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 INTRODUCTION 
Analysis of advanced structures working under extreme heavy loading such as 

nuclear power plants and piping system should take into account the randomness 
of loading, geometrical and material parameters. The existing reliability are 
restricted mostly to the elastic working regime, e.g. allowable local stresses. 
Development of the limit and shakedown reliability-based analysis and design 
methods, exploiting potential of the shakedown working regime, is highly needed. 
     In this paper the application of a new algorithm of probabilistic limit and 
shakedown analysis for shell structures is presented, in which the loading and 
strength of the material as well as the thickness of the shell are considered as 
random variables. The reliability analysis problems may be efficiently solved by 
using a system combining the available FE codes, a deterministic limit and 
shakedown analysis, and the First and Second Order Reliability Methods 
(FORM/SORM). Non-linear sensitivity analyses are obtained directly from the 
solution of the deterministic problem without extra computational costs. 
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 DETERMINISTIC LIMIT AND SHAKEDOWN ANALYSIS 

Let us restrict ourselves to the case of homogeneous material and shells of 
constant thickness in which the yield limit yσ  and thickness  are the same at 
every Gaussian point of the structure. So we always can write 

h

0y Yσ σ= 0h Zh=

0

,  
where σ ,  are constant reference values and Y , 0h Z  are random variables. The 
dimensionless ‘engineering’ stress and strain resultant vector are introduced as 
follows 
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where 0 0N hσ= , ,  and 2
0 0 0 / 4M hσ= 2

0 0(1 ) / Eε σ ν= − 0 04 / h0κ ε=  are the 
normalized quantities. The quadratic strain intensities are defined in terms of the 
incremental ‘engineering’ strain resultants by 
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where , 1−P   ( 1,2,3)i i =P  are 
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     In order to avoid the difficulties arising with the parameterization of the 
Ilyushin yield surface [1] and to use the exact yield surface in practical 
computations, Burgoyne and Brennan [2] introduced the parameters 
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 With these parameters, the plastic dissipation function for a shell structure may 
be written in the form [3] 
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. (5) 

Consider a convex polyhedral load domain  and a special loading path 
consisting of all load vertices  ( k m

L
= ) of . By discretizing the whole 

structure by finite elements and application of Koiter’s upper bound theorem, the 
shakedown limit, which is the smaller one of the low cycle fatigue limit, and the 
ratchetting limit may be found by the following nonlinear minimization 
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By applying Newton’s method to solve the KKT (Karush-Kuhn-Tucker) 
conditions of system (6) we obtain the Newton directions  and , which 
assure that a suitable step along them will lead to a decrease of the objective 
function. If the relative improvement between two steps is smaller than a given 
constant, the algorithm stops and leads to the shakedown limit factor α . Details 
of the iterative algorithm can be found in [3]. 

 LIMIT AND SHAKEDOWN RELIABILITY-BASED ANALYSIS 
In structural reliability analysis, the limit state function which is based on the 

comparison of a structural resistance (threshold) and loading, defines the limit 
state hyper-surface which separates the failure region from the safe region. Thus, 
the failure probability is the probability that the limit state function is non-positive. 
In general, it is impossible to calculate the failure probability analytically and 
therefore, approximation approaches should be used. By FORM an approximation 
to the probability of failure is obtained by linearising the limit state function at the 
‘design point’. This is the point on the limit state surface that is nearest to the 
origin in the space of standard normal random variables. Due to the exponential 
decay of the probability density, the design point has the highest probability 
among all points in the failure domain. It follows that the neighborhood of this 
point makes the dominant contribution to the failure probability. SORM improves 
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on the FORM approximation by using a quadratic hypersurface fitted at the design 
point to the limit state surface. 

If we defined the shakedown load factor which is obtained from the nonlinear 
optimization problem in Eq. (6) as lim lim /P Pα =  where  and  are limit load 
and actual load of the structure respectively, then after being normalized with the 
actual load , the limit state function becomes 

limP P

P lim 1g =α −
u

. The calculation of 
design point in the standard Gaussian space  leads to a non-linear constrained 
optimization problem as follows [4] 
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A general method called the Sequential Quadratic Programming (SQP) was 
used to solve the above problem. This method has proved to be suitable for tasks 
in the area of the reliability theory. After each deterministic step, the Jacobian and 
the Hessian of the limit state function, which are needed for FORM/SORM, are 
obtained directly from the mathematical analysis of the deterministic shakedown 
problem with no extra computational cost [5]. 

 Numerical application 
A pipe bend is investigated with the random variables in-plane bending 

moment , and wall thickness , with mean values IM h ,  s tμ μ  and standard 
deviations ,  s tσ σ  respectively. The failure probabilities fP  are calculated for 
different distributions of random variables, and they are presented in the figure 1 
and figure 2 versus . /s tμ μ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. fP  for limit analysis,  
          normally distributed variables. 

Fig 2. fP  for shakedown analysis,  
           normally distributed variables. 
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