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Abstract: The paper describes a novel way to support 
conceptual design in civil engineering. The designer uses 
semantical tools guaranteeing certain internal structures of the 
design result but also the fulfillment of various constraints.  

Two different approaches and corresponding tools are discussed: 
(a) Visually specified tools with automatic code generation to 
determine a design structure as well as fixing various constraints 
a design has to obey. These tools are also valuable for design 
knowledge specialist. (b) Extensions of existing CAD tools to 
provide semantical knowledge to be used by an architect. It is 
sketched how these different tools can be combined in the 
future.  

The main part of the paper discusses the concepts and 
realization of two prototypes following the two above 
approaches. The paper especially discusses that specific graphs 
and the specification of their structure are useful for both tool 
realization projects.  

1. INTRODUCTION 

In this chapter we first describe some projects ongoing in our group, 
before we introduce our approach for supporting conceptual design. After 
that we discuss related work and give an overview of the paper.  
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1.1. Some ongoing projects 

Department of Computer Science III at RWTH Aachen is specialized in 
software engineering and software architectures. Especially, we have a 
broad experience in building new tools for various application domains[24; 
25]. In the following some ongoing projects are sketched, because of two 
reasons. On one hand, the projects describe the realm of our activities in 
different domains. On the other, as we shall see later, these projects share 
some similarities – either in their underlying concepts or their realization – 
with the project introduced in this paper. 

Within the AHEAD project an integrated management system for 
development processes is investigated [17; 31; 36]. In this context, 
management denotes the coordination of cooperating developers, the 
administration of their complex product, as well as the assignment of 
resources to tasks. The management system works on administration level, 
and, therefore, above the level how technical developers perform their tasks 
or how their results look like. The management system tightly integrates 
submodels dealing with processes, products, and resources, respectively by 
offering corresponding tools. Furthermore, the system can be parameterized 
for a specific context (application domain, standard, company etc.). 

Tool support on technical level is given by integration tools, having been 
investigated for software development some time ago [20; 24] and being 
currently investigated for chemical engineering [3]. These tools help to keep 
the contents of different documents consistent to each other. These 
interactive and incremental tools establish and maintain inter-document 
links by mutually relating increments of different documents. Changes of 
the underlying documents are recognized, the integration tools help to 
transform these changes, to analyze different documents for consistency, 
and alike. Integration tools avoid the disadvantages of batch-oriented 
transformators and of manual link-editing tools.  

The CHASID project aims at supporting authors of textbooks, scientific 
texts, and articles by modeling the semantical structure of text documents 
[11]. A topic map describes and relates topics the author whishes to 
communicate. It is integrated with the hierarchical structure of the text. 



Templates on the level of the topic map, or the structure of the text, or their 
interrelation yield an improved structure of the text. In the same problem 
field the aTool project extents MS Word by semantical features [23]. 

The E-CARES project develops concepts, methods, and tools to support 
the processes of understanding and restructuring complex legacy 
telecommunication systems [15]. To provide a better understanding of  
existing systems, their current statical structure, their monitoring data at 
runtime, as well as “method rules” of its developers are regarded. The 
project unites a top-down approach developing a system description 
language and formulating the future structure of a system in that language,  
and a bottom-up approach determining the existing structure and 
corresponding reengineering tools. The used tool construction concepts are 
similar to another project dealing with reverse and reengineering of business 
administration applications [8]. 

1.2. Conceptual design as it is and as it should be 

Today most of the architects do not elaborate their sketches inside a CAD 
system, they rather work with pencil and paper. In the early design phase, 
the architect does not think about materials or realization details, he works 
creatively by sketching room dimensions and positions. The design of the 
future building is still vague and imprecise. Constructive elements, like 
walls, windows, or doors are used with their conceptual meaning, namely to 
form rooms, to guarantee light and ventilation, or to ensure accessibility. 
These conceptual elements, therefore, form a functional view of the 
architectural design structure which , however, is not explicitly determined.  

When the architect has finished his sketch he manually creates a 
constructive design within a CAD system. Now he replaces the functional 
elements of the sketch by constructive parts, as the ventilation by a window, 
the access by a door etc. The conceptual information he has in mind gets 
lost by the time. 

There are many changes within the development process. For example, if 
a cost calculation is elaborated after the detailed design, this might imply 
quite another structure of the building. In the same way, if the client is not 



satisfied with the design, the architect has to go back to restart the 
conceptual design process. After the redesign of the conceptual sketch, the 
changes have to be transferred again manually into the CAD system. The 
modification of the conceptual data are lost again. These iterations, which 
might be repeated some times, cost time and money, but also increase the 
risk of errors. 

In principle, the architect is constrained by different dimensions in his 
design process. There are standards to fulfil, the requirements of the 
customer have to be met, the personal design favour of the architect has to 
be obeyed, to name only three of these dimensions. Fig. 1 depicts this 
situation. [29; 30] argue that various and different aspects have to be taken 
into consideration for the whole development process.  

Our approach is to avoid the expensive backtracking steps in the 
development process by explicitly determining the structures and restrictions 
of conceptual design and by using this knowledge in conceptual design and 
later phases. The reason is that errors are cheaper if detected as early as 
possible.  
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Fig. 1: Design constraints for conceptual design and later phases 



From the list of dimensions of Fig. 1 we focus on common functional 
requirements and specific customer wishes in this paper (grey shaded area). 
The presented argumentation holds true for the other dimensions as well.  

As is indicated in Fig. 1, we explicitly determine the result of conceptual 
design. We also explicitly determine the underlying concepts and 
constraints due to the above dimensions. Then, we check the current sketch 
(conceptual design result) against that explicit knowledge. Furthermore, this 
conceptual knowledge is also used in later phases of the design process. In 
this paper we only address the aspect of using design knowledge in 
constructive design, following the conceptual design.  

Summing up, to improve the design process of the architect, five topics 
are essential:  

1. The conceptual design process should be supported by tools, 
explicitly determining the resulting conceptual design. 

2. The underlying structure, as well as the constraining knowledge 
have to be explicitly formulated. 

3. For determining the underlying knowledge, corresponding tools 
also have to be developed.  

4. The conceptual design result should easily be transformed for 
later process phases. For example, it should be possible to 
generate a preliminary floor plan to show it to the customer. 

5. Also, the conceptual information should be used to make various 
consistency checks for later process results, especially for the 
developed floor plan. 

The running example of this paper is the design of a single-family house. 
Of course, there are specific subtypes of this category. Our explanation will 
not go deep enough to distinguish these subtypes.  

1.3. Related work 

There exist different approaches to support the architect during design. 
Most of them use concepts from the field of artificial intelligence. We 
roughly separate them in evaluative and generative approaches [21].  



One form of evaluative approaches use a knowledge base to store 
information about a specific domain and design decisions made in the past 
together with their context. The system filters those parts from the 
knowledge base that are important for a current problem of the architect. 
The systems support human decision and, therefore, are called Decision 
Support Systems (DSS). To know which part of the knowledge base is 
relevant, the design in most cases strictly follows a predefined process 
model (Case Based Design) [1; 22; 27; 29; 30; 33].  

Another form of evaluative approaches do a technical analysis of the 
constructive design. Whereas simulations like daylight analysis, stability 
analysis etc. just use numerical calculations, other aspects – like the 
fulfillment of customer needs – use again knowledge bases [6; 7].  

Generative approaches mostly use the represented structural knowledge 
to create at least an initial prototypical design. Parts of that design are then 
further refined, by applying generative rules [10; 35; 37]. In these 
approaches it is mainly the machine that creates the design. Shape 
grammars [12; 13] also make use of rules for detailing steps in design. 
These rules, however, are interactively applied during design. 

Most of the above mentioned approaches are implemented in Prolog or 
Lisp and are not integrated with existing CAD systems. [14] describes 
another graph-based generative approach to support design. A graph 
rewriting system for planning the layout of a kitchen from a graph structure 
is presented. The conceptual ideas are similar to those presented in the 
paper. However, the approach for structuring conceptual knowledge is 
simpler and there is no connection to existing systems. 

Current CAD systems, like AutoCAD architectural desktop, have 
extensions to introduce concepts like rooms into a given design. However, 
these concepts are not on conceptual level, they are only used to a-posteriori 
mark areas as rooms. Some calculations can use these marks. The 
conceptual feature cannot be used during the design process by the architect. 

One year ago, we have started a new joint project (with A. Borkowski, 
Warsaw, E. Grabska, Cracow, A. Schürr, Munich), the aim of which is to 
support architects in conceptual design of houses. [4; 34] model the 



functionality of specific areas of a house by a graph structure. From that 
structure a graph of related rooms with their positions is generated 
automatically as a suggestion for the architect which forms a floor plan. In 
this paper we rather follow an interactive approach where the designer is 
dominating the design process. 

1.4. Overview of the following paper 

In this paper concepts and tools answering the five problems of 1.2 are 
presented. As graphs, their formal description and corresponding realization 
techniques play a big role in this paper, we first give an overview of our 
experience, called graph technology in section 2. Section 3 describes our 
approach to explicitly deal with conceptual knowledge on one hand and to 
use this knowledge for conceptual or constructive design on the other. Two 
prototypes are discussed, together with their future integration to form an 
overall solution. Section 4 and 5 describe these two prototypes. Section 4 
deals with the underlying concepts and the realization of a tool for explicitly 
structuring conceptual knowledge and the corresponding constraints and to 
use this knowledge during conceptual design. Section 5 discusses an 
extension of the commercial system ArchiCAD which introduces semantical 
features for that tool. The paper ends with future plans.  

Summing up, our approach belongs to the group of evaluative systems. It 
does not enforce the user to follow a specific design process. The result of a 
conceptual or constructive design is constantly checked against the 
predefined structures and constraints. 

2. GRAPH TECHNOLOGY 

Common to most of the projects of our group is the use of graph 
technology. We formally model an application domain to be investigated by 
a graph class. Each graph of that graph class then can be understood as a 
suitable structure of the application domain. By analyzing the graph we can 
derive inconsistencies or problem spots and point the user to them. User 
interactions, for example, to build up graphs or to correct inconsistencies, 



are expressed as transformations on the graph. Analyses and transformations 
are explicitly specified.  

In this section we give a sketch of this technology based on a simple 
example of conceptual design. The example as well as the proceeding is 
simplified, as we shall see later. Graph technology uses the graph 
specification language PROGRES [32] and a realization machinery to easily 
implement tools following a specification in that language. 

2.1. PROGRES as specification language 

The underlying notion for describing a graph class are directed, typed, 
and attributed graphs. A PROGRES specification consists of two parts. The 
schema part describes the node and edge types of the graph class under 
consideration. The transaction part formulates transformations and tests, 
which can be build up to form complex transactions. We now explain both 
parts using our simple single-family house example. Transactions and their 
constituents have to be consistent with the schema part.  

The schema part of our example is shown in Fig. 2. It shows the abstract 
node class ROOM with a comment attribute.  Nodes of that class can be related 
through Access- and Contains-edges. The node class is specialized into 
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[0:n]
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[0:n]
ROOM

intrinsic
  comment : string [1:1] := "";

edge type
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Fig. 2: Schema of our single-family house example 



six different node types that represent the different kinds of rooms we 
model. Therefore, the relations can connect rooms of all specific types. We 
see that a node class expresses the similarities of different node types. 

The transaction part determines how different graphs of that graph class 
are built. Within transactions productions and tests can occur. A production 
defines a change operation for a graph. It consists of a left and a right hand 
side. The left hand side is a graph pattern that describes a subgraph and the 
right hand side is a graph which is embedded at the place where the graph 
pattern’s match is removed. 

Fig. 3 shows a sample production for our example. The graph pattern to 
be searched requires an outside-node to exist and no hall-node to be 
already present (negative application condition). If this pattern is found in a 
graph, when applying the production, a new hall-node is created and 
connected with the outside by an Access-edge. So, the application of the 
production guarantees that the hall is always directly accessible from  
outside. 

Thus, each graph of our example specification models the structure of a 
floor plan. A ROOM-node without an Access-relation stands for an 
inaccessible room. The PROGRES test shown in Fig. 4 finds such rooms. It 

production CreateHall( out newHall : Hall [1:1]) =

   ::=

return newHall := 3’;
end;

‘1 : Outside ‘2 : Hall

1’ = ‘1 3’ : Hall
Access

left hand side

right hand side
(inserted graph)

(match)

to be replaced by

 

Fig. 3: Example of a graph production, inserting a node and an edge 



searches the graph for ROOM-nodes which are not connected with the outside 
by a sequence of Access- or Contains-relations. The result is a possibly 
empty node set. In this way we formally define the meaning of 
“inaccessible”. 

Graph productions may be regarded as simple user actions to edit a 
graph, thereby modeling a floor plan. There can also be productions that 
remove or replace nodes or edges from the graph. Fig. 5 shows a production 
to transform a separate dining room into a separate part within the kitchen. 
It takes these separate rooms as parameters, here kitchen and dining. The 
parameters can be chosen by user selection. For the production to be 
applicable, the nodes must be connected by an Access-edge. Also, the 
dining room must not already be contained in another room. As the role of 
the dining-node changes from a separate room to a separate part of another 
room, Access-edges that are connected to it are redirected to the kitchen-
node. 

More complex user actions can be defined by applying multiple 
productions in a defined order. PROGRES offers control structures to 
combine production applications and tests to form transactions. They can be 
regarded as complex user interactions. Transactions may use applications of 
other transactions, too. 

A graph rewriting system consists of a graph schema and a set of 
transactions. Transactions combine productions, test and inner transactions. 
This combination is described by control structures. The graph rewriting 
system is described by a PROGRES specification describing a graph class. 

test InaccessibleRooms( out inaccessibleRooms : ROOM [0:n])
=

return inaccessibleRooms := ‘2;

end;

‘2 : ROOM

(     -Access->
or  -Contains-> ) *

‘1 : Outside

 

Fig. 4: Example of a graph test, finding inaccessible rooms 



The graphs of the graph class are the result of applying transactions. 
Transactions and there parts are consistent with the schema. 

2.2. Implementing tools according to a specification 

The PROGRES system [32] is an environment for developing PROGRES 
specifications. It is a visual programming environment as it allows to 
describe the schema as well as the transaction part graphically, exactly as 
shown in the figures above. By the editor tool, specifications can be built 
up, the analysis tool is checking the consistency of the specification, 
especially with the schema, an interpreter is used to execute a specification 
and to debug it. The different tools of the environment are tightly integrated. 

production DiningInKitchen ( kitchen : Kitchen [1:1] ;
                              dining : Dining [1:1])
=

  ::=

folding { ‘3, ‘4 };
end;
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Fig. 5: A graph production rearranging dining 



So, during debugging, you might re-edit, immediately check, and restart the 
execution.  

From a tested specification an interactive tool can be automatically 
generated: From the PROGRES specification, C-code is generated. This 
code makes use of a given library (PGC) that implements PROGRES’ 
dynamic semantics. Together with the UPGRADE framework [5; 16] a tool 
with a graphical user interface can be easily realized. The framework 
consists of all reusable parts of tools. The generated C-code is plugged into 
that framework. This is described in more detail in this subsection. The 
graph prototype described later in section 4 is realized in that way.  

Fig. 6 describes the structure of such a prototype. The UPGRADE 
framework is written in Java and uses the C-code generated by the 
PROGRES system as its main functional component. From the UI-part a 
user can interactively execute commands for all defined transactions and 
productions, thereby editing a model.  
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Fig. 6: Building tools by inserting generated C-code into the UPGRADE framework 



The executed code due to transactions uses the PGC library that stores 
all graphs it transforms in the non-standard database GRAS (GRAph Storage 
[18]). Each change of the database sends events to the UPGRADE 
framework. A filter stack transforms the events into a form which is 
“understandable” in the application domain. The unparser receives the 
filtered events and updates the display accordingly. To create a graphical 
layout on  the display it queries the graph database by means of the filter 
stack to retrieve the context of a new node or its attribute values. On the 
display the user can select nodes to use them as parameters for other 
transactions he wishes to execute.  

We now discuss the command cycle by an example. For the 
DiningInKitchen-production, the user selects a kitchen- and a dining-
node and then selects the transaction to be executed. The UI determines 
parameters for the generated code from the selection and calls the 
corresponding function of the generated code. Then, the corresponding 
transformations on the database are executed which, in turn, inform the filter 
stack about new and redirected edges. The event passes the stack 
unchanged, as Access- and Contains-edges are displayed. The unparser 
queries the filter stack for source and target node of the new edge, calculates 
their corresponding graphical object and informs the display about a new 
line (as a representation of that edge) betweens these objects. 

The UPGRADE framework can be parameterized to adapt the prototype 
to specific needs. To define the UI behavior, the tool creator can restrict the 
set of transactions offered to the user, define icons for them, and arrange 
them in command bars and menus. To present an easier understandable 
model to the user, the tool creator can also parameterize the filter stack. 
Especially, he defines a cutout of the complete graph, based on node types 
or attribute values and he re-presents simple graph patterns into attributed 
edges not directly provided by PROGRES. Furthermore, parameters of the 
display can be used to define the shape, color, and the annotations of nodes 
and edges, based again on type or attribute values. All these parameters are 
stored in a single XML file defining the appearance of the tool. 



The tool creator can, moreover, also extend the UPGRADE framework 
by programming new interaction elements, filter types, specific unparsers, 
representation classes or display types in Java. This allows arbitrary 
flexibility when building a prototype with, however, considerable higher 
costs. The tool described later does not make use of these extensibility 
features. 

2.3. Extending or integrating existing tools 

Both subsections of above describe a top-down approach. From a 
PROGRES specification a visual tool is realized with minor effort using the 
UPGRADE framework. This tool is stand-alone prototype, to be used for 
proof of concept purposes. As explained, it needs a rather complex 
infrastructure (GRAS, code generator, PGC code library, and the reusable 
components of UPGRADE). It can be used in academia but hardly for 
industrial purposes. 

In industrial practice, many tool exists, especially in engineering 
disciplines. They have a tremendous economic value due to their 
development costs, the experience of their users, their usage in industrial 
projects and, finally, the value of systems developed by them. Therefore, 
about half of the projects of our group follow a bottom-up approach to 
extend existing tools or to integrate such tools. In any case, it is our aim to 
add new user functionality.  

We give some example: The integrator project described in 1.1 integrates 
a flow chart and a simulation tool. The aTool project extends MS Word by 
new semantical functionality. The same is true for CHASID which extents 
ToolBook.  

By extending or integrating tools two different tasks have to be solved: 
On one hand, wrappers are written in order to uniformly access the 
functionality of a tool and its underlying data. This is a prerequisite for 
integrating tools in a system technical sense such that these tools can be 
activated in a homogenous way. Building new functionality on top of tools 
or integrating tools in the sense of giving additional functions for developers 
means to create new data structures and new tool functionalities.  



These data structure and tool behavior are again regarded to consist of 
graphs and graph transformations. So, again graph technology can be 
applied. 

Extending tools can be realized in two ways: One way is to couple an 
existing tool with a PROGRES/UPGRADE prototype. Here, the coupling 
has to be realized, the remaining task is as described above. Trivially, the 
disadvantage of above also applies here, namely that the complex 
infrastructure has to be used. The second way is to extend an existing tool 
by using the extension mechanisms of the tool itself. If the new functionality 
is specified by PROGRES, then this functionality firstly can be approved by 
a visual prototype and later be transformed into the extending program. In 
this case, specifications are hand-coded as it was in the early days of 
applying graph rewriting specifications in our group (see the programming 
in the small tools in [24]). 

3. NEW TOOLS FOR ARCHTIECTURAL DESIGN 

Today, only the constructive design process is supported through various 
CAD systems. Defining tools for conceptual design and having 
corresponding explicit knowledge at hand when elaborating the constructive 
design, especially allows to constantly check the consistency of a 
constructive design against this knowledge. If, furthermore, a tool for 
constructive design is integrated with the conceptual design tool, we can 
also check the consistency with conceptual design knowledge at 
constructive design level. This allows rapid prototyping, reduces the number 
of design errors, and increases the quality and efficiency of the design 
process and product.  

The following approach to support design in civil engineering consists of 
two different parts. In the first part (top-down) the possibilities of direct 
graph technology support in the sense of a graph-based 
PROGRES/UPGRADE prototype are investigated. This is used to offer 
tools to explicitly define the underlying structures and constraints of 
conceptual design. Furthermore, we also define the tool operations to be 



used in conceptual design. These operations check for the consistency of the 
current conceptual design structure with the conceptual design knowledge 
explicitly defined before. For this part the existing PROGRES/UPGRADE 
infrastructure is used as described in the previous section. However, the 
proceeding is more complicated than described in the graph technology 
section. 

The second approach uses the experiences of the bottom-up projects, 
namely to extend existing tools by adding further semantic functionality. In 
our case the commercial CAD system ArchiCAD is taken. The idea is that 
the architect develops buildings with ArchiCAD in a conceptual way. To 
avoid design errors his design results are supervised by a consistency 
checker using design knowledge encoded within the ArchiCAD extension. 
This knowledge deals with technical and law restriction, but also 
economical and  personal decisions [2; 9; 19; 26; 28]. 

In the third subsection we sketch that both parts of above can be 
integrated to form an overall solution. 

3.1. Tools for denoting and using conceptual knowledge 

This subsection describes the first part of our approach. The realization is 
based on top-down graph technology as explained in subsections 2.1 and 
2.2. Fig. 7 shows the structure of our specifications and the involved graph 
structures in a schematic view. Rectangles represent graphs, while circles 
represent parts of an overall PROGRES specification, each specification 
part being separated into a schema and corresponding transactions.  

The graph in the lower right corner is the so called room instance graph. 
It is a graph of the class of conceptual design graphs as described in the last 
section.  

The room type graph on the upper right corner represents the conceptual 
design knowledge as indicated in Fig. 1. This design knowledge has to 
reflect the various dimensions of a design process. The different parts of 
knowledge according to these various dimensions are united in this room 
type graph.  



The room instance graph is incrementally checked against the room type 
graph in order to guarantee the consistency of the conceptual design with 
the corresponding knowledge.  

For the room type graph, the room instance graph, and the analyses 
between both corresponding specifications exist (see left hand side of Fig. 
7). The specification of the room type graph reflects the expressiveness of 
describing the structure and constraints of conceptual design. For example 
different room types can be expressed as, e. g., hall and outside and, 
furthermore, that both have to be connected. 

The specification of the room instance graph defines the available 
commands for conceptual design. For example, rooms of a certain type can 
be inserted and interrelated. 

The analyses specification specifies the analysis operation between room 
instance graph and its corresponding room type graph. 

A room type graph is a member of the room type graph class defined by 
the room type specification. Accordingly, a room instance graph belongs to 
the room instance graph class given by the room instance graph 
specification. Finally, the analyses between room instance graph and room 
type graph are in accordance with the analyses specification. 

The reader might have recognized that the specification explained here 
looks differently than the specification presented in the last section. As this 
is no workshop in the graph rewrite community we only present a coarse 
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Fig. 7: Graphs and specifications of the top-down prototype 



explanation. We see that a specification is given here on two levels. 
Whereas in the PROGRES specification given in the last section the 
conceptual knowledge is hard-coded in the specification, the new 
proceeding offers a level and corresponding tools by which this knowledge 
can be explicitly put in. The reason is, that in design in civil engineering we 
can hardly find PROGRES specialist. Even more important, however, is that 
this knowledge can be changed and extended.  

According to this two-level approach the specification of the room 
instance graph only consists of  generic operations like inserting/deleting 
rooms or connecting them by edges. The complex restrictions underlying 
such operations are not to be found within a specification (as in the last 
section) but in the room type graph. Accordingly, the consistency 
constraints to be found in the PROGRES specification are now in the 
explicit description of the room type graph and the analyses checking 
whether a room instance graph is consistent with a room type graph. 

The two-level specification approach now yields an UPGRADE 
prototype with two views. By the room type view we find commands for 
creating conceptual knowledge. These commands are as specified in the 
room type specification. The room instance view offers command for 
building up a conceptual design. The second view is either consistent to the 
structure and constraint knowledge given in by the first view. Or, if there is 
an inconsistency between both views, the architect gets an immediate 
warning.  

The two-level view approach of the prototype supports different roles in 
architectural design. Whereas defining conceptual knowledge is the task of 
an expert in conceptual design, the room instance view supports an architect 
obeying this conceptual knowledge. Of course, an advanced architect can 
deal with both views. 

This approach has many advantages and a few drawbacks. The main 
advantage is that we gain flexibility. Defining a new room type like bicycle 
garage is done by simply creating a new node, by invoking the 
corresponding command of the room type view. Similarly, enforcing access 



to rooms of that type from the outside is just done by creating a obligatory 
edge of type access between the corresponding two nodes.  

This allows the advanced architect to create his personal conceptual 
knowledge or to modify that which is initially provided. It also allows us to 
experiment with different design concepts and their impact on created 
designs which is important for the explorative stage of our project. 

With the analyses specified in PROGRES we are forced to exactly define 
the consistency relation between room type graph and room instance graph. 
This helps in understanding and, consequently,  implementing this relation. 

By modifying the consistency relation we can allow room instance 
graphs that deviate from the conceptual knowledge defined in a room type 
graph. This allows for flexible editing commands during conceptual design. 
Later on, new conceptual design features can be inferred from elaborated 
conceptual designs. This is similar to the proceeding taken in a dissertation 
in the field of process modeling [31]. This flexibility that conceptual design 
can deviate from the formulated knowledge cannot be provided with the 
approach presented in the last section.  

There are also some disadvantages. We do not have all the 
expressiveness provided by the PROGRES language to describe conceptual 
knowledge. For example, complex transactions, paths, and attribute 
evaluation is not at hand. Of course, one could reimplement these language 
features by introducing the corresponding concept on the room type graph 
level. This, however, means to reimplement a big part of the PROGRES 
system.  

3.2. Semantical tool support on top of ArchiCAD  

As described above, the aim of CAD systems is to support constructive 
design. Positioning wall structures with doors and windows is already well 
supported. The 2D- and 3D-visualization features are satisfactory. So, 
nothing has to be done for constructive design. However, the semantics of 
constructive elements and relations between such elements cannot be 
defined. 



The aim of the second part of our approach is to enable the architect to 
use a conventional tool (constructive design) but to think in conceptual 
terms (conceptual design). An extension of the commercial CAD system 
ArchiCAD has been developed, allowing the architect to use conceptual 
elements instead of constructive elements. 

For that, the concept of rooms has been added to ArchiCAD. This is 
realized by an additional constructive element which we call room object. 
Architects think in rooms. In addition, the architect now specifies room 
relations, like the access between two rooms, by inserting a room link 
between both concerned room objects.   

A room can be realized by four walls. It may also have an open side. 
Access between two rooms can be realized by a door between them but also 
by an open “wall” in between. So, we have introduced one level of concepts 
by the ArchiCAD extension. Further extensions may introduce areas of 
rooms, apartments on floors etc. 

Inserting rooms and defining relations between rooms is, by a closer 
look, nothing else then the elaboration of the room instance graph 
consisting of typed nodes and relations between them. The architect 
elaborates that graph, without realizing that he uses graph technology. 
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Fig. 8: Semantical extension of ArchiCAD 



Analyses and consistency checks can now be performed using this graph 
structure. The architect uses tools realized by the theoretical background of 
graph technology which is completely hidden for him. 

In Fig. 8 the left lower part corresponds to the room instance graph. This 
graph is realized using the extension features of ArchiCAD. So, the structure 
of room instance graph is re-implemented using corresponding system 
features. Analogously, we have to define the conceptual knowledge 
necessary for the ArchiCAD extension. This is described in an XML file, 
defining room types and requesting or forbidding relations between objects 
of these types. This file, therefore, corresponds to the room type graph 
introduced above. The conceptual knowledge defined in this file is used for 
consistency checks in the same manner as explained above. So, the situation 
is analogous, the way of realizing it is different. The generator to be seen on 
the right side of  Fig. 8 creates an initial a floor plan which immediately can 
be shown to a customer. 

As additional information, the geometrical positions and the dimensions 
of rooms are also available in a sketch as they are delivered by ArchiCAD. 
With the aid of this information, more complex and powerful analyses can 
be offered. These analyses are done in two steps. The first step checks if the 
obligatory relations between the room objects have been established, e. g. if 
whether the obligatory relation access between kitchen and eating is defined 
by a room link. In the second step, the geometric data are used to check 
whether the current sketch corresponds to the defined relations. If an access 
relation between two rooms has been defined, the rooms must be adjacent. 

3.3. The overall solution 

There are different ways to integrate both prototypes to form an 
integrated overall solution. 

Up to now both parts of our approach explained in the previous two 
subsections seem to be strictly separated. However, they form two ends of a 
complete overall solution. This solution is not available yet. 

Both parts are for different users with different ambitions and knowledge. 
The upper part, already explained, delivers tools for knowledge engineering 



and pure conceptual design. The lower part allows for constructive design 
using conceptual knowledge (in the current state only rooms and 
connections). As in the lower part conceptual knowledge is also separated 
from the tools elaborating the design this solution is also flexible to feed in 
modifications or extensions of conceptual knowledge.  

Looking on the software solution both parts are similar. We have data 
structures reflecting a design and data structure incorporating the 
corresponding knowledge. In between in both cases we find the analyses for 
checking the consistency between both. The realization techniques of course 
are different.  

The similarity of both approaches is the basis for the integration (see  
Fig. 9). There are two solutions for this integration. The first solution creates 
a proof of concept prototype to be used in academia. The second solution 
can be used in industrial practice.  

The first solution consists of both separate systems to be coupled by 
corresponding interface (e. g. CORBA). In this solution conceptual design 
and conceptual design knowledge is on the side of a PROGRES/UPGRADE 
prototype. The reader may remember, that this prototype supports different 
views. In this solution the top-down prototype is listening to all command 
invocations on the ArchiCAD side in order to check whether these 
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Fig. 9: Our two approaches and how they will be integrated 



operations are conceptually sound. The soundness is checked between the 
room instance graph and the room type graph by the corresponding 
analyses. In this solution only the lower connection of Fig. 9 is used 
between both sides.  

The advantage of this solution is its flexibility. We can experiment with 
diverse conceptual items corresponding to the dimensions of Fig. 1, thereby 
finding out which conceptual knowledge and which commands for 
conceptual design are useful for the practical life of an architect. The 
disadvantage of this solution is that such a coupled system can hardly be 
used in industrial practice. The argument is its complexity, as sketched 
above (infrastructure of this two level top-down prototype, time inefficiency 
of the coupling solution). 

If experimentation with the first solution has delivered some practical 
results, we can “download” the conceptual knowledge and the tool behavior 
to the commercial tool ArchiCAD. In this second solution we have to 
encode the specifications of the first solution by extending ArchiCAD, in 
the same way as already mentioned in the last subsection. This solution 
yields an industrial tool to be used in practice. However, there is some effort 
implementing the functionality of the left hand side of Fig. 9 within 
ArchiCAD. The specifications written there can be used as “templates” for 
the “hard-wired” solution making use of the ArchiCAD extension interface. 
Regarding this solution both connections of Fig. 9 are only “conceptually” 
used.  

There may be a third solution converting conceptual knowledge of the 
room type graph automatically into an XML file on the ArchiCAD side. In 
this case the conceptual knowledge view of the top-down prototype has the 
role of inputting and maintaining conceptual knowledge, whereas its use is 
on the ArchiCAD side. It is up to further investigations, whether this 
solution can be realized and, if this is the case, how complicated it is and 
which restrictions it induces.  

In the following two sections of this paper we describe the graph-based 
prototype according to the top-down approach of section 3.1 and the 
ArchiCAD extension as described in 3.2. 



4. THE TOP-DOWN SPECIFICATION-BASED PROTOTYPE 

Conceptual design of buildings means to describe functional entities and 
their relations. This abstraction allows to elaborate a sketch without 
considering any geometrical data. Therefore, the sketch can be described as 
an attributed graph, where the nodes are representing rooms of the building 
and the edges are used to describe the relations between these rooms.  

To achieve corresponding support for conceptual design by using graph 
technology, we use, as already described, two graphs. The room type graph 
describes the conceptual knowledge, the room instance graph the current 
state of a conceptual design. 

In the following, these two graphs are described as well as the 
specification of an analysis between both levels. Furthermore, screenshots 
of the mechanically derived, two-view prototype are presented.  

4.1. Defining conceptual knowledge by a room type graph 

The room type graph contains the used room types like kitchen, toilet, or 
living room. In this graph, also the relations between room types are 
modelled. A room type graph incorporates the conceptual knowledge of a 
specific type of building.  

Each room type is represented by a graph node type, the minimal and 
maximal number of allowed instances is stored as an attribute of the node. 
To specify relations between room types, two different edge types are 
available, namely to express an obligatory or a forbidden relation. The type 
of a relation, as e. g. access, is stored as an attribute of the edge. Between 
two node types there may be an obligatory connection of exactly one of 
different relation types. This is denoted by a function connection between 
two edge types.  

In Fig. 10 a portion of the room type graph for our running example is 
shown. It deals with the ground floor of a single-family house. As described 
above, the nodes represent the room types and the edges describe relation 
types between them. To demand access between the room types hall, 
kitchen, bathroom and living an obligatory link between these room types is 



established with the attribute access. To demand the room type kitchen to 
have a window, an obligatory link between the room type outside and the 
room type kitchen with attribute view has been installed. Access between 
the kitchen and the bathroom is not desired, this relation is expressed by a 
forbidden link between these room types. Between an eating room and a 
kitchen there may be either a contains- or an access-relation. The first is 
expressing that the kitchen contains a separate section, the second that both 
rooms are connected. The two obligatory edges are, therefore, connected by 
an XOR function.   

For each specific type of a building, like a single-family house or a tower 
block, a separate room type graph has to be developed. Once completed, 
this room type graph can be used for any project for a corresponding 
building. It just represents the underlying concepts of this type of building. 

As PROGRES does not support attributed edges, the obligatory and 
forbidden relations are represented by nodes with adjacent relations. In Fig. 
11 the PROGRES graph schema of the room type graph is shown. The node 

eating

outside
hall

living

stairs

bathroom

kitchen

access

access

ac
ce

ss

access

access

access

   access

ventilation

vie
w

accessaccess

access

obligatory

function

      contains

garden

view

xor

forbidden

 

Fig. 10: Room type graph of a single-family house 



classes are displayed as rectangles, the node types as rectangles with 
rounded corners. PROGRES edges are displayed as arrows. 

The node type t_obl_REL describes, as instance of the node class 
t_RELATTR, an obligatory relation. The node type t_forbid_REL forbids a 
relation between two rooms. The kind of a relation, like access, is stored as 
an attribute of the t_RELATTR nodes. The node class t_FUNCTION is used to 
specify a function between relations. The derived node type t_XOR_FUNC 
describes that only one of the involved relations must exist.  

4.2. Sketching with instance graphs 

In the room type graph the conceptual knowledge for specific buildings is 
modelled, i.e. structures and constraints. The conceptual design of a specific 
house is reflected by a room instance graph.   

In our example, most of the room types just have one instance, e. g. the 
living room. Some room types, like bedrooms for children, have more 
instances. Trivially, in bigger buildings multiple occurrences come up.  

In Fig. 12 a room instance graph is shown which is consistent with the 
room type graph displayed in Fig. 10. In the room instance graph, an edge 
does not demand or prohibit a relation between two rooms (as in the room 
type graph), it just states the existence of a relation between two rooms. In 
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Fig. 11: PROGRES schema of the room type graph of Fig. 10 



Fig. 12 there is an edge with the label access between the node hall and 
kitchen to describe that the building will have a door or some other kind of 
connection between both rooms. From the living room, there is access and 
view to the garden, in the building there will be a door and a window. As 
the room instance graph does not consider any geometrical data and no 
room dimensions, the developed sketch may serve as a model for several 
buildings. These buildings may look quite different, their functionality is the 
same.  

Fig. 13 depicts the PROGRES graph schema for room instance graphs. 
Analogous to the room type graph, the relations between the room nodes are 
specified as a node class, a relation is defined by connecting two nodes of 
type a_ROOM with a node of type a_exists_REL, using the edge types 
a_toRel and a_toRoom. The type of the relation is stored in the attribute of 
the a_exists_REL node. An extension to the room type graph is the node 
class NOTIFY, which is used to handle error messages, generated by 
analyses.  

4.3. Analyses between room type and instance graph 

With the room type graph and the room instance graph the underlying 
concepts and a current design are described. The consistency between both 
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Fig. 12: Room instance graph corresponding to the room type graph 



is checked by an analysis. If an inconsistency is detected, the analysis 
throws a notification. Depending on the priority of the violated part of the 
conceptual knowledge, the system displays a warning or an error messages. 
Both are connected to those parts of the room instance graph violating the 
consistency. 

This analysis has to be specified. Fig. 14 shows one of the productions 
used for the analysis. Although it looks rather complex it is easy to 
understand. At the right side of the graph pattern (left hand side of the rule) 
a cutout of the room type graph is displayed. Node `2 and `4 are room type 
nodes. Node `5 represents an obligatory relation between these room types. 
According to node `7, no function may operate on this relation. This pattern 
of three nodes of the room type graph requests a relation between any two 
nodes of corresponding type in the room instance graph. The type of this 
relation is also regarded, which is not shown here. 

On the left side of the pattern node `1 and `3 represent nodes in the room 
instance graph. They are related to the room type nodes by the relation 
ThisRoomsType connecting every room instance with its room type. This 
pattern, therefore, finds two nodes of the room instance graph with room 
types corresponding to the room type graph. Additionally, the two room 
instances have no relation of the requested relation type. 
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Node `6 now claims that no notification/warning about this specific 
inconsistency is already existent. The notification node is therefore 
restricted: It must relate to the type of the relation and to the two node types, 
already mentioned. 

If the described pattern has a match in the graph, new notifications are 

production a_CheckLinkInsertNotification( compare_rel : string)
  * =

  ::=

  [...]
  [...]
end;

‘6 : a_NOTIFY

‘4 : t_ROOM

t_toRel

‘2 : t_ROOM

valid (self.notifyAttr = compare_rel)

valid (self.notifySrcType = ‘1.roomType)

valid (self.notifyTrgType = ‘3.roomType)

t_toRoom

‘5 : t_obl_REL

a_toNotify

a_edgeDir_rel_name ( compare_rel )

ThisRoomsType
‘1 : a_ROOM

ThisRoomsType
‘3 : a_ROOM

t_Function

‘7 : t_FUNCTION

7’ : a_NOTIFY

6’ : a_NOTIFY

4’ = ‘4

a_toNotify

1’ = ‘1

t_toRel

2’ = ‘2

t_toRoom

5’ = ‘5

a_toNotify

3’ = ‘3

 

Fig. 14: One of the analysis productions checking demanded relations 



inserted. This is shown in the right hand side of the production. Nodes 1’, 
2’, 3’, 4’, and 5’ are identical replacements of the corresponding nodes to 
be found in the left hand side. Nodes 6’ and 7’ are new notifications, each 
of them linked to one of the room instance nodes that lack the requested 
relation. 

4.4. Mechanically derived Graph Based Prototype 

To experiment with and to evaluate the introduced conceptual structures 
and corresponding design commands, we have built a prototype with the 
functionality as described in 3.1 and thereby using the machinery as 
explained in 2.2. The prototype is used to model both graphs by taking the 
corresponding view.  
As both graphs are inside the prototype, consistency checks can be easily 
carried out, analysing whether a building (room instance graph) corresponds 
to the underlying knowledge (room type graph). If the building does not 
correspond to the knowledge, e. g. because an obligatory link has not been 
established, this is shown by an error message. If the missing link is added, 
the error message automatically disappears.  

In Fig. 15 the two views of this prototype are displayed. On the right side 
the view of the room type graph is shown, presenting a simple example with 
room types living, eating etc. and the obligatory relation access and the 
prohibited relation access (noaccess). From the menu the graph 
transformations specified in PROGRES can be invoked to build up and 
change the room type graph. Visualization and graph layout are completely 
done by the UPGRADE framework.  

One the left side the view of the room instance graph is shown, some 
rooms are already inserted. The access relation has been installed between 
several rooms, but the obligatory access relation between living room and 
hall is still missing. The absence of this relation is displayed through an 
error message connected to each involved node. To correct this 
inconsistency, the transaction to install a link between these room instances 
is about to be executed, the necessary parameters are already selected.  



5. THE BOTTOM-UP ARCHICAD EXTENSION PROTOTYPE 

In this subsection the bottom-up prototype, i.e. the extension of the 
commercial architecture CAD-program ArchiCAD, is described. Analogous 
to above, rooms are represented by nodes, the relations between these rooms 
are represented by edges. As graphs, their changes, as well the definition of 
underlying knowledge are implemented inside ArchiCAD, the architect 
need not understand the theoretical background. He just uses the tool 
invented for constructive design  now having features for conceptual design. 

The architect need not think about walls, windows, or doors. He can 
place rooms and define intended relations between rooms. We analyse 
geometrical data of ArchiCAD to check constructive room placement 
against the intended underlying concepts. We also check the design against 

 

Fig. 15: The two-view conceptual design prototype showing a simple example 



well-known design rules or law restrictions. To bridge the gap between 
room placement and constructive wall design, a WallGenerator creates a 
simple floor plan. 

5.1. Structural Extensions to ArchiCAD 

ArchiCAD does not offer the possibility to sketch a floor plan using 
rooms. The floor plan is usually constructed using the wall tool. As 
architects rather think in rooms during conceptual design, the room concept 
was added to ArchiCAD. The room object is an additional object inside 
ArchiCAD. In the 2D-view a room object is drawn as an rectangle with the 
room type, the area of the current instance being displayed inside the room. 
Each room type (kitchen etc.) has an unique color to be distinguish from 
others with different functionality. The architect can insert, drag, and resize 
a room object as he does with any other ArchiCAD object. The 3D-view 
offers an impression of room volumes.  

To define relations between rooms, our extension offers a feature to 
install links connecting two room objects. These room links can have 
different attributes, like access, ventilation, or view. As the architect 
sketches the floor plan and not the underlying concepts, the edge type 
describes the existence of such a relation and not the obligation or 
prohibition. A feature called the EditorHelper assists in moving and 
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Fig. 16: The floor plan enriched by room objects and relations, 3D-view of the floor 



resizing rooms by adjusting connected rooms after a resize operation.  
By sketching the floor plan using room objects and defining relations 

between them, the architect does not just design a floor of a building. 
Without being aware, he models a graph structure, namely the room 
instance graph. As additional information, the geometrical data complete 
this graph to form a concrete sketch.  

5.2. Analysis of a sketch 

The ConstraintChecker permanently supervises that none of the defined 
knowledge rules are violated. It reacts on notifications sent by ArchiCAD, if 
an object is created, deleted, or modified. If one of the corresponding 
actions did violate a rule, an error message is displayed to inform the 
architect about the problem (see Fig. 17).  

The information of the graph structure can be used to perform these 
consistency checks. Moreover, the geometrical data also available allow to 
perform more powerful analyses. So, not only the absence of an obligatory 
link can be found as design error (due to graph information). Furthermore, 
also errors, like too small room dimensions can be discovered (due to 
geometrical data).  

5.3. Connection to later phases of design 

When the conceptual layout of a floor plan is finished, the walls have to 
be generated. This need not be done by hand as if the architect would use 
standard ArchiCAD. Instead, with the information of room objects and 
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Fig. 17: Error messages of the ArchiCAD extension 



room links a new tool WallGenerator constructs an initial wall structure 
for a floor plan. 

Starting from this initial wall structure, as displayed in Fig. 18, the 
architect now continues working in a traditional way. He elaborates and 
details the constructive design.  

6. FUTURE PLANS 

In the future, we plan to extend this project in various ways. The graph-
based prototype and the extension prototype will merge in a single 
approach. In a first step the graph-based prototype will be used as an editor 
for the room type graph which is used to analyze the graph of room objects 
and room links of the ArchiCAD extension. A second step will reconstruct 
the room instance graph from the ArchiCAD extension model and directly 
analyze it by code generated from the graph rewriting system within the 
graph-based prototype. Here, knowledge from the CHASID project about 
prototype integration can be reused. Other steps, as sketched in 3.3 will 
follow. 

The following plans are on the side of the ArchiCAD extension. The 
links between room objects will have further influence on the geometry of 
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Fig. 18: Floor plan with an generated, initial wall structure 



the room objects. An automatic layout will propose initial positions and 
sizes for room objects. Repositioning a room object might then have effects 
on other floors or on room objects further away.  

To create a better integration of constructive design and conceptual 
design, the wall generator will be extended to a wall integrator. Changes in 
wall placement can then cause the geometry of room objects to change and 
initiate link creation. We will use our knowledge on incremental integration 
tools to create a reactive integrator. 

The following plans apply to both prototypes. To evaluate our approach 
we will elaborate bigger examples that having extended functional needs. 
We have done first steps by modeling the overall structure of an airport and 
a workshop. 

To cope with different granularities in the structure of large, complex 
buildings we will introduce a hierarchy of objects. When laying out an 
airport, an area for the canteen must be reserved. The internal layout of that 
area is not of interest when relating it to the entrance area or check-in 
counters. Yet the canteen itself is complex enough to make it worthwhile to 
plan, check, and analyze the arrangement of e. g. serving area, cash desk, 
passage ways, and scullery. 
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