
GRAPH TECHNOLOGY SUPPORT FOR CONCEPTUAL DESIGN
IN CIVIL ENGINEERING

Bodo Kraft, Oliver Meyer, Manfred Nagl

Department of Computer Science III, RWTH Aachen
D-52074 Aachen

{kraft, omeyer, nagl}@i3.informatik.rwth-aachen.de

Abstract: The paper describes a novel way to support
conceptual design in civil engineering. The designer uses
semantical tools guaranteeing certain internal structures of the
design result but also the fulfillment of various constraints.

Two different approaches and corresponding tools are discussed:
(a) Visually specified tools with automatic code generation to
determine a design structure as well as fixing various constraints
a design has to obey. These tools are also valuable for design
knowledge specialist. (b) Extensions of existing CAD tools to
provide semantical knowledge to be used by an architect. It is
sketched how these different tools can be combined in the
future.

The main part of the paper discusses the concepts and
realization of two prototypes following the two above
approaches. The paper especially discusses that specific graphs
and the specification of their structure are useful for both tool
realization projects.

1. INTRODUCTION

In this chapter we first describe some projects ongoing in our group,
before we introduce our approach for supporting conceptual design. After
that we discuss related work and give an overview of the paper.

EG-ICE-2002 - Int. Workshop of the European Group for Intelligent Computing in Engineering
eds. Schellenbach-Held, M., Denk, H., VDI Fortschritt Berichte, (180), Seite 1-35, VDI-Verlag, Darmstadt

1.1. Some ongoing projects

Department of Computer Science III at RWTH Aachen is specialized in
software engineering and software architectures. Especially, we have a
broad experience in building new tools for various application domains[24;
25]. In the following some ongoing projects are sketched, because of two
reasons. On one hand, the projects describe the realm of our activities in
different domains. On the other, as we shall see later, these projects share
some similarities – either in their underlying concepts or their realization –
with the project introduced in this paper.

Within the AHEAD project an integrated management system for
development processes is investigated [17; 31; 36]. In this context,
management denotes the coordination of cooperating developers, the
administration of their complex product, as well as the assignment of
resources to tasks. The management system works on administration level,
and, therefore, above the level how technical developers perform their tasks
or how their results look like. The management system tightly integrates
submodels dealing with processes, products, and resources, respectively by
offering corresponding tools. Furthermore, the system can be parameterized
for a specific context (application domain, standard, company etc.).

Tool support on technical level is given by integration tools, having been
investigated for software development some time ago [20; 24] and being
currently investigated for chemical engineering [3]. These tools help to keep
the contents of different documents consistent to each other. These
interactive and incremental tools establish and maintain inter-document
links by mutually relating increments of different documents. Changes of
the underlying documents are recognized, the integration tools help to
transform these changes, to analyze different documents for consistency,
and alike. Integration tools avoid the disadvantages of batch-oriented
transformators and of manual link-editing tools.

The CHASID project aims at supporting authors of textbooks, scientific
texts, and articles by modeling the semantical structure of text documents
[11]. A topic map describes and relates topics the author whishes to
communicate. It is integrated with the hierarchical structure of the text.

Templates on the level of the topic map, or the structure of the text, or their
interrelation yield an improved structure of the text. In the same problem
field the aTool project extents MS Word by semantical features [23].

The E-CARES project develops concepts, methods, and tools to support
the processes of understanding and restructuring complex legacy
telecommunication systems [15]. To provide a better understanding of
existing systems, their current statical structure, their monitoring data at
runtime, as well as “method rules” of its developers are regarded. The
project unites a top-down approach developing a system description
language and formulating the future structure of a system in that language,
and a bottom-up approach determining the existing structure and
corresponding reengineering tools. The used tool construction concepts are
similar to another project dealing with reverse and reengineering of business
administration applications [8].

1.2. Conceptual design as it is and as it should be

Today most of the architects do not elaborate their sketches inside a CAD
system, they rather work with pencil and paper. In the early design phase,
the architect does not think about materials or realization details, he works
creatively by sketching room dimensions and positions. The design of the
future building is still vague and imprecise. Constructive elements, like
walls, windows, or doors are used with their conceptual meaning, namely to
form rooms, to guarantee light and ventilation, or to ensure accessibility.
These conceptual elements, therefore, form a functional view of the
architectural design structure which , however, is not explicitly determined.

When the architect has finished his sketch he manually creates a
constructive design within a CAD system. Now he replaces the functional
elements of the sketch by constructive parts, as the ventilation by a window,
the access by a door etc. The conceptual information he has in mind gets
lost by the time.

There are many changes within the development process. For example, if
a cost calculation is elaborated after the detailed design, this might imply
quite another structure of the building. In the same way, if the client is not

satisfied with the design, the architect has to go back to restart the
conceptual design process. After the redesign of the conceptual sketch, the
changes have to be transferred again manually into the CAD system. The
modification of the conceptual data are lost again. These iterations, which
might be repeated some times, cost time and money, but also increase the
risk of errors.

In principle, the architect is constrained by different dimensions in his
design process. There are standards to fulfil, the requirements of the
customer have to be met, the personal design favour of the architect has to
be obeyed, to name only three of these dimensions. Fig. 1 depicts this
situation. [29; 30] argue that various and different aspects have to be taken
into consideration for the whole development process.

Our approach is to avoid the expensive backtracking steps in the
development process by explicitly determining the structures and restrictions
of conceptual design and by using this knowledge in conceptual design and
later phases. The reason is that errors are cheaper if detected as early as
possible.

. . .
later process phases

common
functional

requirementsbest
practice

economical
restrictions

common
design
rules

standards
architect’s
personal

favors

specific
customer
wishes

experience
from previous

projects

designknowledge

Conceptual Design

. . .

. . .

Constructive Design

conceptual
knowledge
available

consistency
anlysis

Fig. 1: Design constraints for conceptual design and later phases

From the list of dimensions of Fig. 1 we focus on common functional
requirements and specific customer wishes in this paper (grey shaded area).
The presented argumentation holds true for the other dimensions as well.

As is indicated in Fig. 1, we explicitly determine the result of conceptual
design. We also explicitly determine the underlying concepts and
constraints due to the above dimensions. Then, we check the current sketch
(conceptual design result) against that explicit knowledge. Furthermore, this
conceptual knowledge is also used in later phases of the design process. In
this paper we only address the aspect of using design knowledge in
constructive design, following the conceptual design.

Summing up, to improve the design process of the architect, five topics
are essential:

1. The conceptual design process should be supported by tools,
explicitly determining the resulting conceptual design.

2. The underlying structure, as well as the constraining knowledge
have to be explicitly formulated.

3. For determining the underlying knowledge, corresponding tools
also have to be developed.

4. The conceptual design result should easily be transformed for
later process phases. For example, it should be possible to
generate a preliminary floor plan to show it to the customer.

5. Also, the conceptual information should be used to make various
consistency checks for later process results, especially for the
developed floor plan.

The running example of this paper is the design of a single-family house.
Of course, there are specific subtypes of this category. Our explanation will
not go deep enough to distinguish these subtypes.

1.3. Related work

There exist different approaches to support the architect during design.
Most of them use concepts from the field of artificial intelligence. We
roughly separate them in evaluative and generative approaches [21].

One form of evaluative approaches use a knowledge base to store
information about a specific domain and design decisions made in the past
together with their context. The system filters those parts from the
knowledge base that are important for a current problem of the architect.
The systems support human decision and, therefore, are called Decision
Support Systems (DSS). To know which part of the knowledge base is
relevant, the design in most cases strictly follows a predefined process
model (Case Based Design) [1; 22; 27; 29; 30; 33].

Another form of evaluative approaches do a technical analysis of the
constructive design. Whereas simulations like daylight analysis, stability
analysis etc. just use numerical calculations, other aspects – like the
fulfillment of customer needs – use again knowledge bases [6; 7].

Generative approaches mostly use the represented structural knowledge
to create at least an initial prototypical design. Parts of that design are then
further refined, by applying generative rules [10; 35; 37]. In these
approaches it is mainly the machine that creates the design. Shape
grammars [12; 13] also make use of rules for detailing steps in design.
These rules, however, are interactively applied during design.

Most of the above mentioned approaches are implemented in Prolog or
Lisp and are not integrated with existing CAD systems. [14] describes
another graph-based generative approach to support design. A graph
rewriting system for planning the layout of a kitchen from a graph structure
is presented. The conceptual ideas are similar to those presented in the
paper. However, the approach for structuring conceptual knowledge is
simpler and there is no connection to existing systems.

Current CAD systems, like AutoCAD architectural desktop, have
extensions to introduce concepts like rooms into a given design. However,
these concepts are not on conceptual level, they are only used to a-posteriori
mark areas as rooms. Some calculations can use these marks. The
conceptual feature cannot be used during the design process by the architect.

One year ago, we have started a new joint project (with A. Borkowski,
Warsaw, E. Grabska, Cracow, A. Schürr, Munich), the aim of which is to
support architects in conceptual design of houses. [4; 34] model the

functionality of specific areas of a house by a graph structure. From that
structure a graph of related rooms with their positions is generated
automatically as a suggestion for the architect which forms a floor plan. In
this paper we rather follow an interactive approach where the designer is
dominating the design process.

1.4. Overview of the following paper

In this paper concepts and tools answering the five problems of 1.2 are
presented. As graphs, their formal description and corresponding realization
techniques play a big role in this paper, we first give an overview of our
experience, called graph technology in section 2. Section 3 describes our
approach to explicitly deal with conceptual knowledge on one hand and to
use this knowledge for conceptual or constructive design on the other. Two
prototypes are discussed, together with their future integration to form an
overall solution. Section 4 and 5 describe these two prototypes. Section 4
deals with the underlying concepts and the realization of a tool for explicitly
structuring conceptual knowledge and the corresponding constraints and to
use this knowledge during conceptual design. Section 5 discusses an
extension of the commercial system ArchiCAD which introduces semantical
features for that tool. The paper ends with future plans.

Summing up, our approach belongs to the group of evaluative systems. It
does not enforce the user to follow a specific design process. The result of a
conceptual or constructive design is constantly checked against the
predefined structures and constraints.

2. GRAPH TECHNOLOGY

Common to most of the projects of our group is the use of graph
technology. We formally model an application domain to be investigated by
a graph class. Each graph of that graph class then can be understood as a
suitable structure of the application domain. By analyzing the graph we can
derive inconsistencies or problem spots and point the user to them. User
interactions, for example, to build up graphs or to correct inconsistencies,

are expressed as transformations on the graph. Analyses and transformations
are explicitly specified.

In this section we give a sketch of this technology based on a simple
example of conceptual design. The example as well as the proceeding is
simplified, as we shall see later. Graph technology uses the graph
specification language PROGRES [32] and a realization machinery to easily
implement tools following a specification in that language.

2.1. PROGRES as specification language

The underlying notion for describing a graph class are directed, typed,
and attributed graphs. A PROGRES specification consists of two parts. The
schema part describes the node and edge types of the graph class under
consideration. The transaction part formulates transformations and tests,
which can be build up to form complex transactions. We now explain both
parts using our simple single-family house example. Transactions and their
constituents have to be consistent with the schema part.

The schema part of our example is shown in Fig. 2. It shows the abstract
node class ROOM with a comment attribute. Nodes of that class can be related
through Access- and Contains-edges. The node class is specialized into

DiningHallOutside

Living BathKitchen

Access
[0:n]

[0:n]

Contains[0:n]

[0:n]
ROOM

intrinsic
 comment : string [1:1] := "";

edge type

node class

node types

Fig. 2: Schema of our single-family house example

six different node types that represent the different kinds of rooms we
model. Therefore, the relations can connect rooms of all specific types. We
see that a node class expresses the similarities of different node types.

The transaction part determines how different graphs of that graph class
are built. Within transactions productions and tests can occur. A production
defines a change operation for a graph. It consists of a left and a right hand
side. The left hand side is a graph pattern that describes a subgraph and the
right hand side is a graph which is embedded at the place where the graph
pattern’s match is removed.

Fig. 3 shows a sample production for our example. The graph pattern to
be searched requires an outside-node to exist and no hall-node to be
already present (negative application condition). If this pattern is found in a
graph, when applying the production, a new hall-node is created and
connected with the outside by an Access-edge. So, the application of the
production guarantees that the hall is always directly accessible from
outside.

Thus, each graph of our example specification models the structure of a
floor plan. A ROOM-node without an Access-relation stands for an
inaccessible room. The PROGRES test shown in Fig. 4 finds such rooms. It

production CreateHall(out newHall : Hall [1:1]) =

 ::=

return newHall := 3’;
end;

‘1 : Outside ‘2 : Hall

1’ = ‘1 3’ : Hall
Access

left hand side

right hand side
(inserted graph)

(match)

to be replaced by

Fig. 3: Example of a graph production, inserting a node and an edge

searches the graph for ROOM-nodes which are not connected with the outside
by a sequence of Access- or Contains-relations. The result is a possibly
empty node set. In this way we formally define the meaning of
“inaccessible”.

Graph productions may be regarded as simple user actions to edit a
graph, thereby modeling a floor plan. There can also be productions that
remove or replace nodes or edges from the graph. Fig. 5 shows a production
to transform a separate dining room into a separate part within the kitchen.
It takes these separate rooms as parameters, here kitchen and dining. The
parameters can be chosen by user selection. For the production to be
applicable, the nodes must be connected by an Access-edge. Also, the
dining room must not already be contained in another room. As the role of
the dining-node changes from a separate room to a separate part of another
room, Access-edges that are connected to it are redirected to the kitchen-
node.

More complex user actions can be defined by applying multiple
productions in a defined order. PROGRES offers control structures to
combine production applications and tests to form transactions. They can be
regarded as complex user interactions. Transactions may use applications of
other transactions, too.

A graph rewriting system consists of a graph schema and a set of
transactions. Transactions combine productions, test and inner transactions.
This combination is described by control structures. The graph rewriting
system is described by a PROGRES specification describing a graph class.

test InaccessibleRooms(out inaccessibleRooms : ROOM [0:n])
=

return inaccessibleRooms := ‘2;

end;

‘2 : ROOM

(-Access->
or -Contains->) *

‘1 : Outside

Fig. 4: Example of a graph test, finding inaccessible rooms

The graphs of the graph class are the result of applying transactions.
Transactions and there parts are consistent with the schema.

2.2. Implementing tools according to a specification

The PROGRES system [32] is an environment for developing PROGRES
specifications. It is a visual programming environment as it allows to
describe the schema as well as the transaction part graphically, exactly as
shown in the figures above. By the editor tool, specifications can be built
up, the analysis tool is checking the consistency of the specification,
especially with the schema, an interpreter is used to execute a specification
and to debug it. The different tools of the environment are tightly integrated.

production DiningInKitchen (kitchen : Kitchen [1:1] ;
 dining : Dining [1:1])
=

 ::=

folding { ‘3, ‘4 };
end;

‘4 : ROOM

Access
‘1 = kitchen

Access

‘3 : ROOM

Access

‘2 = dining

Contains

‘5 : ROOM

4’ = ‘4

2’ = ‘2
Contains

Access

Access
1’ = ‘1

3’ = ‘3

Fig. 5: A graph production rearranging dining

So, during debugging, you might re-edit, immediately check, and restart the
execution.

From a tested specification an interactive tool can be automatically
generated: From the PROGRES specification, C-code is generated. This
code makes use of a given library (PGC) that implements PROGRES’
dynamic semantics. Together with the UPGRADE framework [5; 16] a tool
with a graphical user interface can be easily realized. The framework
consists of all reusable parts of tools. The generated C-code is plugged into
that framework. This is described in more detail in this subsection. The
graph prototype described later in section 4 is realized in that way.

Fig. 6 describes the structure of such a prototype. The UPGRADE
framework is written in Java and uses the C-code generated by the
PROGRES system as its main functional component. From the UI-part a
user can interactively execute commands for all defined transactions and
productions, thereby editing a model.

PGC Library

C-code
generated

by the
PROGRES

system

UI Display

Unparser

Fi
lte

r

GRAS

UPGRADE

Selected transactions, productions,
and test can be activated

The C-code for the transaction
part of a specification forms the
main functional component of a
visual tool.

Fig. 6: Building tools by inserting generated C-code into the UPGRADE framework

The executed code due to transactions uses the PGC library that stores
all graphs it transforms in the non-standard database GRAS (GRAph Storage
[18]). Each change of the database sends events to the UPGRADE
framework. A filter stack transforms the events into a form which is
“understandable” in the application domain. The unparser receives the
filtered events and updates the display accordingly. To create a graphical
layout on the display it queries the graph database by means of the filter
stack to retrieve the context of a new node or its attribute values. On the
display the user can select nodes to use them as parameters for other
transactions he wishes to execute.

We now discuss the command cycle by an example. For the
DiningInKitchen-production, the user selects a kitchen- and a dining-
node and then selects the transaction to be executed. The UI determines
parameters for the generated code from the selection and calls the
corresponding function of the generated code. Then, the corresponding
transformations on the database are executed which, in turn, inform the filter
stack about new and redirected edges. The event passes the stack
unchanged, as Access- and Contains-edges are displayed. The unparser
queries the filter stack for source and target node of the new edge, calculates
their corresponding graphical object and informs the display about a new
line (as a representation of that edge) betweens these objects.

The UPGRADE framework can be parameterized to adapt the prototype
to specific needs. To define the UI behavior, the tool creator can restrict the
set of transactions offered to the user, define icons for them, and arrange
them in command bars and menus. To present an easier understandable
model to the user, the tool creator can also parameterize the filter stack.
Especially, he defines a cutout of the complete graph, based on node types
or attribute values and he re-presents simple graph patterns into attributed
edges not directly provided by PROGRES. Furthermore, parameters of the
display can be used to define the shape, color, and the annotations of nodes
and edges, based again on type or attribute values. All these parameters are
stored in a single XML file defining the appearance of the tool.

The tool creator can, moreover, also extend the UPGRADE framework
by programming new interaction elements, filter types, specific unparsers,
representation classes or display types in Java. This allows arbitrary
flexibility when building a prototype with, however, considerable higher
costs. The tool described later does not make use of these extensibility
features.

2.3. Extending or integrating existing tools

Both subsections of above describe a top-down approach. From a
PROGRES specification a visual tool is realized with minor effort using the
UPGRADE framework. This tool is stand-alone prototype, to be used for
proof of concept purposes. As explained, it needs a rather complex
infrastructure (GRAS, code generator, PGC code library, and the reusable
components of UPGRADE). It can be used in academia but hardly for
industrial purposes.

In industrial practice, many tool exists, especially in engineering
disciplines. They have a tremendous economic value due to their
development costs, the experience of their users, their usage in industrial
projects and, finally, the value of systems developed by them. Therefore,
about half of the projects of our group follow a bottom-up approach to
extend existing tools or to integrate such tools. In any case, it is our aim to
add new user functionality.

We give some example: The integrator project described in 1.1 integrates
a flow chart and a simulation tool. The aTool project extends MS Word by
new semantical functionality. The same is true for CHASID which extents
ToolBook.

By extending or integrating tools two different tasks have to be solved:
On one hand, wrappers are written in order to uniformly access the
functionality of a tool and its underlying data. This is a prerequisite for
integrating tools in a system technical sense such that these tools can be
activated in a homogenous way. Building new functionality on top of tools
or integrating tools in the sense of giving additional functions for developers
means to create new data structures and new tool functionalities.

These data structure and tool behavior are again regarded to consist of
graphs and graph transformations. So, again graph technology can be
applied.

Extending tools can be realized in two ways: One way is to couple an
existing tool with a PROGRES/UPGRADE prototype. Here, the coupling
has to be realized, the remaining task is as described above. Trivially, the
disadvantage of above also applies here, namely that the complex
infrastructure has to be used. The second way is to extend an existing tool
by using the extension mechanisms of the tool itself. If the new functionality
is specified by PROGRES, then this functionality firstly can be approved by
a visual prototype and later be transformed into the extending program. In
this case, specifications are hand-coded as it was in the early days of
applying graph rewriting specifications in our group (see the programming
in the small tools in [24]).

3. NEW TOOLS FOR ARCHTIECTURAL DESIGN

Today, only the constructive design process is supported through various
CAD systems. Defining tools for conceptual design and having
corresponding explicit knowledge at hand when elaborating the constructive
design, especially allows to constantly check the consistency of a
constructive design against this knowledge. If, furthermore, a tool for
constructive design is integrated with the conceptual design tool, we can
also check the consistency with conceptual design knowledge at
constructive design level. This allows rapid prototyping, reduces the number
of design errors, and increases the quality and efficiency of the design
process and product.

The following approach to support design in civil engineering consists of
two different parts. In the first part (top-down) the possibilities of direct
graph technology support in the sense of a graph-based
PROGRES/UPGRADE prototype are investigated. This is used to offer
tools to explicitly define the underlying structures and constraints of
conceptual design. Furthermore, we also define the tool operations to be

used in conceptual design. These operations check for the consistency of the
current conceptual design structure with the conceptual design knowledge
explicitly defined before. For this part the existing PROGRES/UPGRADE
infrastructure is used as described in the previous section. However, the
proceeding is more complicated than described in the graph technology
section.

The second approach uses the experiences of the bottom-up projects,
namely to extend existing tools by adding further semantic functionality. In
our case the commercial CAD system ArchiCAD is taken. The idea is that
the architect develops buildings with ArchiCAD in a conceptual way. To
avoid design errors his design results are supervised by a consistency
checker using design knowledge encoded within the ArchiCAD extension.
This knowledge deals with technical and law restriction, but also
economical and personal decisions [2; 9; 19; 26; 28].

In the third subsection we sketch that both parts of above can be
integrated to form an overall solution.

3.1. Tools for denoting and using conceptual knowledge

This subsection describes the first part of our approach. The realization is
based on top-down graph technology as explained in subsections 2.1 and
2.2. Fig. 7 shows the structure of our specifications and the involved graph
structures in a schematic view. Rectangles represent graphs, while circles
represent parts of an overall PROGRES specification, each specification
part being separated into a schema and corresponding transactions.

The graph in the lower right corner is the so called room instance graph.
It is a graph of the class of conceptual design graphs as described in the last
section.

The room type graph on the upper right corner represents the conceptual
design knowledge as indicated in Fig. 1. This design knowledge has to
reflect the various dimensions of a design process. The different parts of
knowledge according to these various dimensions are united in this room
type graph.

The room instance graph is incrementally checked against the room type
graph in order to guarantee the consistency of the conceptual design with
the corresponding knowledge.

For the room type graph, the room instance graph, and the analyses
between both corresponding specifications exist (see left hand side of Fig.
7). The specification of the room type graph reflects the expressiveness of
describing the structure and constraints of conceptual design. For example
different room types can be expressed as, e. g., hall and outside and,
furthermore, that both have to be connected.

The specification of the room instance graph defines the available
commands for conceptual design. For example, rooms of a certain type can
be inserted and interrelated.

The analyses specification specifies the analysis operation between room
instance graph and its corresponding room type graph.

A room type graph is a member of the room type graph class defined by
the room type specification. Accordingly, a room instance graph belongs to
the room instance graph class given by the room instance graph
specification. Finally, the analyses between room instance graph and room
type graph are in accordance with the analyses specification.

The reader might have recognized that the specification explained here
looks differently than the specification presented in the last section. As this
is no workshop in the graph rewrite community we only present a coarse

Schema

Schema

Schema

Transactions

Transactions

Transactions

Room Type Level

Room Instance Level

Analyses Level

Graph
Structures

PROGRES
Specifications

Fig. 7: Graphs and specifications of the top-down prototype

explanation. We see that a specification is given here on two levels.
Whereas in the PROGRES specification given in the last section the
conceptual knowledge is hard-coded in the specification, the new
proceeding offers a level and corresponding tools by which this knowledge
can be explicitly put in. The reason is, that in design in civil engineering we
can hardly find PROGRES specialist. Even more important, however, is that
this knowledge can be changed and extended.

According to this two-level approach the specification of the room
instance graph only consists of generic operations like inserting/deleting
rooms or connecting them by edges. The complex restrictions underlying
such operations are not to be found within a specification (as in the last
section) but in the room type graph. Accordingly, the consistency
constraints to be found in the PROGRES specification are now in the
explicit description of the room type graph and the analyses checking
whether a room instance graph is consistent with a room type graph.

The two-level specification approach now yields an UPGRADE
prototype with two views. By the room type view we find commands for
creating conceptual knowledge. These commands are as specified in the
room type specification. The room instance view offers command for
building up a conceptual design. The second view is either consistent to the
structure and constraint knowledge given in by the first view. Or, if there is
an inconsistency between both views, the architect gets an immediate
warning.

The two-level view approach of the prototype supports different roles in
architectural design. Whereas defining conceptual knowledge is the task of
an expert in conceptual design, the room instance view supports an architect
obeying this conceptual knowledge. Of course, an advanced architect can
deal with both views.

This approach has many advantages and a few drawbacks. The main
advantage is that we gain flexibility. Defining a new room type like bicycle
garage is done by simply creating a new node, by invoking the
corresponding command of the room type view. Similarly, enforcing access

to rooms of that type from the outside is just done by creating a obligatory
edge of type access between the corresponding two nodes.

This allows the advanced architect to create his personal conceptual
knowledge or to modify that which is initially provided. It also allows us to
experiment with different design concepts and their impact on created
designs which is important for the explorative stage of our project.

With the analyses specified in PROGRES we are forced to exactly define
the consistency relation between room type graph and room instance graph.
This helps in understanding and, consequently, implementing this relation.

By modifying the consistency relation we can allow room instance
graphs that deviate from the conceptual knowledge defined in a room type
graph. This allows for flexible editing commands during conceptual design.
Later on, new conceptual design features can be inferred from elaborated
conceptual designs. This is similar to the proceeding taken in a dissertation
in the field of process modeling [31]. This flexibility that conceptual design
can deviate from the formulated knowledge cannot be provided with the
approach presented in the last section.

There are also some disadvantages. We do not have all the
expressiveness provided by the PROGRES language to describe conceptual
knowledge. For example, complex transactions, paths, and attribute
evaluation is not at hand. Of course, one could reimplement these language
features by introducing the corresponding concept on the room type graph
level. This, however, means to reimplement a big part of the PROGRES
system.

3.2. Semantical tool support on top of ArchiCAD

As described above, the aim of CAD systems is to support constructive
design. Positioning wall structures with doors and windows is already well
supported. The 2D- and 3D-visualization features are satisfactory. So,
nothing has to be done for constructive design. However, the semantics of
constructive elements and relations between such elements cannot be
defined.

The aim of the second part of our approach is to enable the architect to
use a conventional tool (constructive design) but to think in conceptual
terms (conceptual design). An extension of the commercial CAD system
ArchiCAD has been developed, allowing the architect to use conceptual
elements instead of constructive elements.

For that, the concept of rooms has been added to ArchiCAD. This is
realized by an additional constructive element which we call room object.
Architects think in rooms. In addition, the architect now specifies room
relations, like the access between two rooms, by inserting a room link
between both concerned room objects.

A room can be realized by four walls. It may also have an open side.
Access between two rooms can be realized by a door between them but also
by an open “wall” in between. So, we have introduced one level of concepts
by the ArchiCAD extension. Further extensions may introduce areas of
rooms, apartments on floors etc.

Inserting rooms and defining relations between rooms is, by a closer
look, nothing else then the elaboration of the room instance graph
consisting of typed nodes and relations between them. The architect
elaborates that graph, without realizing that he uses graph technology.

outside

outside

ou
ts

ide

ou
tsi

de

eating
11,17 qm

living
17,24 qm

kitchen
10,50 qm

hall
2,10 qm

to
ile

t
2,

27
 q

m stairs
3,48 qm

Concept

Constraints

XML

Generator

ArchiCAD
Extension

ArchiCAD

corresponds
to the room
instance graph

corresponds
to the room
type graph

Consistency
analyses

Fig. 8: Semantical extension of ArchiCAD

Analyses and consistency checks can now be performed using this graph
structure. The architect uses tools realized by the theoretical background of
graph technology which is completely hidden for him.

In Fig. 8 the left lower part corresponds to the room instance graph. This
graph is realized using the extension features of ArchiCAD. So, the structure
of room instance graph is re-implemented using corresponding system
features. Analogously, we have to define the conceptual knowledge
necessary for the ArchiCAD extension. This is described in an XML file,
defining room types and requesting or forbidding relations between objects
of these types. This file, therefore, corresponds to the room type graph
introduced above. The conceptual knowledge defined in this file is used for
consistency checks in the same manner as explained above. So, the situation
is analogous, the way of realizing it is different. The generator to be seen on
the right side of Fig. 8 creates an initial a floor plan which immediately can
be shown to a customer.

As additional information, the geometrical positions and the dimensions
of rooms are also available in a sketch as they are delivered by ArchiCAD.
With the aid of this information, more complex and powerful analyses can
be offered. These analyses are done in two steps. The first step checks if the
obligatory relations between the room objects have been established, e. g. if
whether the obligatory relation access between kitchen and eating is defined
by a room link. In the second step, the geometric data are used to check
whether the current sketch corresponds to the defined relations. If an access
relation between two rooms has been defined, the rooms must be adjacent.

3.3. The overall solution

There are different ways to integrate both prototypes to form an
integrated overall solution.

Up to now both parts of our approach explained in the previous two
subsections seem to be strictly separated. However, they form two ends of a
complete overall solution. This solution is not available yet.

Both parts are for different users with different ambitions and knowledge.
The upper part, already explained, delivers tools for knowledge engineering

and pure conceptual design. The lower part allows for constructive design
using conceptual knowledge (in the current state only rooms and
connections). As in the lower part conceptual knowledge is also separated
from the tools elaborating the design this solution is also flexible to feed in
modifications or extensions of conceptual knowledge.

Looking on the software solution both parts are similar. We have data
structures reflecting a design and data structure incorporating the
corresponding knowledge. In between in both cases we find the analyses for
checking the consistency between both. The realization techniques of course
are different.

The similarity of both approaches is the basis for the integration (see
Fig. 9). There are two solutions for this integration. The first solution creates
a proof of concept prototype to be used in academia. The second solution
can be used in industrial practice.

The first solution consists of both separate systems to be coupled by
corresponding interface (e. g. CORBA). In this solution conceptual design
and conceptual design knowledge is on the side of a PROGRES/UPGRADE
prototype. The reader may remember, that this prototype supports different
views. In this solution the top-down prototype is listening to all command
invocations on the ArchiCAD side in order to check whether these

Room-Type-Graph

ArchiCAD
Extensions

Graph Based
Approach

Concept
Constraints

explicitely
formulated

Room-Instance-Graph

Integration

Integration

Consistency
analyses

outside

outside

ou
tsi

de

ou
tsi

de

eating
11,17 qm

living
17,24 qm

kitchen
10,50 qm

hall
2,10 qm

to
ile

t
2,

27
 q

m stairs
3,48 qm

Fig. 9: Our two approaches and how they will be integrated

operations are conceptually sound. The soundness is checked between the
room instance graph and the room type graph by the corresponding
analyses. In this solution only the lower connection of Fig. 9 is used
between both sides.

The advantage of this solution is its flexibility. We can experiment with
diverse conceptual items corresponding to the dimensions of Fig. 1, thereby
finding out which conceptual knowledge and which commands for
conceptual design are useful for the practical life of an architect. The
disadvantage of this solution is that such a coupled system can hardly be
used in industrial practice. The argument is its complexity, as sketched
above (infrastructure of this two level top-down prototype, time inefficiency
of the coupling solution).

If experimentation with the first solution has delivered some practical
results, we can “download” the conceptual knowledge and the tool behavior
to the commercial tool ArchiCAD. In this second solution we have to
encode the specifications of the first solution by extending ArchiCAD, in
the same way as already mentioned in the last subsection. This solution
yields an industrial tool to be used in practice. However, there is some effort
implementing the functionality of the left hand side of Fig. 9 within
ArchiCAD. The specifications written there can be used as “templates” for
the “hard-wired” solution making use of the ArchiCAD extension interface.
Regarding this solution both connections of Fig. 9 are only “conceptually”
used.

There may be a third solution converting conceptual knowledge of the
room type graph automatically into an XML file on the ArchiCAD side. In
this case the conceptual knowledge view of the top-down prototype has the
role of inputting and maintaining conceptual knowledge, whereas its use is
on the ArchiCAD side. It is up to further investigations, whether this
solution can be realized and, if this is the case, how complicated it is and
which restrictions it induces.

In the following two sections of this paper we describe the graph-based
prototype according to the top-down approach of section 3.1 and the
ArchiCAD extension as described in 3.2.

4. THE TOP-DOWN SPECIFICATION-BASED PROTOTYPE

Conceptual design of buildings means to describe functional entities and
their relations. This abstraction allows to elaborate a sketch without
considering any geometrical data. Therefore, the sketch can be described as
an attributed graph, where the nodes are representing rooms of the building
and the edges are used to describe the relations between these rooms.

To achieve corresponding support for conceptual design by using graph
technology, we use, as already described, two graphs. The room type graph
describes the conceptual knowledge, the room instance graph the current
state of a conceptual design.

In the following, these two graphs are described as well as the
specification of an analysis between both levels. Furthermore, screenshots
of the mechanically derived, two-view prototype are presented.

4.1. Defining conceptual knowledge by a room type graph

The room type graph contains the used room types like kitchen, toilet, or
living room. In this graph, also the relations between room types are
modelled. A room type graph incorporates the conceptual knowledge of a
specific type of building.

Each room type is represented by a graph node type, the minimal and
maximal number of allowed instances is stored as an attribute of the node.
To specify relations between room types, two different edge types are
available, namely to express an obligatory or a forbidden relation. The type
of a relation, as e. g. access, is stored as an attribute of the edge. Between
two node types there may be an obligatory connection of exactly one of
different relation types. This is denoted by a function connection between
two edge types.

In Fig. 10 a portion of the room type graph for our running example is
shown. It deals with the ground floor of a single-family house. As described
above, the nodes represent the room types and the edges describe relation
types between them. To demand access between the room types hall,
kitchen, bathroom and living an obligatory link between these room types is

established with the attribute access. To demand the room type kitchen to
have a window, an obligatory link between the room type outside and the
room type kitchen with attribute view has been installed. Access between
the kitchen and the bathroom is not desired, this relation is expressed by a
forbidden link between these room types. Between an eating room and a
kitchen there may be either a contains- or an access-relation. The first is
expressing that the kitchen contains a separate section, the second that both
rooms are connected. The two obligatory edges are, therefore, connected by
an XOR function.

For each specific type of a building, like a single-family house or a tower
block, a separate room type graph has to be developed. Once completed,
this room type graph can be used for any project for a corresponding
building. It just represents the underlying concepts of this type of building.

As PROGRES does not support attributed edges, the obligatory and
forbidden relations are represented by nodes with adjacent relations. In Fig.
11 the PROGRES graph schema of the room type graph is shown. The node

eating

outside
hall

living

stairs

bathroom

kitchen

access

access

ac
ce

ss

access

access

access

 access

ventilation

vie
w

accessaccess

access

obligatory

function

 contains

garden

view

xor

forbidden

Fig. 10: Room type graph of a single-family house

classes are displayed as rectangles, the node types as rectangles with
rounded corners. PROGRES edges are displayed as arrows.

The node type t_obl_REL describes, as instance of the node class
t_RELATTR, an obligatory relation. The node type t_forbid_REL forbids a
relation between two rooms. The kind of a relation, like access, is stored as
an attribute of the t_RELATTR nodes. The node class t_FUNCTION is used to
specify a function between relations. The derived node type t_XOR_FUNC
describes that only one of the involved relations must exist.

4.2. Sketching with instance graphs

In the room type graph the conceptual knowledge for specific buildings is
modelled, i.e. structures and constraints. The conceptual design of a specific
house is reflected by a room instance graph.

In our example, most of the room types just have one instance, e. g. the
living room. Some room types, like bedrooms for children, have more
instances. Trivially, in bigger buildings multiple occurrences come up.

In Fig. 12 a room instance graph is shown which is consistent with the
room type graph displayed in Fig. 10. In the room instance graph, an edge
does not demand or prohibit a relation between two rooms (as in the room
type graph), it just states the existence of a relation between two rooms. In

t_Function

ROOM

t_ROOM

RELATTR

t_RELATTR

t_toRel

t_toRoom

[1:1]

[0:n]
[1:1]

[1:1] [0:n]

FUNCTION

t_FUNCTION
[0:n][0:n]

t_obl_REL t_forbid_REL t_XOR_FUNC

Fig. 11: PROGRES schema of the room type graph of Fig. 10

Fig. 12 there is an edge with the label access between the node hall and
kitchen to describe that the building will have a door or some other kind of
connection between both rooms. From the living room, there is access and
view to the garden, in the building there will be a door and a window. As
the room instance graph does not consider any geometrical data and no
room dimensions, the developed sketch may serve as a model for several
buildings. These buildings may look quite different, their functionality is the
same.

Fig. 13 depicts the PROGRES graph schema for room instance graphs.
Analogous to the room type graph, the relations between the room nodes are
specified as a node class, a relation is defined by connecting two nodes of
type a_ROOM with a node of type a_exists_REL, using the edge types
a_toRel and a_toRoom. The type of the relation is stored in the attribute of
the a_exists_REL node. An extension to the room type graph is the node
class NOTIFY, which is used to handle error messages, generated by
analyses.

4.3. Analyses between room type and instance graph

With the room type graph and the room instance graph the underlying
concepts and a current design are described. The consistency between both

eating

outsidehallliving

stairs

bathroom

kitchen

access

ventilation

view

access

access

access

access

access
access

view

view

garden

ventila
tio

n

access

Fig. 12: Room instance graph corresponding to the room type graph

is checked by an analysis. If an inconsistency is detected, the analysis
throws a notification. Depending on the priority of the violated part of the
conceptual knowledge, the system displays a warning or an error messages.
Both are connected to those parts of the room instance graph violating the
consistency.

This analysis has to be specified. Fig. 14 shows one of the productions
used for the analysis. Although it looks rather complex it is easy to
understand. At the right side of the graph pattern (left hand side of the rule)
a cutout of the room type graph is displayed. Node `2 and `4 are room type
nodes. Node `5 represents an obligatory relation between these room types.
According to node `7, no function may operate on this relation. This pattern
of three nodes of the room type graph requests a relation between any two
nodes of corresponding type in the room instance graph. The type of this
relation is also regarded, which is not shown here.

On the left side of the pattern node `1 and `3 represent nodes in the room
instance graph. They are related to the room type nodes by the relation
ThisRoomsType connecting every room instance with its room type. This
pattern, therefore, finds two nodes of the room instance graph with room
types corresponding to the room type graph. Additionally, the two room
instances have no relation of the requested relation type.

ROOM

a_ROOM

NOTIFY

a_NOTIFY

RELATTR

a_RELATTR

a_toRel

a_toRoom

[1:1] [0:n]

[1:1]
[1:1][0:n]

[0:n]

a_to_Notify

a_exist_REL

Fig. 13: PROGRES schema of the room instance graph of Fig. 12

Node `6 now claims that no notification/warning about this specific
inconsistency is already existent. The notification node is therefore
restricted: It must relate to the type of the relation and to the two node types,
already mentioned.

If the described pattern has a match in the graph, new notifications are

production a_CheckLinkInsertNotification(compare_rel : string)
 * =

 ::=

 [...]
 [...]
end;

‘6 : a_NOTIFY

‘4 : t_ROOM

t_toRel

‘2 : t_ROOM

valid (self.notifyAttr = compare_rel)

valid (self.notifySrcType = ‘1.roomType)

valid (self.notifyTrgType = ‘3.roomType)

t_toRoom

‘5 : t_obl_REL

a_toNotify

a_edgeDir_rel_name (compare_rel)

ThisRoomsType
‘1 : a_ROOM

ThisRoomsType
‘3 : a_ROOM

t_Function

‘7 : t_FUNCTION

7’ : a_NOTIFY

6’ : a_NOTIFY

4’ = ‘4

a_toNotify

1’ = ‘1

t_toRel

2’ = ‘2

t_toRoom

5’ = ‘5

a_toNotify

3’ = ‘3

Fig. 14: One of the analysis productions checking demanded relations

inserted. This is shown in the right hand side of the production. Nodes 1’,
2’, 3’, 4’, and 5’ are identical replacements of the corresponding nodes to
be found in the left hand side. Nodes 6’ and 7’ are new notifications, each
of them linked to one of the room instance nodes that lack the requested
relation.

4.4. Mechanically derived Graph Based Prototype

To experiment with and to evaluate the introduced conceptual structures
and corresponding design commands, we have built a prototype with the
functionality as described in 3.1 and thereby using the machinery as
explained in 2.2. The prototype is used to model both graphs by taking the
corresponding view.
As both graphs are inside the prototype, consistency checks can be easily
carried out, analysing whether a building (room instance graph) corresponds
to the underlying knowledge (room type graph). If the building does not
correspond to the knowledge, e. g. because an obligatory link has not been
established, this is shown by an error message. If the missing link is added,
the error message automatically disappears.

In Fig. 15 the two views of this prototype are displayed. On the right side
the view of the room type graph is shown, presenting a simple example with
room types living, eating etc. and the obligatory relation access and the
prohibited relation access (noaccess). From the menu the graph
transformations specified in PROGRES can be invoked to build up and
change the room type graph. Visualization and graph layout are completely
done by the UPGRADE framework.

One the left side the view of the room instance graph is shown, some
rooms are already inserted. The access relation has been installed between
several rooms, but the obligatory access relation between living room and
hall is still missing. The absence of this relation is displayed through an
error message connected to each involved node. To correct this
inconsistency, the transaction to install a link between these room instances
is about to be executed, the necessary parameters are already selected.

5. THE BOTTOM-UP ARCHICAD EXTENSION PROTOTYPE

In this subsection the bottom-up prototype, i.e. the extension of the
commercial architecture CAD-program ArchiCAD, is described. Analogous
to above, rooms are represented by nodes, the relations between these rooms
are represented by edges. As graphs, their changes, as well the definition of
underlying knowledge are implemented inside ArchiCAD, the architect
need not understand the theoretical background. He just uses the tool
invented for constructive design now having features for conceptual design.

The architect need not think about walls, windows, or doors. He can
place rooms and define intended relations between rooms. We analyse
geometrical data of ArchiCAD to check constructive room placement
against the intended underlying concepts. We also check the design against

Fig. 15: The two-view conceptual design prototype showing a simple example

well-known design rules or law restrictions. To bridge the gap between
room placement and constructive wall design, a WallGenerator creates a
simple floor plan.

5.1. Structural Extensions to ArchiCAD

ArchiCAD does not offer the possibility to sketch a floor plan using
rooms. The floor plan is usually constructed using the wall tool. As
architects rather think in rooms during conceptual design, the room concept
was added to ArchiCAD. The room object is an additional object inside
ArchiCAD. In the 2D-view a room object is drawn as an rectangle with the
room type, the area of the current instance being displayed inside the room.
Each room type (kitchen etc.) has an unique color to be distinguish from
others with different functionality. The architect can insert, drag, and resize
a room object as he does with any other ArchiCAD object. The 3D-view
offers an impression of room volumes.

To define relations between rooms, our extension offers a feature to
install links connecting two room objects. These room links can have
different attributes, like access, ventilation, or view. As the architect
sketches the floor plan and not the underlying concepts, the edge type
describes the existence of such a relation and not the obligation or
prohibition. A feature called the EditorHelper assists in moving and

outside

outside

ou
ts

id
e

ou
ts

id
e

eating
11,17 qm

living
17,24 qm

kitchen
10,50 qm

hall
2,10 qm

to
ile

t
2,

27
 q

m stairs
3,48 qm

Fig. 16: The floor plan enriched by room objects and relations, 3D-view of the floor

resizing rooms by adjusting connected rooms after a resize operation.
By sketching the floor plan using room objects and defining relations

between them, the architect does not just design a floor of a building.
Without being aware, he models a graph structure, namely the room
instance graph. As additional information, the geometrical data complete
this graph to form a concrete sketch.

5.2. Analysis of a sketch

The ConstraintChecker permanently supervises that none of the defined
knowledge rules are violated. It reacts on notifications sent by ArchiCAD, if
an object is created, deleted, or modified. If one of the corresponding
actions did violate a rule, an error message is displayed to inform the
architect about the problem (see Fig. 17).

The information of the graph structure can be used to perform these
consistency checks. Moreover, the geometrical data also available allow to
perform more powerful analyses. So, not only the absence of an obligatory
link can be found as design error (due to graph information). Furthermore,
also errors, like too small room dimensions can be discovered (due to
geometrical data).

5.3. Connection to later phases of design

When the conceptual layout of a floor plan is finished, the walls have to
be generated. This need not be done by hand as if the architect would use
standard ArchiCAD. Instead, with the information of room objects and

eating
11,17 qm

kitchen
4,80 qm

Minimal area for a kitchen is 5 qm.
A kitchen should have access the living.

A kitchen should have access the living.

Fig. 17: Error messages of the ArchiCAD extension

room links a new tool WallGenerator constructs an initial wall structure
for a floor plan.

Starting from this initial wall structure, as displayed in Fig. 18, the
architect now continues working in a traditional way. He elaborates and
details the constructive design.

6. FUTURE PLANS

In the future, we plan to extend this project in various ways. The graph-
based prototype and the extension prototype will merge in a single
approach. In a first step the graph-based prototype will be used as an editor
for the room type graph which is used to analyze the graph of room objects
and room links of the ArchiCAD extension. A second step will reconstruct
the room instance graph from the ArchiCAD extension model and directly
analyze it by code generated from the graph rewriting system within the
graph-based prototype. Here, knowledge from the CHASID project about
prototype integration can be reused. Other steps, as sketched in 3.3 will
follow.

The following plans are on the side of the ArchiCAD extension. The
links between room objects will have further influence on the geometry of

outside

outside

ou
ts

id
e

ou
ts

id
e

eating
11,17 qm

living
17,24 qm

kitchen
10,50 qm

hall
2,10 qm

to
ile

t
2,

27
 q

m stairs
3,48 qm

Fig. 18: Floor plan with an generated, initial wall structure

the room objects. An automatic layout will propose initial positions and
sizes for room objects. Repositioning a room object might then have effects
on other floors or on room objects further away.

To create a better integration of constructive design and conceptual
design, the wall generator will be extended to a wall integrator. Changes in
wall placement can then cause the geometry of room objects to change and
initiate link creation. We will use our knowledge on incremental integration
tools to create a reactive integrator.

The following plans apply to both prototypes. To evaluate our approach
we will elaborate bigger examples that having extended functional needs.
We have done first steps by modeling the overall structure of an airport and
a workshop.

To cope with different granularities in the structure of large, complex
buildings we will introduce a hierarchy of objects. When laying out an
airport, an area for the canteen must be reserved. The internal layout of that
area is not of interest when relating it to the entrance area or check-in
counters. Yet the canteen itself is complex enough to make it worthwhile to
plan, check, and analyze the arrangement of e. g. serving area, cash desk,
passage ways, and scullery.

Acknowledgement: The authors are indebted to A. v. Humboldt-Stiftung
for a grant allowing the cooperation mentioned in 1.3. The partners of the
project have contributed to many fruitful discussions.

REFERENCES

 [1] Al-Shihi, B., Chung, P., and Holdich, R.: A Decision Support Tool for the
Conceptual Design of De-oiling Systems. In: Loganantharaj, R., Palm, G., and Ali,
M.: Intelligent Problem Solving, LNAI 1821, pages 334-344, Springer, Heidelberg
(2000)

 [2] Alexander, C.: Eine Mustersprache. Löcker, (1995)

 [3] Becker, S., Haase, T., Wilhelms, J., and Westfechtel, B.: Integration Tools
Supporting Cooperative Development Processes in Chemical Engineering. In: Proc.
6th World Conference on Integrated Design Process Technology, Pasadena (2002)

 [4] Borkowski, A. and Szuba, J.: Graph Transformation in Architectural Design. In:
Computer Assisted Mechanics and Engineering Science, Vol. 3, pages 109-119
(2001)

 [5] Böhlen, B.: Basisschicht eines Rahmenwerks für graphbasierte Anwendungen,
Diploma Thesis, RWTH Aachen, Aachen, Germany (1999)

 [6] Chen, Y. Z. and Maver, T.: The Design and Implementation of a Virtual Studio
Environment. In: Proc. 2. East-West Conference on IT in Design, Moscow (1996)

 [7] Cichocki, P., Gil, M., and Pokojski, J.: Heating System Design Support. In: Ian
Smith: Artificial Intelligence in Structural Engineering, LNAI 1454, pages 240-248,
Springer, Heidelberg (1998)

 [8] Cremer, K.: Anwendung von Graphentechnik zum Reverse Engineering und
Reengineering, Ph. D. Thesis, RWTH Aachen, Deutscher Universitätsverlag,
Wiesbaden (1999)

 [9] Eich, R.: Honorarordnung für Architekten. Werner, (1996)

 [10] Flemming, U.: Case-Based Design in the SEED System. In: Knowledge Based
Computer Added Architectural Design, pages 69-91, Elsevier, New York (1994)

 [11] Gatzemeier, F.: Patterns, Schemata, and Types - Author Support Through
Formalized Experience. In: ICCS 2000, International Conference on Conceptual
Structures, LNAI 1867, Springer, Heidelberg (2000)

 [12] Gips, J.: Computer Implementation of Shape Grammars. In: Workshop on Shape
Computation, MIT, Massachusetts (1999)

 [13] Gips, J. and Stiny, G.: Shape Grammars and the Generative Specification of
Painting and Sculpture. In: Freiman, C. V.: Proceedings of IFIP Congress 71, pages
1460-1465 (1972)

 [14] Göttler, H., Günther, J., and Nieskens, G.: Use Graph Grammers to Design CAD-
Systems. In: Rozenberg, G.: Graph Grammers and Their Application to Computer
Science, Lecture Notes in Computer Science 532, pages 396-409, Springer (1990)

 [15] Herzberg, D. and Marburger, A.: E-CARES Research Project: Understanding
Complex Legacy Telecommunication Systems. In: Sousa, P. and Ebert, J.:
Proceedings of the 5th European Conference on Software Maintainance and
Reengineering (CSMR), pages 139-147, IEEE Computer Society Press, Los
Alamitos, Ca. (2001)

 [16] Jäger, D.: Generating Tools from Graph-Based Specifications. In: Information and
Software Technology, Vol. 42, pages 129-139 (2000)

 [17] Jäger, D., Schleicher, A., and Westfechtel, B.: AHEAD: A Graph-Based System for
Modeling and Managing Development Processes. In: Nagl, M., Schürr, A., and
Münch, M.: Proc. Workshop on Applications of Graph Transformations with
Industrial Relevance, LNCS 1779, pages 325-340, Springer, Heidelberg (1999)

 [18] Kiesel, N., Schürr, A., and Westfechtel, B.: GRAS, A Graph-oriented Software
Engineering Database System. In: Information Systems, Vol. 20(1), pages 21-51
(1995)

 [19] Landzettel, R. and Schwier, V.: Wohnhaustypen für die Selbsthilfe, AVA-
Arbeitsgemeinschaft zur Verbesserung der Agrarstruktur in Hessen e.V. (1972)

 [20] Lefering, M.: Integrationswerkzeuge in einer Softwareentwicklungs-Umgebung, Ph.
D. Thesis, RWTH Aachen, Shaker, Aachen (1994)

 [21] Maver, T.: A number is worth a thousand pictures. In: Automation in Construction,
Vol. 9, pages 333-336 (2000)

 [22] Menal, J., Moyes, A., McArthur, S., Steele, J. A., and McDonald, J.: Gas circulator
design advisory system: A web based dicision support system for the nuclear
industry. In: Loganantharaj, R., Palm, G., and Ali, M.: Intelligent Problem Solving,
LNAI 1821, Springer, New York (2000)

 [23] Meyer, O., Gatzemeier, F., Fuß, C., and Kirchhof, M.: Inferring Structure
Information from Typography. In: Digital Documents and Electronic Publishing
(DDEP00), LNCS 1923, Springer (2000)

 [24] Nagl, M.: Building Tightly Integrated Software Development Environments: The
IPSEN Approach. In: LNCS 1170, Springer, Heidelberg (1996)

 [25] Nagl, M., and Westfechtel, B.: Integration von Entwicklungssystemen in
Ingenieuranwendungen. Springer, Heidelberg (1998)

 [26] Neufert, E.: Bauentwurfslehre. Vieweg, Wiesbaden (2000)

 [27] Ngo, D. Q. and Rüppel, U.: BINAS - Ein Entscheidungshilfesystem für die
Bestandsanalyse von Bauwerken. In: Int. Kol. über die Anwendungen der Informatik
und der Mathematik in Architektur und Bauwesen (ikm), Weimar (1997)

 [28] Pisthol, W.: Handbuch der Gebäudetechnik. WERNER, Düsseldorf (1999)

 [29] Rüppel, U.: Ganzheitliches Managment von Bauprojekten aus Auftraggebersicht auf
der Basis integrierter Ablauf- und Kostensteuerung. In: Bauingenieur, Vol. 3, pages
105-110 (1998)

 [30] Rüppel, U., Diaz, J., and Meißner, U.: Entscheidungsunterstützung geotechnischer
Planung, Konstruktion und Steuerung mit objektorientierten Baugrundmodellen. In:
Bautechnik, Vol. 9, pages 595-604 (1996)

 [31] Schleicher, A.: Roundtrip Process Evolution Support in a Wide Spectrum Process
Management System, Ph. D. Thesis, RWTH Aachen, DUV, Wiesbaden (2002)

 [32] Schürr, A., Winter, A. J., and Zündorf, A.: The PROGRES approach: Language and
environment. In: Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.:
Handbook on Graph Grammars and Computing by Graph Transformation:
Applications, Languages, and Tools 2, pages 487-550, World Scientific Publishing
Company, Singapore (1999)

 [33] Shaviv, E. and Peleg, U.: An integreted KB-CAAD System for the Cesign of Solar
and Low Energy Buildings. In: Schmitt, G.: CAAD Futures' 91 (1991)

 [34] Szuba, J., Grabska, E., and Borkowski, A.: Graph Visualisation in ArchiCAD. In:
Nagl, M., Schürr, A., and Münch, M.: Application of Graph Transformation with
Industrial Relevance, LNCS 1779, Springer, Heidelberg (1999)

 [35] Wall, R. and Seidle, R.: CastleMaker. In: FAXMAX, Excursions on Density, pages
231-247 (1997)

 [36] Westfechtel, B.: Models and Tools for Managing Development Processes. In: LNCS
1646, Springer, Heidelberg (1999)

 [37] Whitehead, B. and El'Dars, M. Z.: The planning of single storey layouts. In: Building
Science, Vol. 127 (1965)

