
Support of Conceptual Design in Civil
Engineering by Graph-based Tools

Bodo Kraft, Manfred Nagl

Aachen University of Technology (RWTH), Software Engineering
{kraft|nagl}@i3.informatik.rwth-aachen.de

Abstract

1. Graph-based Tools
At Computer Science III Department of RWTH various tools for supporting
development processes have been build in the past, for software engineering,
mechanical engineering, chemical engineering, process control, telecommunication
systems, and authoring support. This paper talks about a rather new application
domain, namely civil engineering.
The tools we have been building are intelligent, incremental and integrated, where
integration falls into two categories. In a priori integration, new tools are developed
for the purpose of tight integration. In the a posteriori case given tools are integrated
by providing new tools functionality. In this paper both integration approaches are
handled.
In all tools mentioned above we use a graph-based tool construction procedure:
internal data structures of tools are modelled as graphs, changes due to command
invocations are specified by graph rewriting systems. Then, there are two different
ways for constructing tools.
In the research-oriented branch, we derive tools automatically from specs, using the
PROGRES system for specification development, a code generator for producing
code out of the spec, and the UPGRADE visual framework environment into which
the code is embedded. The resulting tools are efficient demonstrators for proof of
concept purposes. Theses tools are, however, based on our academic development
infrastructure. In the industrial branch we use the specification as a guideline for
implementation, there by making use of available platforms and utilities. Usually,
we use the research-oriented branch for a priori integration and the industrial one for
the a posteriori case. This is also done in this paper.

2. Approach for Conceptual Design in Civil Engineering
Conceptual Design means that design results are elaborated on a coarse and abstract
level without regarding details which are later included in constructive design (in
other disciplines called detail engineering). On the other hand, the main goal of
conceptual design is to take the various levels of semantics for a design problem into
consideration: (a) domain specific knowledge, as standards, economy rules, security
constrains, or common and accepted design rules, (b) experience knowledge in form
of best practice or of using previous design results and, finally, (c) specific user
behaviour knowledge or wishes, where users are customers or architects,
respectively.
The essentials of our conceptual design approach are that (i) explicit knowledge can
be used, formulated, or enhanced, (ii) change support is specifically supported,

WS GTaD-2003 - The 1st Workshop on Graph Transformations and Design
ed Grabska, E., Seite 6-7, Jagiellonian Universität Krakau

where changes can happen on the level of knowledge as well as for design results,
(iii) a lot of consistency checks are included in order to report errors as soon as
possible, and (iv) that a smooth connection to constructive design is aimed at. The
approach specifically pays off, if (v) different classes of buildings are regarded and,
within a class, different designs of buildings and different variants thereof.
Our approach consists of two parts: (A) we realize a graph-based demonstrator by
which an experienced architect (knowledge engineer) can specify knowledge of the
three areas mentioned above by tools. Any of these areas is studies by one ore two
examples. For the usual architect, there are further tools for developing constructive
designs. These designs are immediately checked against the underlying knowledge.
For the realisation of these tools, which we call conceptual experimentation
platform, we use the enhanced machinery already sketched above which has been
developed in the group within the last 15 years.
The experience platform cannot be used in an industrial context, as it is heavily
based on the realisation machinery developed in an academic context. Therefore, a
second demonstrator, called conceptual design tool extension, uses an industrial
design tool (ArchiCAD by GRAPHISOFT) and extends it by semantical concepts as
rooms, areas of housing, semantical relations, and alike. Again, it is possible to
specify conceptual knowledge and to check a design result against this knowledge.
This demonstrator is also graph-based, where graph-based is related to the concepts
the implementor has in mind during tool extension.
For the coupling of both demonstrators we extract conceptual knowledge from the
conceptual experimentation platform after it has been evaluated and its usefulness
has been approved. This knowledge is then stored in the tool extension in an
appropriate database form to be used for consistency checks of design results against
the database.

3. Outline of the Paper
We discuss both approaches and demonstrators in more detail. For the
experimentation platform we explain the underlying semantical concepts, how
knowledge is represented, how conceptual design results look like, and how the
consistency checks are handled. The functionality of knowledge tools, conceptual
design tools, and checkers are specified by graph rewriting. Especially, we sketch
how we gained flexibility for the specifications in the sense that the underlying
knowledge can easily be changed or extended by the knowledge engineer. This
implies a method for graph rewriting specifications different from that in the past,
where the acquisition of knowledge is only to be found in the tool construction
process.
In the second part, describing the industrial demonstrator, we concentrate on how
semantial concepts and underlying knowledge can be incorporated within an
industrial tool. Thereby, we try to make the solution as independent as possible of
the underlying tool to be extended. Finally, we explain how conceptual and
constructive design can be integrated by an incremental floor generator, which
generates an initial form of a constructive design from the conceptual design, to be
further elaborated.
Finally, we give a rough sketch of the outside behaviour of both demonstrators.

