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ABStRAcT

The propagation of mechanical waves in plates of isotropic
elastic material is investigated. After a short introduction to
the understanding of focussing of stress waves in a plate with a
curved boundary the method of characteristics is applied to a
plate of hyperelastic material. using this method the propagation
of acceleration waves is discussed. Based on this a numerical
difference scheme is developed for solving initial-boundary-value
problems and applied to two examples: propagation of a point
disturbance in a homogeneously f~nitelY strained non-linear
elastic plate and geometrical focussing in a linear elastic plate.

INTRODUCTION

Hodern investigations on mechanical wave propagation show

increasing interest in local stress concentration under transient

loading (ref.13).

Experimental investigations of specimens of revolution showed

internal cracks due to stress wave focussing (ref.1~) The

phenomenon of stress concentration caused by focussing can be

demonstrated by the ray method in the sequence of figures la-c. A

plane longitUdinal wave travelling along rays is reflected into a

longitudinal and a transversal wave due to the free boundary

conditions (see Fig. 1al. The envelopes of the reflected rays form

two caustics (an incident transversal wave forms a second pair Of

caustics (see Fig. 1b) ), Which are the traces of singUlar points

of the wave fronts (see Fig. 1cl. Loading plates of transparent

materials (PMMA e.g.) in shock tubes the wave fronts can be made

visible by shadow photographs (see Fig. 1d and ref.111.

From arguments of geometrical acoustics and from experimental

evidence high stresses are expected near the cusps of the caustics.

The ray method neglects field effects,however. and gives solutions

at the wave front and this only if the solution ahead of the wave

is known. But generally this solution is also unknown.
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derivatives of the dependent variables are calculated. By

integrating 1n characteristic surfaces these jumps are not

smeared. Explicit difference schemes based on the method of

characteristics are stable and reproduce details of the solution

with only small dispersion.

Numerical solutions of the complete field equations for the

above problem of a semicircular plate were obtained by the authors

using the method of characteristics (ref.2l.They also applied it

to other linear and non-linear problems of elastic plates. Before

discussing some results it is felt necessary to explain the method

in more detail since it is not yet commonly used in

elastodynamics.

The characteristic directions and the so-called compatibility

equations for a non-linear elastic plate are derived which are the

basis of the numerical scheme. One can find the related equations

for linear elastic plates in a similar way or by simplifications

of the difference equations.

BASIC EQUATIONS

gradient of displacement are defined as usual (unit tensor 1)

1S the linear approximation of the mapping. With the displace-
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The position of a material point is given by the Cartesian

coordinates xi and xl. (i=1,2,3) in the unstressed reference

configuration and in the actual configuration, respectively. Let

both sets be connected by a smooth bijective one parameter family

of mappings x=x(x;TI with time T as parameter. The

deformation gradient

Our discussion is restricted to materials which are hyperelastic,

i.e. which have a stored energy density U(C) or U(G). Wi,th the

symmetric KIRCHHOFF stress 0 its variation is

As strain measures the right CAUCHY-GREEN tensor C and the GREEN

strain tensor G are convenient for imcompressible and compressible

materials, respectively

OX
F = OX

Fig.1. a) Rays of an incident longitudinal wave; b) Caustics;
c) Wave fronts at successive times; d) Shadow photograph
of the wave fronts lref.111

For the numerical solution of elliptical POEs the application

of spatial discretisation procedures especially the finite element

method (FEM) is generally accepted. But the great success could

not be repeated in the application to hyperbolic PDEs. Even in

problems with only one space dimension these methods produce

s~~rious oscillations thus smearing sharp wave fronts (ref.3,17).

This is because a local disturbance immediately affects the whole

domain of calculation. But physically the wave speed is finite.

Moreover, these methods do not treat wave surfaces as discon­

tinuities. Explicit difference schemes e.g. face severe problems

with stability because they employ expansions neglecting these

discontinuities. Commonly dispersion is controlled by lumping and

stability is enforced by using artificial viscosity. A more

promising way is the development of finite element methods based

on characteristic variables (ref. 15).

The method of characteristics was developed for hyperbolic POEs

and became a well established tool for modelling non-linear wave

propagation and shock waves in nonsteady gasdynamics (refs. 1 ,10,

12,20). Surfaces that may support discontinuities of some
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THE METHOD OF CHARACTERISTICS
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v = v (n)

m* = c eo + m

llT a~s n* ::: 0

This homogeneous system of linear equations has a

det

For all the angles o'~<2rr the vectors n* generate the

normal cone while the corresponding characteristic surfaces

envelop the MONGE-cone (see Fig. 2). The generators m* of the

MONGE-cone

Choosing the ansatz

n* = - ~ eO + n
c

with a space-like unit normal n ::: cos~ e'+sin~ e 2 the

characteristic condition eq. (16) becomes a one parameter form for

the wave speed v

solution n if and only if the coefficient determinant vanishes,

i.e. the characteristic equation holds

The linear combination of eq. (13) with multipliers n r reads

ng a~O V*za - nQ c g 0

The condition that all remaining derivatives lie ~n

characteristic surface with normal n* is equivalent to

vectors

unknowns only in a non-differentiated form. The matrix of

(9), (101 can be abbreviated (r,s,g,a:::l

a;a V*za ~cr = 0

with unknown functions z=(\i',iJ 2 ,H'1,H2 1 ,H1 2 ,H2 2 ), the

coefficient matrix of vectors a~s and terms cr containing

eieJ=Oi J

a gradient 1n space and time is introduced by

V*f = %-;0:0 eO:

The dyadic product is indicated by the symbol
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Combining eqs. (2) and (3) yields the integrability equation

£!! - grad V ::; 0
aT

The balance af momentum is given by

o2l.i
QaT2'"-divlfOl-gk 0

Using eqs.l1)-(7) the balance of momentum can be rewritten into

first order PDEs

and finally, with the fourth'order elasticities A,

of A of =: Q 6 2 u
it reads

The mass density Q 15 taken 1n the reference configuration. The

gradient of sq. (6) with respect to the strain measure yields the

purely mechanical constitutive equations

The Object of the method of characteristics is twofold. First

the characteristic condition determines the directions n* in which

the first order POEs allow jumps in certain derivatives of the

dependent variables. Next these undefined derivatives can be

eliminated by forming a linear combination of the original PDEs.

The resulting so-called compatibility equation contains only

continuous derivatives in a characteristic surface with normal n*.

A star * is used in the text to denote quantities in space and

time.

With the independent variables XO=Cl,X' ,x 2 (c being an

arbitrary constant velocity) and the covariant and contravariant

base vectors, respectively, ei and e j (i,j=O,l,2)

The material differential operators div and grad are used in the

usual manner. Multiple dots denote multiple transvection.

The quasi-linear system of first order PDEs (9), (10) 15 hyper­

bolic for the materials under consideration. Therefore certain

derivatives of v and H may be discontinuous and may

propagate as so-called acceleration waves (ref.22). The following

discussion is confined to plane stress problems and for

compressible materials also to plane strain problems.
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Bre called bicharacteristics and ensue from the conditions of

orthogonality and enveloping

the local llnear approximations of the global MONGE-conoids while

the bicharacteristics m* are tangent to their generators which are

Together with a unit space-like tangent t=eoxn the

bicharacteristic m* spans the characteristic surface element and

so does any near-characteristic m Iref.21). The possibly

natural choice is

mi..

not plana curves generally.

19
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Positive and negative roots ve{n) determine the forward and

the backward MONGE-cones, respectively. The latter were computed

for a highly non-linear material for some state of strain at point

P (see Fig.3). For a non-homogeneous deformation these cones are

Discussion of the Characteristic Condition

After some calculations the characteristic condition reads

v 2 det (aln) - Qv 2 '1 :: 0

plane CT = canst. together with the

solutions of the characteristic

condition (20) in broken lines. In

gasdynamic$ these curves are called

characteri~tic loci and FRIEDRICHS

diagram, respectively. A plane wave is

the trace in space of the characteristic

surface. The characteristic loci can

either be seen as envelopes of all plane

waves that passed through its center P

at a time fit in the past or can be

interpreted as the wave fronts in space

of a point disturbance at P at the same

time Irefs.16, 18).

,,
1
I,

I,,,
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n

t

Fig.4. Characteristic loci
and FRIEDRICHS diagram

Fig.3. Pathllne, quasi-longitudinal and
quasi-transversal MONGE-cones

Figure 4 shoWs a plane intersection

of longituqinal MONGE-canes with the

20

\ 22

I 21

€=L,T

characteristic equation are the eigenvalues of a. They can

be written with the principal invariants (I=trC,

rI=O.5(tra 2 -I2)) leading to

g v~ = :!: (- O. 5 I :!: J'--;OO-.""'2"Sc-r:c,,.-.7r7r~' I

revealing the eigenvalue problem of the acoustic tensor Q in

the actual configuration

Fig.2. Geometry of characteristic surfaces

Q :: (e,>" 0 n : A : elJ 0 n 1 eA 0 elJ

The root vo=O originates from the special choice of the

dependent variables. The related MONGE-cone degenerates to the

pathline of a material point. The other roots of the
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Plane waves with normal n travel at their normal speed

~E(n) while the accompanying discontinuities move along

their rays m£(n) with the angle 0 between me and the normal

direction n,mE _ Thus waves are generally quasi-longitudinal

and quasi-transversal on the outer and inner MONGE-cone,

respectively. For non-linear materials pure modes propagate along

the axes of symmetry where 6=0. Since these coincide with the

principal axes of 0,( and G for isotropic materials corre­

sponding waves were termed principal waves Iref.22).

For some isotropic materials the var~ety of wave fronts is

achievable as observed for different linear anisotropic materials

(refs.4,16,19). The example in figure 5 shows an incompressible

material with simple elongation strain path in direction e2' The

KIRCHHOFF stress 022 was calculated from data given for

TRELOAR-material (ref.9) For the numbered deformations the

calculated wave fronts are shown. Note that there are either 0,2

or 4 cusped triangles on the quasi-transversal front. It could be

proved for linear anisotropic mater~als that the interior of the

wave front cuspoidal triangles are stable lacunae that are gaps in

the range of influence where the displacement, associated with an

impulsive disturbance at the vertex of the forward MONGE-cone,

vanishes identically (refs.5, 18). In the linear elastic case the

24
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wave fronts emenating from a point are circles as in figure 5 for

the undeformed state (NO 1).

~ompatibility Equations

Eq.(15) provides a set of mUltipliers 'l~ (r=1,. ,6) for

each solution v e of the characteristic condition (16), (20). For

each set of Il~ eq.(15) can be formul~ted;

along the pathline (€=O):

V* H : t a m~ = V* v t ( 23

along the cones (£=L,T):

QV e q€D m~:V*v - Qeo n : A 0 me:V*H = r e

with

Fig.5. Simple elongation strain path of TRELOAR-material (ref.9
experimental values are denoted by xl and corr~sponding

wave fronts

-gv€(mEt)qeo t:V*v + (met)qeo n:A a t:V*H

Herein qe denotes the normed eigenvector of Q.

Eqs. (23), (24) contain only interior derivatives in the

direction of m~ and t and lack any outward derivative in the

direction of n*. Hence all derivatives lie on the characteristic

surface and eq. (23) cannot lead out of it. As a consequence all
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functions and gradients on the characteristic surface are

continuous, while they may be discontinuous across it. Eqs.

Integration of the compatibility equations ~eads to the

following difference equations

along the pathline:

29"V*V)l)1 )6t

to
"I :: o.SIIIV*V) 1l l .

to t o + bot

are the so-called compatibility equations. Initial

characteristic surfaces must be prescribed compatible
( 23 l . (24 )

values on

eqs.(29l, (30) is admissible because all quantities are continuous

;0

;; \ I
to

"I )to

QV e qe)\ )(v\
to to+At

(qE;o n:A) I hlHI
to t o +,1,t

At + o(Llt 3 )

along the cones:

(( eVe q~) I •
to ... Ll.t

-((qron:All •
to ... At

Ir'l . fel )
to+At to

The TAYLOR-expansion o~ the coefficients and the rig tIt side of

25

with them.

ChoosLng m: of eq.( 19) instead of m~ may be

advantageous to simplify eq. (24). Note, there is no difference

between ~~ and m~ on principal axes.

QV~ qeD ffi~:V*v - Q~O n:A 0 ffi~:V*H f E

~E~ qeo n:A t 0 t:V*V-V£Q£O t:A 0 t:V*H Qv£q£k
A differenc~ scheme for the numerical solution of elastic

problems is developed from the physically reasoned

eqs. (18), (23), (24) or (19),123). (25) in the next section.

for convenience introduce a differential operator on

process repeated until the complete range of influence specified

DIFFERENCE EQUATIONS
Given the initial data on the surface ,=to a solution at

point p on the surface T=to+At is obtained numerically by

integrating the compatibility equations along characteristics

pasS1ng through P. Having done th~s for all points of the solution

Then

31

Four equations are

"I "!-((V*V111!Lit+OIAt 2 )
to+At- t: to

A suitable net is employed for the spatial discretisation.

of the eighteen unknowns become decoupled.

the required values and their derivatives_ on the initial surface

are calculated from the local approximation by a second order

surface in a least squares sence. The COURANT-FRIEORICHS-LEWY

complete the system by two (non-characteristic) equations

(refs.5,7). The space-like inner derivatives are eliminated

explicitely, leaving a set of six non-linear algebraic equations

for the solution at P which is solved iterativelY for the

non-linear case. For an initial guess v is not needed

formulated along the pathline and both cones, respectively. The

as Ions as no shOCks occur and have continuous first derivatives

in the characteristic surface.

Difference equations (30) may be formulated along any

characteristic. They employ tho values of the six unknown

because it is not employed in the constitutive law eq. (6) and thus

does not enter the coefficients in eq~(30). Hence it is sufficient

to integrate the compatibility equations along the pathline

balance of momentum integroted along the pathline is used to

functions and their space-like inner derivatives. Choosing the

eigenvectors of 0 at point P as a basis for a local scheme four

27

26

and the

\e=O,L,T)

data has been determined.

and with a TAYLOR-expansion of the integrand

y(t o ) ::0.5«V*V m~ll +(V*y tfI~11 ltl.t+o(t:..t 3 )
to+t:..t to

Here (V*y tfI~l Ito is preferred rather than (V*y m~) lto

to maintain the space-like normal n along the path of integration.

The domain of dependence of P(to+Atl is found by applying

'l:i I = V*y m~
DT E

with Y to be integrated. Time \ is used as parameter of

integration, Integrating eq. (26) g1ves

t 0+ o.t
S (T1*V m~l 0,

to

characteristic e

by the initial

surface ,=to+At it is used as new initial surface,

eq. (27) to the position vector,y=x

x(to+Atl >dtol::o 0.5 (mel • lfl<1 )
to+At to

Note,me and me depend on the solution at P;

l\.t ... olb.t3 \

s"'L,T.

2.
stability condition (ref.B) is satisfied if the analytical domain

Of dependence is a subset of the numerical domain of dependence as

represented by the po~nts employed in the approximation. Numerical

dispersion is reduced by choosing points that are close to the
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outer cone. Unfortunately the stability condition is but necessary

and is sufficient for linear systems of POEs only. In figure 6

some typical numerical schemes as used for the calculation are

shown for inner points and for points on boundaries.

Geometrical Focussing in a Linear Elastic Plate

The local stress concentration due to geometrical focussing ~s

calculated for a rectangular, linear elastic plate with one

semicircular boundary. The front side (opposite the curved

boundary) is SUbjected to constant stress 022 while all other

boundaries are free of stresses. The incident longitudinal wave

undergoes a phase shift when reflected at the boundary. Tensile

stresses increase when the wave front approaches the geometrical

EXAMPLES

focus. From geometrical accoustics we expect the highest stresses

at the cusps of the caustics. The cusp of the caustic of the

reflected longitudinal wave is located on the axis of symmetry at

0.5 of the radius.

Point Disturbance in a Nonlinear-Elastic Plate

For testing the properties of the numerical scheme a point

disturbance in an homogeneously deformed plate is investigated.

The material of figure 5 in state NO 5 was used for the example,

with the higher principal strain C22 so that the faster principal

longitudinal wave propagates in direction e1' At time T=Q an

initial disturbance v2 is introduced at the centre of the

plate. It propagates along the quasi-transversal MONGE-conoid (see

fig. 7a). The perspective view and the cont{G-re lines clearly show

the influence of the lacunae (see fig. 5). The components H2 1 and

H22 move also along the inner cone whereas 0 1 (see fig. 7b),

H1 2 and H'1 propagate along the quasi-longitudinal MONGE-conoid

predominantly.

Apparently the numerical scheme maintains the structure of the

local wave fronts in the global field. There is no sign of any

precursors of the fronts.

b)

d)

a)

c)

Fig.6 Numerical schemes: aJ inner point. b) corner point,

e) point on straight boundary, d) point on curved boundary

The sequences ~n figures 8a,b show the principal stresses or

and 0Il. The first picture is taken when the whole domain is

disturbed. In the following time steps the maximum values move

towards the focus and increase. The high~st values are reached in

the third picture in the assumed area. Then the wave amplitudes

decrease.



248

CONCLUSIONS

The numerical method of bicharacteristic5 is appropiate to the

computation of transient wave motion. Also for the non-linear

problem it models the physically anisotropic propagation of waves

correctly. The described difference scheme can be applied also to

waves in linear transversely isotropic elastic plates. The method

proved suitable for strong discontinuities with focussing effects.

Furthermore shocks can be included in the numerical scheme as

sharp discontinuities as is well-knQwn in gasdynamics.
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fig.? Perspective
disturbance
al velocity

view
in a
-2v •

and conv~re lines for a point
non-linear elastic p1ate
b) velocity v1
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Fig.8b Perspective view and conttre lines of principal
stress all for successive time steps

o
Fig.aa Perspective view and con~Gre lines of principal

stress or for successive time steps
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THE LOCAL EFFECTS IN THE LINEAR DYNAMIC ANALYSIS OF STRUCTURES IN THE ME

FREQUENCY RANGE

C.H. SOIZE1

10NERA, 29, Avenue de la Division Leclerc, 92320 Chatillon (France)

ABSTRACT

The linear dynamic response of an elastic continuum subjected to a
frequency localized force is generally global. As the frequency increase~

the medium range, the Vibratory energy is generally localized ar·
excitation force. In this paper we present a general method for analyzing
dynamic behavior of 3-D elastic structure in this medium frequency range
example is given and the results are compared with experimental data.

INTRODUCTION

Ideas on the local effects in the medium frequency range.

When analyzing the linear vibrations of an elastic, viscous anisotr

structure occupying a bounded domain in space, slightly damped, it is COl

to define the low frequency (LF) domain, such that the response to a p,

force, depends only on the first eigenmodes of vibrations for the associ,

undamped system. The spectral (or frequency) response then exhibits oer

rays from the response of the first isolated eigenmodes of the structure

this case, the vibratory energy propagates broadly through the struct

because the first eigenmodes are generally global, and the Vibratory energ

not localized around the point where the excitation force is located.

instance, let us consider a slender circular shell cylinder with some in

transverse stiffeners and with a· floor. The figure 4-a shows the spa

distribution of energy E of the radial acceleration in the low frequency

000-400 Hz). The excitation is a concentrated force. We see in this fi

that the energy propagates all through the structure. The figure 5-a shows

same system for an excitation in the medium frequency (MF) band (2

2100 Hz). We see that the vibratory energy is localized around the excita

force. The energy does not propagate through the structure. The reason,

this case, is that the modal density is high enough in this frequency b

This example gives us a way of defining what we mean by the local effect,

the linear dynamic analysis of structures in the medium frequency range.

To clarify the explanations, we first recall some elements of the li

dynamic analysis of systems with a finite number of degrees of freedom (DOF




