load factor / the above necessary conditions for a safe
state of � with traction boundary 01��2 (with outer normal 3 ) and yield function , under
body forces /.4 and surface loads /�5 read

,  ' � 6 U -* ��7 � (2)89��: ' V /.4 ��7 � (3)

';3 V /.5 < 7 01�=2 � (4)

The limit load factor /1>@?FY�?FaIV �BADC / is a safety factor. This leads to the mathematical
optimization problem formulated in static quantities (stress ' )

�EAFC / (5)

such that (s. t.) restrictions (2) – (4) hold � (6)
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The concepts for time-variant loading are more involved. Time is denoted by � . The
stresses ' can be decomposed into fictitious elastic stresses ' � and residual stresses � by

' V ' � _�� � (7)

' � V� % 
 are stresses which would appear in an infinitely elastic material, so that the �
result from plastic deformations.

The residual stresses (eigen stresses) � satisfy the homogeneous static equilibrium
and boundary conditions

89��: � V�� ��7 � (8)� 3 V�� < 7 01�=2 � (9)

One criterion for an elastic, perfectly plastic material to shake down elastically is that the
plastic strains 
 � and therefore the residual stresses � become stationary for given loads�  ��� V  4�� 5 � in a load domain � :

�����
a����

	
 �  ��� ��� V ���
�����
a����

	�  ��� ��� V����
	 C � � � (10)

In every considered failure mode exist points x of the structure where condition (10) is
violated. Thus there exists at least one point x for which the density of the plastic energy
dissipation ��� per unit volume

���  ��� ��� V  a
* '

 ����� � 	
 �  ����� ��� � (11)

increases indefinitely in time. To avoid the possibility of plastic failure the maximum
possible plastic energy dissipation�

�  � � V �����
a���� ���  ��� ��� 6��  � � (12)

must be bounded above for all points � � � . We restrict ourselves to the shakedown
criterion (10). This means, that independent of the loading history the system has to
approach asymptotically an elastic limit state. For details of the extended theorem see
[?]. The following static shakedown theorem holds [?], [?]:

Theorem (Melan):

If there exists a factor /���� and a time-independent residual stress field ��  � �
with �� �� %� %��� � ���� , such that for all loads

� ���� �!�
,#" /�' �  ��� ��� _$��  � �&%.6 U -* 	 � � � (13)

is satisfied, then the structure will shake down elastically under the given load
domain � .

Staat – 5



The greatest value /���� which satisfies the theorem is called shakedown-factor. The static
shakedown theorem is formulated in terms of stresses and gives a lower bound to /���� . A
dual formulation in the sense of mathematical optimization is given by Koiter’s kinematic
theorem [?], which is formulated in terms of kinematic quantities and yields an upper
bound of /���� . The objective of limit and shakedown analyses is to find bounds to the
limit– and shakedown–factors / > ?FY ?�a and /���� . This leads to the mathematical optimization
problem

�BADC / (14)

s. t. ,#" /�' �� ��� ��� _ ��  � � % 6 U -* 	 � � � (15)89��: ��  � � V � 	 � � � (16)��  � � 3 V � 	 � � 01�=2 (17)

with infinitely many restrictions, which is reduced to a finite problem by FEM discretiza-
tion. Shakedown analysis gives the largest range in which the loads may safely vary with
arbitrary load history. If the load domain � shrinks to the point of monotone load, limit
analysis is obtained as special case.

In the case of a temperature–dependent yield function , �� � the shakedown theorem
of MELAN should be modified (see [?], [?]).

3 Discretization and optimization

The structure is divided into 	 finite elements with 	�
 Gaussian points � . The general
purpose FEM program PERMAS [?] was chosen to implement Melan’s theorem, because
it is sufficiently open to the user allowing to implement limit and shakedown analysis,
which means a radical departure from current FEM concepts and solution steps, without
any need of support by the PERMAS developers. PERMAS calculates the load dependent
elastic stress vectors ' �?  ��� by means of a displacement method [?]. The discretized
homogeneous equilibrium conditions of the residual stresses can be noted as (see [?], [?])

���
?�� #

� ? � ? V���� (18)

where the
� ? are respectively the element compatibility matrices and the discrete eigen–

stress vector. This equation represents a discretized formulation of equations (16) and
(17). In convex load domains � in the form of a polyhedron every load

�  ��� can be
represented as a convex combination

� ���� V ���
� � #

� � � ������ �����! 6 � � A 7�8 ���
� � #

� � V � (19)

of the 	�" vertices
� ���� of the polyhedron. From convex optimization theory (see [?])

follows, that inequality (15) only has to be satisfied at the vertices of � . So the condition
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(15) should be transformed with the stresses ' �? ���� as fictitious elastic response to vertex� ���� at the Gaussian point � into

,#" /�' �? ���� _ �� ? %.6 U -* �[V � � � � � ��	�
 � � V � � � � � � 	 " � (20)

The 	 _ � unknowns of the problem are / and the residual stresses �� ? . So this is a large
scale optimization problem for a realistic Finite-Element-Model. Using a basis-reduction
method (see [?]) the number of unknowns can be reduced in a subspace so that the final
convex optimization problem has only a few unknowns (say 4,...,7). The reduced prob-
lem is convex, because the restrictions and the objective function are convex. Thus every
local minimum is a global minimum (see [?]) and a solution of the problem is unique.
Instead of infinitely many restrictions and unknowns in the continuous case, after the
complete discretization there are only 	 
 � 	�" restrictions and � _ � unknowns. Start-
ing from unpublished work of Prager this subspace technique was developed in [?] und
extended in [?] (for details see also [?]). In every reduction step the problem is solved by
a self-implemented SQP-method (Sequential Quadratic Programming) with augmented
Lagrangian type line search function (see [?], [?]). Armijo’s step length rule and BFGS
matrix update are used. However, numerical tests show that the algorithm may become
even faster without any update. Because of the small numbers of unknowns and the large
number of restrictions, the quadratic sub–problems are solved by an active–set–strategy
(see [?]). Derivatives are calculated analytically avoiding automatic differentiation meth-
ods.

In every sequential step
�

a direction is generated for which an improved load factor
/�� is calculated. If the new direction is small enough, the first convergence criterion is
fulfilled and another equilibrium iteration is started. After the sequential step there is an
improvement of the load factor. If the relative improvement  /����&/�� !$# �	� /�� !$# is smaller
then a given constant, the second convergence criterion is fulfilled and the algorithm stops.
For a flowchart of the limit and shakedown analysis see Fig. 1.

4 Pipe–Junction

The pipe-junction is subjected to internal pressure 
 and a variable inner temperature � ? .
The temperature � Z on the external surface of the pipe-junction is equal to the ambient
temperature assumed to be zero for all times. For � ? V � Z and � V  

the system is
assumed to be stress–free. The material data (Young’s modulus, Poisson ratio and yield
stress) are chosen to be temperature independent.

The pipe-junction is discretized with 125 solid 27-node hexahedron elements
(HEXEC27). The discrete stresses were calculated in the 8 vertices of the elements so
there are 1000 stresses in limit and 2000 – 4000 stresses in shakedown analysis. The
FE-mesh and the essential dimensions of the pipe-junction are represented in Fig. 2. All
computations were performed on the same workstation DEC 3000 Model 800 AXP using
version IV of PERMAS [?].

The following loading conditions are investigated.
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Finite Element Model

Calculation of elastic 
stresses by PERMAS

Yes

  Limit load resp. 
shakedown load

Structure of  
ductile material

Calculation of residual subspace  
by a plastic equilibrium iteration

No

Solution of the mathematical
 optimization problem by Sequential 

Programming Methods

Convergence ?

Yes

No

Convergence ?

Figure 1: Flowchart of limit and shakedown analyses
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1. Pressure 
 and temperature � ? vary simultaneously with �� V ������� � � (one–
parameter loading):

 6 
 6 / � 
 * �
 6 � ? 6 / � � * �  6 � 6 � �


�* and � * are a reference pressure and temperature, respectively.

2. Pressure 
 and temperature � ? vary independently (two–parameter loading)

 6 
 6 / � # 
 * �  6 �
#
6 �

 6 � ? 6 / � -
� * �  6 � -

6 � �
Additionally the two cases � * 6  

and � * �  
were studied. This corresponds to the cases� ? 6 ��� and � ? � ��� , respectively. We obtain the collapse pressure by setting � * V  

.
In limit analysis the internal pressure at first yield in the symmetry plane at the inner

nozzle corner 	 is calculated to 
 Z > ��
 a ?F\�  �  ���� U$* . Numerical limit analysis with the
basis-reduction technique leads to a collapse pressure of � � � � 
 Z > ��
 a ? \ V  � �����1U$* . For
comparison the limit pressure resulting from the German design rules AD-Merkblatt B9
is calculated to 
 >@?�Y ?Fa�V�� � � � 
 Z > ��
 a ? \ V  � ����� U$* (see [?]).
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Figure 2: FE-mesh and dimension of a Pipe-Junction

From thick shell theory (see [?]) the pure elastic pressure 3
[Z > ��
 a ?F\ of the corresponding
undisturbed pipe is

3
[Z > ��
 a ?F\ V 54 _6� �F� - � 4 -7 � 84 _6� �D� - U$*9�  � ��:  U$* � (21)

The limit load factor 3/$>@?�Y ?Fa corresponding to 3
[Z > ��
 a ?F\ (see [?]) is

3/$> ?FY�?FaQV 2 ln ; 4 _6� �4 <
� �=; 44 _6� � < - � �

� ��� � � (22)
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Thus the collapse pressure 3
�>@?FY�?Fa of the undisturbed pipe is

3
 > ?FY ?�aQV 3/$> ?FY�?Fa 3
[Z > ��
 a ?F\ �  � � � � U$* (23)

instead of
 � �����1U1* for the pipe–junction. The junction presents a 28% weakening of the

structure. Comparison with the elastic limit
 �  �� ��:�U * shows, that there is a benefit of

more than 181% in the ultimate load carrying capacity.
CLOUD and RODABAUGH in [?] (see also [?]) gave an upper bound on the limit

pressure of a pipe–junction with

Inner pipe radius 4 V � � � � ��� mm
Inner junction radius � V�� � � : mm
Pipe thickness � � V�� � � � mm
Junction thickness � � V � � � � mm.

With � V
�4 and � V � 4� � (24)

and the approximation formula of CLOUD and RODABAUGH the collapse pressure 
�>@?FY�?Fa
is


�>@?�Y ?Fa V
� � -�� � - _

� -�� � -
� �!_ �� 7 ��� _ � � � �� � � _

� ��
� ��:� � � _

� �� ��� - � 7 ���� �� � _ � �� � - � _ ��:� � �
	 � 7 � _ �� 7 � U$*

�  �  � ��U$* � (25)

The elastic pressure 3
[Z > ��
 a ? \ of the undisturbed pipe calculated by thick shell theory yields

3
 Z > ��
 a ? \ �  �  :�� U$* � (26)

The limit load factor is 3/$>@?FY�?Fa V � �  � � and the corresponding collapse pressure is

3
 > ?FY�?Fa �  �  : : U$* � (27)

Thus the junction presents a 50 % weakening of the pipe. The result of the simple for-
mula (25) ( 
 >@?�Y ?Fa V  �  � ��U$* ) shows good agreement with the experimental results of
SCHROEDER in [?] ( 
 >@?�Y ?Fa�V  �  � � U$* ).

For the pipe–junction benchmark example ( 
 > ?FY�?Fa V  � ��� � U$* ) the result of equation
(25) is not meaningful. Equation (25) yields 
 >@?�Y ?Fa V  � � � � U$* , but the collapse pressure
of the undisturbed pipe is only 3
 > ?FY ?�a V  � ��:  U$* . So the upper bound on the limit pres-
sure given by the equation of CLOUD and RODABAUGH in [?] is not applicable to the
benchmark example. Perhaps the greater ratio � � ��4 V  � ����: in the benchmark example
instead of � � ��4 V  �  � � in SCHROEDER’s experiment explains the differences.

The stresses corresponding to the thermal loading are residual stresses. So the tem-
perature loading has no influence on the limit pressure for one– and for two–parameter
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Figure 3: Interaction diagram of the pipe-junction

loading. Therefore in the interaction–diagram (see Fig. 3) of the pipe-junction the limit
load range is a straight line parallel to the ordinate (the long–dashed curve). The axes of
ordinates and abscissa are normed to elastic temperature–stress and to elastic pressure, re-
spectively. The short–dashed curve in Fig. 3 marks the elastic load range in proportional
loading. The kink in the line means, that for small ratio of temperature load to pres-
sure load the presence of temperature load increase the possible pressure load to initial
yielding.

The short–long–dashed curve marks the shakedown load range corresponding to the
first loading condition. The shakedown factor is nearly 2 for all proportionality factors.
The pipe–junction fails in every case locally at the inner nozzle point so that the factor 2
is analytical guaranteed (see the appendix for an analytic solution).

The solid curve marks the shakedown load range for two–parameter loading. The
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shakedown factor varies between 1.46 and 2 related to the elastic load range.
The dimension of the residual subspace is growing during the iteration from 3 to 5.

So the optimization problem has 4-6 unknowns and 2000 restrictions for one–parameter
and 4000 restrictions for two–parameter loading.

The additional CPU-time for shakedown analysis is less than twice the time for the
linear elastic analysis which shows, that in this case shakedown analysis is faster than
limit analysis and it is much faster than computing through 10-100 inelastic load cycles
until shakedown may be observed.

From an incremental calculation of the pipe–junction subjected to internal pressure
we get a pressure–strain–curve (see Fig. 4). The picture shows the relation between the
maximal reference strain at the inner nozzle corner A and the applied inner pressure. The
axes of ordinates and of abscissa are normed to elastic pressure and strain at point A,
respectively.

A

P / P
el

0.5

1

1.5

2

2.5

A
el

e

ε  / εA
1 2 3 4 5 76

c

d

g

b
f

a

Figure 4: Pressure–strain–curve for point A of the pipe-junction

After initial elastic loading there is an increase of the loading until twice the elastic pres-
sure is reached. Then the structure is un– and reloaded up to the previous load and above.
The un– and reloading part of the curve is a line parallel to the initial elastic curve. There
is no difference in the whole loading curve if there is a unloading during the loading.
This means that the ultimate pressure is independent of the load–history. The remaining
plastic reference strain at point A is the distance between the origin and the intersection
point of the curve and the abscissa. This strain corresponds with the remaining residual
stresses at point A. These normally unknown residual stresses could result from an initial
loading or from the production process. However, they do not effect the ultimate pressure.
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This effect corresponds to the experiments with bar–structures of MAIER–LEIBNITZ [?].
Therefore limit analysis needs no information about the load history. But it cannot predict
unique strains at collapse and it must assume sufficient ductility.

Exemplary stress–distributions during the loading are shown in Fig. 5. The stresses
at 
�� V � 
[Z >�� correspond to the stresses 
�� after un– and reloading (see Fig. 4 for the
indices).

5 Summary and conclusions

Design codes for pressure vessels and piping base plastic analysis of structures under
constant and varying loads on limit and shakedown analysis, respectively. These are
exact theories of plasticity, which do not contain any restrictions or assumptions other
than sufficient ductility of the material. Until recently their use in FEM analysis was
restricted to certain types of structures and to problems of small to moderate size due to
numerical problems with large-scale optimization. Therefore limit and shakedown loads
were only used for stress assessment in design of passive components.

In this contribution the general purpose FEM program PERMAS was used to im-
plement Melan’s static shakedown theorem, which gives lower bounds i.e. safe loads.
It was formulated as a large-scale nonlinear optimization problem. A basis-reduction
method was used to obtain a sequence of smaller problems, which were solved by Se-
quential Quadratic Programming. Standard test problems with known solutions show that
correct results are obtained at low computing times compared to incremental analyses.
The solution can be made arbitrary close to the exact value since no numerical error is
accumulated in load cycles. The particular implementation allows realistic FEM model
sizes. The FEM based limit and shakedown analyses of a pipe junction was used as an
example to compute an interaction diagram for two-parameter loading. This may be used
to decide on allowable loading ranges for the junction. More complex loading may be
analysed. But they cannot be represented in a similarly visual manner. The analyses may
be performed at computing times and costs of only 2-10 standard elastic FEM analyses.
Thus design variants may be compared and an optimum choice be made.

Limit and shakedown theorems may also provide rules and guidance for design. In
the appendix we give a proof, that the shakedown factor of structures of linear kinematic
hardening material subjected to proportional loading which fails locally, is equal to 2 for
any hardening exponent. Therefore shakedown bounds obtained for this failure mode of
structures made of perfect plastic material hold also in the presence of kinematic harden-
ing.

The present FEM implementation of this ongoing research is restricted to ideal plas-
ticity with constant material coefficient. The extension to hardening material will be one
of the next steps. A development towards optimum plastic design yielding the compo-
nents dimensions for maximum load carrying capacity at e.g. minimum weight could be
a follower of the present project.
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Figure 5: Pressure–strain–curve for point A of the pipe-junction
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6 Appendix

For structures made of linear kinematic hardening material the shakedown behaviour is
dominated by some points of the structure, where the maximum expansion of the elastic
domain is the minimum over all points � � � :

/���� V � ��7
��� �  �BADC� / � � (28)

If only one point dominates the behaviour it is possible to solve the optimization prob-
lem analytically. In this case the shakedown load for perfectly plastic and linear kine-
matic hardening material correspond (see [?]). Zhang solved the problem in [?] for two–
dimensional structures in two–parameter loading domain (e.g. plate with a circular hole
subjected to biaxial tension) STEIN and HUANG solved the problem in principal stress
space (see [?]) by the mathematical program MACSYMA. We solved the shakedown
optimization problem analytically for linear kinematic hardening material in the case of
local failure in one–parameter loading without the need of principal stresses. The back-
stresses � have no restrictions in the case of linear kinematic hardening material, so that� V � ��� has no restrictions. Assuming that the maximum effective stress would ap-
pear at one point of the system, then we need to solve the optimization problem with the
backstresses � and

� ��7
� / (29)

�� � � � � ,  / ' �� _ � � 6 U -* � V � � � � � � 	�" (30)

only in this point (see [?]). The corresponding LAGRANGE function is defined as

�  /�� � � V � / �
���
� � #
� � " U -* �;,  /�' �� _ � �&% � (31)

With the abbreviation ' � %�V�' �� it holds

,  /�' � _ � � V / - ' ��
	 ' � _ � /�' ��
	 � _ � � 	 � (32)

V  /�� � � � � ' ��
	 ' � ' ��
		 ' � 	 �� �� �
��� ���

� /� � � (33)

In three dimensional problems the matrix 	 ����������� is defined by the von Mises function

� �
!""""""
#

$ % ') % ') &'&(&% ') $ % ') &'&(&% ') % ') $ &'&(&& & & )'&(&& & & &')(&& & & &'&()

*,++++++
- K (34)
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With � %FV  /�� � � � and � ����� � the short form of (31) is

�  � � V  � � �  � � � � �  � � � ���
� � #
� � " U -* ��� � � � � % A 7�8 (35)

�
�
�  � � V  � � �  � � � � �  � � _6� ���� � #

� � � � � (36)

with the differential operator
�
�
� �� � V ; ���	� 
��� � ��	� 
����� � � � � � ����� 
����� < . From the KUHN–TUCKER–

conditions
�
�
�  ��� � V � of a local minimum ��� V  /�� � � � � � it follows (see [?]) with the

optimal LAGRANGE multipliers
�
��

 � � � � � �  � � V �
!# ���
� � #
�
�� � �
*- � � V � ���� � #

�
��
� ' ��
	 ' � ' ��
		 ' � 	 � � � (37)

V �
!""""
#

��
�
� � #
�
�� ' ��
	 ' �

� ��
�
� � #
�
�� ' � � � 	

	 � ��
�
� � #
�
�� ' � � � ��

�
� � #
�
�� � 	

*,++++
- � � � (38)

In the local minimum � � the complementary condition of every restriction reads:�
��  U -* ��� � � � � � � � V  � V � � � � � ��	 " � (39)

After summation of all complementary conditions, we deduce with (37)

U -*
���
� � #
�
�� V

���
� � #
�
�� � � � � � � � V�� � �

���
� � #
�
�� � � � � (40)

V ��  � �  � � � � �  � � � V �� / � � (41)

There is a unique representation of /�� by the LAGRANGE multipliers
�
�� :

/ � V � U -*
���
� � #
�
�� � (42)

With (42) it follows from (38)

� V
!# 	 ���

� � #
�
�� ' � � ���� � #

�
�� 	
*- � � V�/ �

���
� � #
�
�� 	 ' � _

!# ���
� � #
�
��
*- 	 � � (43)

V / �
���
� � #
�
�� 	 ' � _ /��� U -* 	 � � � (44)

and with / � �  

	 � � V � �1U -*
���
� � #
�
�� 	 ' � � (45)
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Now with (37) it follows

�� V
!# ���
� � #
�
�� ' �� 	 ' � � ���� � #

�
�� ' �� 	

*- � � (46)

V / �
���
� � #
�
�� ' ��
	 ' � _

���
� � #
�
�� ' ��
	 � � (47)

and with (45)

� /�� ���� � #
�
�� ' �� 	 ' � � �� U -* V

!# ���
� � #
�
�� ' �
*- � !# ���

� � #
�
�� 	 ' �

*-

V
!# ���
� � #
�
�� ' �
*- � 	

!# ���
� � #
�
�� ' �
*- (48)

In the case of one–parameter loading the load domain in shakedown analysis has two
vertices. The corresponding fictitious elastic stresses ' # and ' - with ,  ' #

� V  
and

,  ' -
� VXU -* to the two load vertices read

' # V
  �  �  �  �  �  � and ' - V

 �
# � � - � � 	 � ��� � ��� � � � � (49)

From (42) follows
/ � V�� U -*  � � # _ � �- � (50)

With (42) and (48) follows

 � � # _ � �- � � �- � �� U -* V � �- U -* or
�
� #
�
�- V

�� U �* � (51)

This means, that both restrictions must be active in the local maximum. From the KUHN–
TUCKER–conditions and equations (42) and (51) follows

�
� # V �

�- V
��1U -* (52)

/ � V � � (53)

In one–parameter loading the shakedown load is twice the elastic load. This result holds
independently of the hardening exponent and also for perfect plastic material [?]).
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