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ABSTRACT

The propagation of mechanical waves in plates of isotropic
elastic material is ilnvestigated. After a short introduction to
the understanding of focussing of stress waves in a plate with a
curved boundary the method of characteristics is applied to a
plate of hyperelastic material. Using this metheod the propagation
of acceleration waves is discussed, Based on this a numerical
difference scheme is developed for solving initial-boundary-value
problems and applied to two examples: propagation of a point
disturbance in a homogenecusly finitely strained non-lineaxr
elastic plate and geometrical focussing in a linear elastic plate.

INTRODUCTION

Modern investigations on mechanical wave propagation show
increasing interest in local stress concentratioen under transient
loading (ref.13).

Experimental investigations of specimens of revolilution showed
internal cracks due to stress wave focussing (ref.14). The
phenamenon of stress concentration caused by focussing can be
demonstrated by the ray methoed in the sequence of figures ta-c. A
planeg longitudinal wave travelling along rays is reflected into a
longitudinal and a transversal wave due te the free boundary
conditions {(see Fig. 1a). The envelopes of the reflected rays form
two caustics (an incident transversal wave forms a second pair of
caustics lsee Fig. 1b}}, which are the traces of singular points
of the wave fronts (see Fig. 1c¢). Loading plates of transparent
materials [(PMMA e.g.]) in shock tubes the wave fronts can be made
visible by shadow photographs (see Fig. 1d and ref.11).

From arguments aof geometrical acoustics and from experimental
evidence high stresses are expected near the cusps of the caustics.
The ray method neglects field effects,however, and gives solutions
at the wave front and this only if the solution ahead of the waveg

is known. But generally this solution is also unknown.
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Fig.1. a) Rays of an incident longitudinal wave; b) Caustics;
c) Wave fronts at successive times; d) Shadow photograph
of the wave fronts {(ref.it1}
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For the numerical solution of elliptical PODEs the application
of spatial discretisation procedures especially the finite element
method (FEM}) is generally accepted. But the great success could
not be repeated in the application to hyperbelic PDEs. Even in
problems with only one space dimension these methods produce
é@é;;ous oscillations thus smearing sharp wave fronts (ref.3,17).
This is because a local disturbance immediately affects the whole
domain of calculation. But physically the wave speed is finite.
Moreover, these methods do net treat wave surfaces as discon-
tinuities. Explicit difference schemes e.g. face severe problems
with stability because they employ expansions neglecting these
discontinuities. Commonly dispersion is controlled by lumping and
stability is enforced by using artificial viscosity. A more
promising way is the development of finite element methods based
on characteristic variables (ref.15}.

The method of characteristics was developed +or hyperbolic PDEs
and became a well established tool for modelling non-linear wave
propagation and shock waves in nonsteady gasdyhamics {refs.1,10,

12,20). Surfaces that may support discontinuities of some

237

derivatives of the dependent variables are calculated. By
integrating in characteristic surfaces these Jjumps are not
smeared. Explicit difference schemes based on the method of
characteristics are stable and reproduce details of the solution
with anly small dispersion.

Numerical solutions of the complete field equations for the
above problem of a semicircular plate were obtained by the authors
using the method of characteristics {(ref.2}.They also applied it
to other linear and non-iinear problems of elastic plates. Before
discussing some results it is felt necessary to explain the method
in more detail since it is not vet commonly used in
elastodynamics.

The characteristic directions and the so-called compatibility
equations for a non-linear elastic plate are derived which are the
basis of the numerical scheme. One can find the related eguations
for linear elastic plates in a similar way or by simplifications

of the difference equations.

BASIC EQUATIONS

The positdion of a material point is given by the Cartesian
coordinates x1 and %1 (i=1,2,3) in the unstressed reference
configuration and in the actual configuration, respectively. Let
both sets be connected by a smooth bijective one parameter family
of mappings x=%(x:;T) with time T as parameter. The
deformation gradient

ax
F=§'; {1 1

is the linear approximation of the mapping. With the displace-

ment U = % - X the particle velocity v and the

gradient of displacement are defined as wsual lunit tensoer 1)

- du

v s 37 L2
du

H—"S;—F—i. { 3 )

As strain measures the right CAUCHY-GREEN tensor € and the GREEN
strain tensor 6 are convenient for imcompressible and compressible
materials, respectively

c = FT F { &)

1
G=§(C—I}=§(HT+H+HTHI. {5
Our discussioh is restricted to materials which are hyperelastic,
i.e. which have a stored energy density U(C) or U{(G). With the

symmetric KIRCHHOFF stress o its variation is
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1
HU = E% a =
The mass density p is taken in the reference configuratiocn. The
gradient of eq.(B) with respect to the strain measure yields the
purely mechanical constitutive eguations
gr = alC)
The balance of momentum is given by

.
g%—_—[—"zl-fdivlFo)*Qi—<=D

Using eqs.({1)-({7) the balance of momentum can be rewritten inta
first order PDEs

dv e} . T =
© 3¢ " BF (F o) : grad H' + g kK = 0

and finally, with the fourth-order elasticities A,

&F : A : &F = p 682U {8
1t reads
3% . T _
@ ar " A : grad H! + p k = D . (9 )

Combining eqs.(2) and (3) yields the integrability equation foxr u
a—ngradfr:D. {10 )
gt

The material differential operators div and grad are used in the

usual manner. Multiple dots denote multiple transvection.

The quasi-linear system of first order PDEs {9),(10) is hyper-
balic for the wmaterials under consideration. Therefore certain
derivatives of v and H may be discontinuous and may
propagate as so-called acceleration waves (ref.22). The following
discussion is confined to plane stress problems and for

compressible materials also to plane strain problems.

THE METHOD OF CHARACTERISTICS

The object of the method of characteristics is twofeld. First
the characteristic condition determines the directions n* in which
the first order PDEs allow Jjumps in certain derivatives of the
dependent variahbhles, Next these undefined derivatives can be
eliminated by forming a linear combination of the original PDEs.
The resulting so-called compatibility equation contains only
continuous derivatives in a characteristic surface with normal n*,
A star * is used in the text to denote guantities in space and
time.

With the independent variables x%ct,x!.x2 (c being an
arbitrary constant velocity) and the covariant and contravariant

base vectors, respectively, e and el {i,4=0.1,2)

<1 , bU = — o0 : 56 { 68 )

. og = olG] . {7 )
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e; el = 537 o110
a gradient in space and time is introduced by {a=0,1,2)
oo 2F (12
VEE = w0 e
The dyadic product is indicated by the symbol o. Thus the PDEs
[9),(10) can be abbreviated (r,s,p,o=1,...,8}
a¥0 ¢¥z5 -cp = O {13 )
with unknown functions z=(v1, U2 H1y HEZ; u1o HZy), the
coefficient matrix of vectors ah$ and terms cy containing the
unknowns only in a non-differentiated form. The matrix of
vectors ay® is given by
[pceq B ejosloe;iA ejoeloeyiA ejoéZoeqiA ejoelaepiA
0 pce, epcéloe;iA eposloeyiA epoeloe s eposloeyiA
-eq ] ceg 0 ] 0
X5 o
ar®= 0 -ey 0 ceq 0 0
e o o 0 Ceg 0
L Q9 -e2 0 a g ceq J
The linear combination of eq.(13) with multipliers n¥ reads
qea’éov*zo—qec@:u {14 )

The condition that all remaining derivatives lie in a so-called
characteristic surface with normal n* is equivalent to

n¥ aR® n* = 0 { 15 )

This homogeneous system of linear equatians has a nontrivial
solution n if and only if the coefficient determinant vanishes,

i.e. the characteristic egquation holds

det ( aks n* ) = D. {18 )
Choosing the ansatz
X (17 )
* 2 - Y a0 +
n C e
with a space-like unit normal n = CoSy el+sing e? the

characteristic condition eq.(16) bhecomes a one parameter form for
the wave speed VvV

v = v (n) = v (@)

Far all the angles o%p<2w the vectors n* generate the
nermal cone while the corresponding characteristic surfaces
envelap the MONGE-cone (see Fig. 2}. The generators m* af the

MONGE-cone

[a%]
<

m* = c ey, +m , m= { 18 )

[«3]
-}
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are called bicharacteristics and ensue from the conditions of
arthogonality and enveloping

m* n* = 0 . m* (n* + &n*) = 0
Together with a unit space-like tangent t=ze®xn the
bicharacteristic m*® spans the characteristic surface element and
sa does any near-characteristic M (ref.21). The possibly
natural choice is

* = ¢ e, + i , Hio= v

i

#w = m* - mt ,

n
t =0

Fig.2. Geametry of characteristic surfaces

Discussion of the Characteristic Conditian

After some calculations the characteristic condition reads
vZ det {@(n) - pv3T) = 0 {20 )
revealing the eigenvalue preblem of the acoustic tensor Q@ in
the actual configuration
8= (8y0on:A;: & on 8o €, L 21 )
The root vy=0 originates from the special choice of the
dependent variables. The related MONGE-cone degenerates to the
pathline of a material point. The other roots of the
characteristic equation are the eigenvalues of @. They can
be written with the principal invariants (I=tr{,
I1=0.5(trd2-12)) leading to
ov¥ = (- 0.5 1 7 g.25 124110, e=L.T ( 22 )
Positive and negative roots vg(n} determine the forward and
the backward MOMNGE-cones, respectively. The latter were computed
for a highly non-linear material for some state of strain at point

P (see Fig.3). For a non-homggeneous deformation these cones are
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the local linear approximations of the global MONGE-cenoids while
the bicharacteristics m* are tangent to their generators which are

not plane curves generally.

Fig.3. Pathline, quasi-longitudinal and
guasi-transversal MONGE-cones

Figure 4 shows a plane intersection
of longitudinal MONGE-cones with the
plane ¢T1 = const. together with the
splutions of the characteristic
condition (28} in broken lines. In
gasdynamics these curves are called
characteristic loci and FRIEDRICHS
diagram, respectively. A plane wave is
the trace in space of the characteristic
surface. The characteristic loci can
either be seen as envelopes of all plane
waves that passed through its center P
at a time At in the past or can be

interpreted as the wave fronts in space

of a point disturbance at P at the same
time (refs.16,18).

Fig.&. Characteristic loci
and FRIEDRICHS diagram
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G, [105P3]

20 40 60 H,

Fig.5. Simple elongation strain path of TRELOAR-material (ref.9
experimental values are denoted by x) and corresponding
wave fronts
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Plane waves with normal n travel at their normal speed
g (n) while the accompanying discontinuities move along
their rays mgi{n) with the angle & between mg and the normal
direction n,ifiy. Thus waves are generally quasi-longitudinal
and quasi~transversal on the outer and inner MONGE-cone,
respectively. For non-linear materials pure modes propagate alang
the axes of symmetry where 6=0. Since these coincide with the
principal axes of o,C and 6 for isotropic materials corre-
spaonding waves were termed principal waves l(ref.22).,

For some isotropic materials the variety of wave fronts is
achievable as observed for different linear anisotropic materials
{refs.4,16,19). The example in figure 5 shows an incompressible
material with simple elongation strain path in direction e;. The
KIRCHHOFF stress opp was calculated from data given for
TRELCAR-material (ref.9). For the numbered deformations the
calculated wave fronts are shown. Note that there are either 0,2
or 4 cusped triangles on the gquasi-transversal front. It ¢ould be
proved for lineary anisotreopic materiais that the interior of the
wave front cuspoidal triangles are stable lacunae that are gaps in
the range of influence where the displacement, associated with an
impulsive disturbance at the vertex aof the forward MONGE-cone,
vanishes identically (refs.5,18). In the linear elastic case the
wave fronts emenating from a point are circies as in figure 5 for

the undeformed state (N 1),

Compatibility Eduations

£g.{15) provides a set of multipliers nf {r=1,...,6) for
each solution vg of the characteristic condition (1t6),{(20). For
each set of ni eq.{15) can be formulated;

ajong the pathline (g=40):

v'H : t o mi = ¥V t i 23 )
along the cones {e=L,¥T):

Ve G0 ME: ¥V - Geon : A o mgiVIH = rg {24 )
with ez G50 N:A t o t:V*% - vy Jeo t:A o tiIVFH - ov.G.K

—ovelmetlqeo t:7¥V + (mgtlqeo n:A o tiV*W
Herein ﬁe denotes the normed eigenvector of Q.
Egs.(23),1(24) contain only interior derivatives in the
direction of mi and t and lack any outward derivative in the
direction of n*. Hence all derivatives lie on the characteristic

surface and eq.(23) cannot lead out of it. As a consequence all
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functions and gradients on the characteristic surface are
continucus, while they may be discontinuous across it. Egs.
[23),(24) are the sc-called compatibility eguations. Initial
values on characteristic surfaces must be prescribed compatible
with them.
Choosing Wi of eq.{19} instead of mi may be
advantageous to simplify eq.{24). Note, there is no difference
between it and mi on principal axes.
ove Gg0 WE:V¥V - dgo n:A @ WEIVIH = Fg {25 )
P Ggo n:A t o t:VV-vedgo tiA 0 £iV*H - evgack
A difference scheme for the numerical solution of elastic
problems i developed from the physically reasoned

egs. (18),(23},(24) ar (19} ,(23),(25}) in the next section.

DIFFERENCE EQUATIONS

Given the initial data on the surface T=t, a solution at
point P on the surface T=t,+At is obtained numerically by
integrating the compatibility equations along characteristics
passing through P. Having done this for all points of the solution
surface T=ty+At it is used as new initial surface, and the
process repeated untii the complete range of influence specified
by the initial data has been determined.

For convenience introduce a differential aperator on

characteristic e (€=0,L,T)

O¥ | _ g*y m* ( 26 )
b le” ¢ Y Me

with v to be integrated. Time T is used as parameter of

integration. Integrating eqg.(26} glves

to+ Ot . Y
yitgrAt) ~ yity) = [ ¥y mg) Dt
to
and with a TAYLOR-expansion of the integrand
yltg+At) - yltg) =0.5((v'y m%) S (VFy @) 1atsoiatd) (27 )
tg*ht to

Here (¥¥y %) |¢y is preferred rather than (v¥y mE) o

to maintain the space-like nermal n along the path of integration.
The domain of dependence of P{ty+At) is found by applying

eq.(27) to the position vecltol,y=x

Hitgrdt) - xltg) = 0.5 (mg + g

totAL

to

Note,m, and Mg depend on the solution at P; exl,T.

) At + olat?) | { 28 )
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Integration of the compatibility equations leads to the
fallowing difference equations
along the pathline:
H - H\ = B.50L(9* ) s {v*U At +olat3)y (29 )
torAt tg t o+ At to
along the tones:
(l evg ag) + { pve Ggl| VIV - v ] -
torAt ty |totht to
-{{Qe0o n:A) + lggo n:A)| ki(H - H 1 o= t 30 )
tg+at te |to+dt tg
= (rg + Fg } oAt + olatd)
tL At ty

The TAYLOR-expansion of the coefficients and the right side of
egs.(29),(30} is admissible because all guantities are continucus
as long as no shocks occur and have continuous first derivatives
in the characteristic surface.

Difference equations (30} may be formulated along any
characteristic. They employ the values of the six unknown
functions and their space-like inner derivatives. Choosing the
eigenvectors of o at point P as a basis for a local scheme four
af the eighteen unknowns become decoupled. Four equations are
formulated along the pathline and both cones, respectively. The
balance of momentum integrated along the pathline is used to
complete the system by two {non-characteristic) equations
{refs.6,7). The space-like inner derivatives are eliminated
explicitely, leaving a set of six non-linear algebraic¢ equations
for the solution at P which is solved iteratively for the
non-linear case. For an initial guess v is not needed
hecause it is not emploved in the constitutive law eg.({6) and thus
does not enter the coefficients in eq.(30). Hence it is sufficient
to integrate the compatibility equations along the pathline

H - H] = ((¥¥V)11) At + olAt2) | {31 )
to+At ty to

A suitable net is employed for the spatial discretisation. Then
the required values and their derivatives. on the initial surface
are calculated from the local approximation by a second order
surface in a least squares sence. The COURANT-FRIEDRICHS-LEWY
stability condition {(ref.8) is satisfied if the analytical domain
of dependence is a subset of the numerical domain of dependence as
represented by the points emploved in the appreximation. MNumerical

dispersion is reduced by choosing points that are close to the
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outer cone. Unfortunately the stability condition is but necessary
and Ls sufficient for linear systems of PDEs only. In figure 6
some typical numerical schemes as used for the calculation are

shown for inner points and for points on boundaries.

a) f b)
c) d)
Fig.6 Numerical schemes: a) inner point, bB) corner point,

c) point on straight boundary, d) point on curved houndary
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EXAMPLES

Point Disturbance in a Monlinear-Elastic Plate

For testing the properties of the numerical scheme a point
disturbance 1n an homogeneously deformed plate is investigated.
The material of figure 5 in state N? 5 was used for the example,
with the higher principal strain Cpp so that the faster principal
langitudinal wave propagates in direction ey. At time T=0 an
initial disturbance vZ ig¢ introduced at the centre of the

plate. It propagates along the gquasi-transversal MONGE-conoid {see

. o) .
fig. Ta)l. The perspective view and the conWGre lines clearly show
the influence of the lacunae [(see fig. 5). The compgnents H21 and

HZ, move also along the inner cone whereas v' {see fig. Th),
H‘z and 311 propagate along the guasi-longitudinal MONGE-conoid
predominantly.

Apparentiy the numerical scheme maintains the structure of the
local wave fronts in the global field. There is no sign of any

precursors of the fronts.

Gepmetrical Focussing in a Lineay Elastic Plate

The local stress concentration due to geometrical focussing is
calculated for a rectangular, linear elastic plate with one
semicircular boundary. The front side (opposite the curved
boundary) is subjected to constant stress oz while all other
boundaries are free of stresses. The incident longitudinal wave
undergoes a phase shift when reflected at the boundary. Tensile
stresses lncrease when the wave front approaches the geometrical
focus. From geometrical accoustics we expect the highest stresses
at the cusps of the caustics. The cusp of the caustic of the
reflected longitudinal wave is located on the axis of symmetry at
0.5 of the radius, '

The sequences in figures 8a,b showhthe principal stresses o
and ory. The first pictu;é is taken when the whole domain is
disturbed.lln the following time steps the maximum values move
towards the focus and increase. The highest values are reached in
the third picture in the assumed area. Then the wave amplitudes

decrease.
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CONCLUSTIONS

The numerical method of bicharacteristics is appropiate to the
camputation of transient wave motion. Also for the non-lineax
problem it models the physically anisotropic propagation of waves
carrectly. The described difference scheme can be applied also to
waves in linear transversely isotropic elastic plates. The method
proved suitable for strong discontinuities with focussing effects.
Furthermore shocks can be included in the humerical scheme as

sharp discentinuities as is well-known in gasdynamics.
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