
Parameterized Specification of Conceptual Design Tools
in Civil Engineering

Bodo Kraft, Manfred Nagl

Department of Computer Science III, Aachen University of Technology,
Ahornstrasse 55, 52074 Aachen, Germany

(kraft|nagl)@i3.informatik.rwth-aachen.de

Abstract. In this paper we discuss how tools for conceptual design in civil engi-
neering can be developed using graph transformation specifications. These tools
consist of three parts: (a) for elaborating specific conceptual knowledge (knowl-
edge engineer), (b) for working out conceptual design results (architect), and (c)
automatic consistency analyses which guarantee that design results are consistent
with the underlying specific conceptual knowledge. For the realization of such
tools we use a machinery based on graph transformations.
In a traditional PROGRES tool specification the conceptual knowledge for a class
of buildings is hard-wired within the specification. This is not appropriate for the
experimentation platform approach we present in this paper, as objects and rela-
tions for conceptual knowledge are due to many changes, implied by evaluation
of their use and corresponding improvements.
Therefore, we introduce a parametric specification method with the following
characteristics: (1) The underlying specific knowledge for a class of buildings
is not fixed. Instead, it is built up as a data base by using the knowledge tools.
(2) The specification for the architect tools also does not incorporate specific
conceptual knowledge. (3) An incremental checker guarantees whether a design
result is consistent with the current state of the underlying conceptual knowledge
(data base).

1 Introduction

In our group, various tools for supporting development processes have been built in
the past, for software engineering [1], mechanical engineering, chemical engineering,
process control [2], telecommunication systems [3], and authoring support [4], some of
them are presented at this workshop. This paper reports about a rather new application
domain, namelycivil engineering.

For all tools mentioned above, we use agraph-based tool constructionprocedure:
internal data structures of tools are modeled as graphs, changes due to command invo-
cations are specified by graph rewriting systems. Then, there are two different branches
for constructing tools, a research-oriented and an industry-oriented one. In this paper
we restrict ourself to theresearch-oriented branch. There, we derive tools automatically
from specifications, using the PROGRES system [5] for specification development, a
code generator for producing code out of the specification, and the UPGRADE visual
framework environment [6] into which the code is embedded. The resulting tools are

AGTIVE-2003 - Application of Graph Transformations with Industrial Relevance
LNCS 3072, eds. J. Pfalz, M. Nagl, und B. Böhlen, Seite 90-105, Springer

efficient demonstrators for proof of concept purposes. Theses tools are based on our
academic development infrastructure, having been developed in the last 15 years.

Conceptual Designin civil engineering means that design results are elaborated
on a coarse and abstract level without regarding details which are later included in
constructive design (in other disciplines called detail engineering) [7]. The main goal
of conceptual design is to take the variouslevels of semanticsfor a design problem into
consideration(cf Fig.1): (a) domain specific knowledge, as standards, economy rules,
security constrains, or common and accepted design rules, (b) experience knowledge in
form of best practice or of using previous design results and, finally, (c) specific user
behavior knowledge or wishes, where users are customers or architects, respectively.

. . .

later process phases

common

funct. req.

best

practice

ecomony common

design

rules

standards

architect’s

pers.favors

specific

customer

wishes
experience

prev.

projects

design
expl.

knowledge

Conceptual Design

Constructive Design

conceptual

knowledge

available

consistency

analyses

security
ecology

e
x

p
e

ri
e

n
c

e
s

p
e

c
ific

s

Fig. 1.Different areas of conceptual design

Theessentialsof our conceptual design approach are that (i) explicit knowledge can
be formulated, enhanced, or used, (ii) change support is specifically supported, where
changes can happen on the level of knowledge as well as for design results, (iii) a lot
of consistency checks are included in order to report errors as soon as possible, and (iv)
a smooth connection to constructive design is aimed at. The approach specifically pays
off, if (v) specific classes of buildings are regarded and, within a class, different designs
for buildings and different variants thereof.

We realize a graph-based demonstrator by which a senior architect (knowledge engi-
neer) can specifyknowledgeby tools. The knowledge is specific for a class of buildings.
For the usual architect, there are further tools for developing conceptual designs. These
designsare immediatelycheckedagainst the underlying specific knowledge. For the
realization of these tools, we use the enhanced machinery already sketched above. We
call this demonstrator the conceptual knowledge experimentation platform as it allows
to experiment with concepts without being forced to change the realization of tools.

In this paper we take a certain class of buildings as anexamplenamely one-floor
medium-sizeoffice buildings. The example is simplified with respect to breadth and
depth. The paper also gives no details of the implementation of tools, only the graph
transformation specifications are presented here. Tool functionalities and user interface
style of the experimentation platform are given in a separate demo description [8].

The paper goes as follows: In section2 we give a specification of architect tools
in a traditional form, were the building type specific knowledge is fixed within the
specification. This motivates the different specification method presented in this paper.
In section3 we discuss the specification for the knowledge engineer tools. Furthermore,
we give an example of a host graph which can be produced by interactively using these
tools. This graph, called domain model graph describes the characteristics of a class of
buildings (here office-buildings). Section4 gives a specification of the architect’s tools
by which conceptual designs for buildings can be elaborated. In section5 we discuss the
specification for analyses. Section6 emphasizes the difference of the two specification
methods, the traditional and the parameterized one, summarizes the main ideas of this
paper, and discusses related literature.

2 A Traditional Tool Specification

There are many projects in the group using graph technology. The specific knowledge of
the appropriate domain usually is hard-wired in the schema and the transaction part of
a PROGRES tool specification. In this paper, we apply adifferentspecificationmethod.

Thereasonis, that the knowledge engineer will not be able to learn the PROGRES
language and to use the realization machinery, adequate for a tool builder. Furthermore,
the knowledge should be easily modifiable, as we are experimenting to find suitable ob-
ject and relation types, restrictions, and rules for conceptual design in civil engineering.

To illustrate the difference between a traditional specification and the parameterized
one described here, we briefly introduce anexample specificationwhich shows how
tools for architectural design of an office building would be described in thetraditional
way.

The schemapart of our example is shown in Fig.2. It shows the abstract node
classROOMwith a comment attribute. Nodes of that class can be related to each other
by Access andContains edges. The node class is specialized into five different
node types representing different room types we want to model. Therefore, the relations
can connect rooms of all specific types. The node classROOMevidently expresses the
similarities of different room node types.

The transaction part determines how different graphs of that graph class are built.
Fig. 3 shows a sampleproductionfor our example. The graph pattern to be searched re-
quires anOutside node to exist and noEntrance Hall node to be already present
(negative application condition). If this pattern is found when applying the production, a
newEntrance Hall node is created and connected with the outside node by anAc-
cess edge. So, the application of the production guarantees that theEntrance Hall
is always directly accessible from outside.

Thus, each graph of our example specification models the structure of an office
building floor plan. AROOMnode without anAccess relation stands for an inacces-

Schema

OutsideCorridor 2PersonOffice ChiefOfficerEntrance_Hall

ROOM

intrinsic
 comment : string [1:1] := "";

[0:n]

[0:n]

Contains

[0:n]

Access

[0:n]

Fig. 2.Schema of an office building

sible room. Thetestshown in Fig.4 finds such rooms. It searches the graph forROOM
nodes which are not connected with the outside node by a path containingAccess or
Contains relations. The result is a possibly empty node set. In this way we formally
define the meaning of inaccessibility.

We see that theknowledgeabout the building type ”office building” isfixedwithin
the specification. There are room typesEntrance Hall or 2PersonOffice room
defined as node types. Evidently, it is not possible to create new room types, like coffee
kitchen with certain accessibility constrains, withoutchangingthe PROGRESspecifica-
tion (schema, transactions, tests). Using PROGRES this way means that the knowledge
engineer and the specificator (and later on the visual tool builder) are the same person.

Our request is to keep these jobs separate. The specificator develops a general spec-
ification, which does not contain specific application knowledge. Thisknowledgeis put
in and modified by the knowledge engineer, as a database, here calleddomain model

production Create EntranceHall(out newHall : En-
trance Hall [1:1]) =

‘2 : Entrance_Hall‘1 : Outside

::=

3’ : Entrance_Hall
Access

1’ = ‘1

return newHall := 3’;
end ;

Fig. 3.Example of a graph production, inserting a node and an edge

test InaccessibleRooms(out inaccessibleRooms : ROOM
[0:n]) =

‘2 : ROOM

(−Access−>
 or −Contains−>) *

‘1 : Outside

return inaccessibleRooms := ‘2;
end ;

Fig. 4.Example of a graph test, finding inaccessible rooms

graphwhere he is using tools derived from the general specification. In the same way,
there is an unspecific specification for the architect tools, from which general tools are
derived. The architect tools now use the knowledge domain model graph interactively
elaborated by the knowledge engineer. Thereby, thedesignresults areincrementally
checked against the underlying specific knowledge.

It is obvious, that this approach has severeimplicationson how a specification is
written, where the domain knowledge is to be found, and where it is used. The different
approaches to fix domain knowledge in the specification or to elaborate it in a host
graph are not PROGRES specific, they are different ways to specify.

3 Specification of the Knowledge Engineer Tools

In this section we describe the specification for the knowledge engineer tools. Using
the corresponding tools,specificdomainknowledgefor a class of buildings is explicitly
worked out (domain model graph). This knowledge is used torestrict the architecture
tools to be explained in the next section.

The upper box of Fig.5 depicts the PROGRESschemapart of the knowledge en-
gineer specification. This schema is still hard-wired. It, however, contains onlygeneral
determinations about conceptual design in civil engineering. Therefore, it is not specific
for a certain type of building.

Thenode classmElement (m stands formodel) serves as root of the class hier-
archy, three node classes inherit from it. The classmAreaType describes ”areas” in
conceptual design. Usually, an area is a room. It may, however, be a part of a room (a
big office may be composed of personal office areas) or a grouping of rooms (a chief of-
ficer area may contain a secretariat, a personal office for the chief officer, and a meeting
room).

From the classmAreaType two node typesare defined;mAtomicAreaType
represents an area not further decomposed,mComplexAreaType a complex area
composed of several areas. In the same way, classesmObligatory andmForbidden
describe obligatory and forbiddenrelations. As we model knowledge about a building
type, optional relations are not modeled explicitly. Everything what is not forbidden or
obligatory is implicitly optional. The reader may note that attributed relations are rep-

resented in PROGRES as nodes with adjacent edges. Finally,attributesmay appear as
constituents of areas and relations. So, we have again node classes and types to repre-
sent the attributes, here only for integer and Boolean values. Note again that attributes
have to be defined as nodes, as they are defined by the knowledge engineer.

Fig. 5 in the lower box shows some nodes which stand for kinds of concepts to be
used for our office building example. We call these kindsmodels. These models appear
in the host graph, interactively produced by the knowledge engineer by using the tools
the specification of which we regard. The 2PersonOfficeModel node represents a cor-
responding room kind, theAccessRelation node an accessibility relation between
rooms, theElectricityAttribute an attribute node needed to describe a prop-
erty of an office room. These nodes are schematic information (information on type
level) for the class of buildings to be described. As, however, this type info is not static
but interactively elaborated, we call it model.

An attribute, such as for electric access, may appear in several room models. So, it
has to be defined before being used several times. In the same way, accessibility occurs
between different room models. Furthermore, it is up to the knowledge engineer, which
attribute and relation concepts he is going to introduce. By the way, these definitions
may be useful for several types of buildings. Therefore, there is a basic model definition
layer in the middle of Fig.5.

m_Element

m_AreaType m_RelationType
m_Area

AttributeType

m_Atomic

AreaType

m_Obligatory m_Forbidden m_bool

2 Person Office

Model

Access

Relation

Model

Electricity

Attribute

Model

Access

Relation

D
O

M
A

IN

M
O

D
E

L
P

R
O

G
R

E
S

 S
C

H
E

M
E

m_Complex

AreaType

Electricity

Attribute

m_Obligatory

Relation
m_Forbidden

Relation

m_bool

Area

Attribute

m_Obligatory

Relation

Type

m_Forbidden

Relation

Type

m_bool Area

Attribute

Type

m_int

m_int

Area

Attribute

m_int Area

Attribute

Type

m = Model

Inheritance

of Model

node class

node type

node instance
of Type

Legend

B
A

S
IC

M
O

D
E

L

D
E

F
S

Fig. 5.Schema of knowledge engineering tool and specific model

Summing up, Fig.5 introduces a3 level approachfor introducing knowledge. The
PROGRES schema types are statically defined. They represent hard-wired foundational
concepts of civil engineering. The other levels depend on the knowledge tool user.
Thereby, the middle layer definesbasicsto be used in the specific knowledge which
is dependent on the type of building. So, the static layer on top defines invariant or
multiply usable knowledge, whereas the middle layer and the bottom layer are specific
for a type of building. The host graph built up by knowledge engineer tools contains
information belonging to the middle and the bottom layer.

ElectricityAttributeModel :

m_boolAreaAttributeType

CorridorModel :

m_AtomicAreaType

2PersonOffice Model:

m_AtomicAreaType

ElectricityAttribute:

m_boolAreaAttibute NetworkAttribute:

m_boolAreaAttibute

 AccessRelation:

m_obligatoryRelation

to_Attibute

to_A
ttribute

to
_
R

e
la

tio
n

from
_R

elation

to_Attribute

NetworkAttributeModel :

m_boolAreaAttributeType

AccessRelationModel:

m_obligatoryRelationType to_instance

to_instance

to
_
in

s
ta

n
c
e

to_instance

ElectricityAttribute:

m_boolAreaAttibute

to_Attribute

to_Attribute

Basic Model Definition Domain Model

to
_
in

s
ta

n
c
e

to_instance
...

Domain Model Graph

Fig. 6.Cutout of a Domain Model Graph (specific for a type of buildings)

Fig. 6 shows a cutout of this graph structure the knowledge engineer develops,
which we calldomain model graph. On the left side, basic attribute and relation models
are depicted. They belong to the level 2 of Fig.5. On the right side their use in a specific
domain model is shown. This right side shows the area models2PersonOffice-
Model andCorridorModel . The2PersonOfficeModel has two attributes to
demand network sockets and electricity to be available. Between the two area models,
an access relation is established, to demand an access from all 2 person offices to the
corridor, in the graph realized through an edge-node-edge construct.

In Fig. 5 we have introduced a three level ”type” system. Any lower level is an
instance of an upper level. A node, however, can be aninstanceof thestatic type and
a dynamicallyintroduced basictypeas well. We can see that the electricity attribute is

an instance of the static typemboolAreaAttribute and of the dynamic basic type
ElectricityAttributeModel . This is realized by giving the electricity attribute
node a string attribute denoting the dynamic basic type and an edgeto instance
from the basic type to theattribute node. Tests and transactions guarantee the
consistency between these static or dynamic types of instances.

production mCreateBoolAreaAttribute(attributeModelDescr :
string ;

attributeValueDescr : boolean ;
areaModel : m AtomicAreaType)

[0:1] =

‘2 : m_boolAreaAttributeType‘1 = areaModel

::=

3’ : m_boolAreaAttribute

m_toBoolAreaAttribute1’ = ‘1

to_instance

2’ = ‘2

condition ‘2.attributeDecr = attributeModelDescr;
transfer 3’.attributeDecr := attributeModelDescr;

3’.attributeValueDefinition := attributeVal-
ueDescr;
end ;

Fig. 7.Creating an instance of an attribute model

Fig. 7 shows a production to create an attribute assigned e.g. to a2Person-
OfficeModel . Please note that the model is represented by a node with the deno-
tation areaModel of the static typemAtomicAreaType which has a PROGRES
node attribute storing the dynamic type2PersonOfficeModel . Input parameters
are the attribute model description as a string, an attribute value, and the model node
representing the 2 person room concept. Node‘2 on the left side represents an attribute
model node. By the condition clause we ensure that it corresponds to the input parame-
ter attributeModelDescr . Only if anattribute model (node‘2) with this
description exists, a new attribute (node3’) is created and linked to the2Person-
OfficeModel (node1’) and to theattribute model (node2’). The model
description is stored in a string attribute of node3’ , just as the attribute value. The
inverse operation, to delete an attribute is trivial. Before deleting an attribute model
all corresponding instances have to be deleted. This is done by a transaction executing
several productions in a specific order.

Interactive development by the knowledge engineer means that transactions modi-
fying the domain model graph are now invoked from outside. Then, this domain model
graph is built up containing two levels as shown in Fig.6. Thereby, the corresponding
to instances , to attribute , to Relation , andfrom Relation edges are
inserted. Any new concept is represented by a node of a static type (to be handled within
the PROGRES system), of a dynamic type, with bordering nodes for the corresponding
attributes which belong to predefined attributes of the basic model definition layer.

4 Specification for Architect Tools

Whereas the domain model graph is used to store conceptual knowledge, thedesign
graph provides a data structure to represent the conceptual design of a building. The
specification of the designer tools directly uses the runtime-dependent basic domain
knowledge (layer 2 of Fig.5). So, the consistency of a design graph with this basic
knowledge can be obeyed. The consistency of the design graph with the building type
specific knowledge of layer 3 is guaranteed by other analyses. Both analyses are de-
scribed in the next section.

The design graph allows to specify thestructureand therequirementsof a building
in an early design phase, above called conceptual design. To design a building without
any layout and material aspects allows the architect to concentrate on the usage of this
building on a high abstraction level. During the constructive design, this design can be
matched with an actual floor plan to discover design errors. This is not further addressed
in this paper.

The design graph again is the result of the execution of a PROGRES specification,
where transactions are interactively chosen. The 3 level ”type” system, which is simi-
lar to that of Fig.5, is shown in Fig.8. The essential difference is that we now model

d_Element

d_Area d_Relation
d_AreaAttribut

e

d_Atomic

Area

2 person

office Model

Access

Relation

Model

d_Complex

Area
d_bool

Area

Attribute

d_int

Area

Attribute

Electricity

Attribute

Model

d_Notification

d_Warning d_Error d_Tip

m = Model

Inheritance

of Model

node class

node type

node instance
of Type

Legend

P
R

O
G

R
E

S
 S

C
H

E
M

E
D

E
S

IG
N

G
R

A
P

H

2 person

office

Access

Relation
Electricity

Attribute

B
A

S
IC

M
O

D
E

L

D
E

F
S

D
O

M
A

IN

M
O

D
E

L

G
R

A
P

H

Fig. 8.Scheme of the design graph

concrete objects, relations, both with corresponding attributes and not knowledge de-
scribing how such a design situation has to look like. This is denoted by the prefixd ,
which stands for classes and types for design.

Anotherdifferenceis thed Notification node class with three corresponding
node types. The nodes of these types are used to represent warnings, errors, and tips to
be shown to the architect. Furthermore, there are now concrete relation nodes between
design objects and not rules that certain relations have to exist or may not exist. Finally,
the design graph nodes now are instances, and not nodes describing types for instances
as it was the case on layer 3 of the knowledge engineer tools.

The instantiationof attributes, areas, and relations works in the same way as de-
scribed in Fig.7 for models. In the design graph we find instances of concepts with a
static and dynamic type with bordering instances of attributes and relations both being
applied occourences of the corresponding basic models introduced on layer 2 of Fig.5.
As this basic model layer is again needed on the design graph level we just import it
from the domain model graph.

5 Consistency Analyses

In this section we presenttwo different formsof consistencyanalyses. The first form
is part of the domain model graph specification. So, these analyses are executed when
the knowledge engineer tool is running, to keep the dynamic type system consistent.
Corresponding internal analyses can be found for the design graph, respectively. The
second form of analyses shows how the consistency between the domain model graph
and the design graph is checked.

Let us start with the first form ofanalyses built inthedomain model graph specifi-
cation. Fig.9 shows a test being part of the analyses to guarantee the consistency of the
dynamic type system. Each basic model has to be unique. So, if the knowledge engi-
neer tries to create a model that already exists, the enclosing transaction should fail. The
testmAttributeModelExists gets as input parameter the model description, e.g.
ElectricityAttributeModel . If the model already exists, then a node of type
mboolAreaAttributeType exists, whose attributeattributeDescr has the
value of the input parameter.

test mAttributeModelExists(modelDescr :
string) [0:1] =

‘1 : m_boolAreaAttributeType

valid (self.attributeDescr = modelDescr)

end ;

Fig. 9.Test if a model already exists

These analysis transactionswork asusualin PROGRES specifications. They guar-
antee that certain structural properties of a graph class (here domain model graph) are
fulfilled. In the above example this means that a basic model definition occurs only
once. The difference to traditional PROGRES specifications, however, is that the corre-
sponding nodetype is dynamic. So we have to check the values of runtime-dependent
attributes.

Corresponding internal analyses we also find ondesign graphlevel, for the con-
sistency between predefined basic knowledge (imported from the domain knowledge
graph) and the current form of the design graph. As they work in the same way as the
internal analyses of the domain model graph, we skip them.

The second form of analyses check whether there areviolationsof the predefined
specific knowledgewithin thedesign graph. For this, we have to find out inconsistencies
between the design graph and the domain model part of domain model graph (cf. Fig.
6). The attributes of anarea model prescribe the usage of anarea in the design
graph. In an office block, there should be network sockets in all offices, but not in

production d CheckAreaAttribute(AreaModel :
mAtomicAreaType ;

Attribute : m boolAreaAttribute)
* =

‘2 = Attribute

m_toBoolAreaAttribute

‘1 = AreaModel

‘4 : d_BoolAreaAttribute

d_toBoolAreaAttribute

‘3 : d_AtomicArea

::=

2’ = ‘2

m_toBoolAreaAttribute

1’ = ‘1

d_toBoolAreaAttribute

3’ = ‘3 5’ : d_AttributeNotification

d_toAttributeNotification

4’ = ‘4

condition ‘1.areaModelDescr = ‘3.d areaModelDescr;
‘2.attributeModelDescr = ‘4.d attributeModelDescr;
‘2.attributeValueDefinition= false ;
‘4.d attributeValueDefinition = true ;

transfer 5’.message := "Wrong Attribute Value";
end ;

Fig. 10.Analysis to check the consistency of bool attributes

the corridor. This rule is defined in the domain model graph by the Boolean attribute
NetworkAttribute whose value can be true or false. If the architect constructs a
network socket in the corridor, by connecting the areaCorridor with the attribute
NetworkAttribute , the design graph is in an inconsistent state.

Tools immediately reportsuch inconsistencies. However, we allow the architect to
violate rules and do not stop the design process, because we do not want to hinder his
creativity.

Fig. 10 shows an example production, which checks whether the value of an at-
tribute, defined in the model graph, corresponds to the attribute value in the design
graph. Whereas the nodes‘1 and‘2 describe anarea model and anattribute
defined in the domain model graph, the nodes‘3 and ‘4 describe anarea and an
attribute defined in the design graph. The first two lines of the condition clause
ensure that only these nodes of the design graph (node‘3 and ‘4) are found, which
correspond to thearea model (node‘1) and itsattribute (node‘2). The next
two lines of the condition clauses demand the attributes to befalse in the domain
model graph (node‘2) and to betrue in the design graph (node‘4). So, an inconsis-
tency between thedomain model graphand thedesign graphis found. In this case, on
the right side of the production, the new node5’ is inserted to mark this inconsistency
and to store a specific error message.

6 Conclusion and Discussion

6.1 Summary and Discussion

In this paper we introduced a specification method fortools in the domain of civil en-
gineering. Different tools provide support forknowledge engineeringandconceptual
design, respectively. Analyses within either the knowledge engineer or the architecture
tool guarantee internal consistency with the basic knowledge interactively introduced.
Furthermore, analyses guarantee the consistency of a design result with the building
type specific knowledge. Correspondingly, thespecificationsare split into three parts.
The interactively elaborated domain knowledge consists on the one side of a basic part
which is useful for several classes of buildings. Thespecificpart on the other side rep-
resents the knowledge about one class of buildings.

The specification of the knowledge engineering tools allows to introducebasic
modelnodes for attributes and relations. Furthermore, thespecific knowledgeis elabo-
rated by model instance nodes for areas, relations and attributes. The complete infor-
mation, dependent on the input of the knowledge engineer, is kept in the domain model
graph. This information isusedby the specification for the designer tools, namely by
invoking the analyses between designer results and specific domain knowledge.

So, resulting tools are parameterized. In the same way, the (architecture) toolspeci-
ficationis parameterizedin the sense that it depends on specific knowledge to be put in,
altered, or exchanged. More specifically, it uses a host graph produced by the knowl-
edge engineer specification. The interactively determined knowledge information can
be regarded as dynamic type information.

specific for a class
of buildings

Architect tool
spec

derived

Tool for a special
class of buildings

Spec for knowledge
engineer

Spec Architecture
Tools

derived derived

Tool without any
specific domain

knowledge
inserting

knowledge

Basic Knowledge

Specific
Knowledge

Design Graph

Traditional
Specification Method

Parameterized
Specification Method

Spec
analyses

changes due
to know

ledge

Tool without any
specific domain

knowledge

Analyses

Domain
Knowledge

Graph Design Graph

Importe
d

derived

elaborating
design

Design Graph

Knowledge Specific
Design Graph

elaborating
design

Fig. 11.Traditional and parameterized specification method

Fig. 11 shows bothapproaches, namely thetraditional andparameterizedone, to
specify tool behavior. In the traditional way (left side) the specific knowledge is con-
tained in the specification of the architecture tool. Whenever the knowledge changes,
the specification has to be changed and an automatic tool construction process has to
be started. On the right side there is a sketch of the parameterized approach presented
in this paper. The knowledge engineer tool has, in its initial form, no specific knowl-
edge. This is interactively elaborated. The resulting host graph (domain model graph)
acts as typing information for the architecture tool. The basic knowledge information
is imported by the design tool. The specific knowledge information is used for building
type-dependent analyses of a concrete design result.

6.2 Related Work in Civil Engineering

Both specification methods havepros and cons. If the knowledge is fixed, then the
traditional way is advantageous. More checks can be carried out at specification elab-
oration time, which is more efficient. If the underlying knowledge changes, as it is the
case with our experimentation platform, the parameterized method is not only better but
necessary. Here, changes of the underlying knowledge need no modification of tools.
The price is to have more and more complicated checks at tool runtime due to levels

of indirectness which are more costly. Furthermore, the specifications do contains less
structural graph information and, therefore, are more difficult to read and write.

Let us nowcomparethe results of this paper with other papers in the area of con-
ceptual design incivil engineeringon one side, and with other graph specification ap-
proaches on the other. Let us start with the design literature and concentrate on those
which also use graphs. There are several approaches to support architects in design.
Christopher Alexander describes a way to define architectural design pattern [9]. Al-
though design pattern are extensively used in computer sciences, in architectural de-
sign this approach has never been formalized, implemented and used. In [10] Shape
Grammars are introduced to support architectural design, e.g. the design of Queen Ann
Houses [11]. The concept of shape grammars is related to graph grammars. However
this approach rather supports a generation of building designs than an interactive sup-
port while designing, what we propose.

Graph technology has been used by [12], to build a CAD system that supports the
design process of a kitchen. In contrast to our approach, the knowledge is hard-wired
in the specification. In [13] [14] graph grammars are used to find optimal positions of
rooms and to generate an initial floor plan as a suggestion for the architect. Formal
concept analysis [15] and conceptual graphs [16] describe a way to store knowledge in
a formally defined but human readable form. The TOSCANA systems [17] describes a
systems to store building rules.

6.3 Comparison to other GraTra Specification Approaches

Finally, we are going torelate our graph specification method to others in the area
of graph technology. We concentrate on those papers where typical and different tool
specification methods are applied. In the AHEAD project [2], a management system
for development processes is developed. AHEAD distinguishes between a process meta
model, to define the general knowledge hard-wired in the specification, and the process
model definition to represent domain specific knowledge, which can be elaborated or
changed at runtime. Nevertheless, the tool construction process has to be run again to
propagate changes to the AHEAD prototype.

In the ECARES project [3] graph-based tools are developed to support the under-
standing and restructuring of complex legacy telecommunication systems. The specific
domain knowledge consists in this case e.g. of the formal definition of the underlying
programming language to be found in a specific specification. As result of a scanning
and parsing process a host graph is automatically created representing a system’s struc-
ture. Changing the specific knowledge, the parser and the specific part of the PROGRES
specification have to be adapted and the tool construction process has to restart.

In the CHASID project [4] tools are introduced to support authors writing well-
structured texts. Its specification method resembles to the one presented in this paper.
The specific domain knowledge is here stored in so calledschemata, they are again
elaborated at runtime. In contrast to our approach, however, the defined schemata are
directly used to write texts and not to be checked against a text to uncover structural
errors. So, the main advantage of the new specification method of this paper is a gain in
flexibility!

References

1. Nagl, M., ed.: Building Tightly Integrated Software Development Environments: The IPSEN
Approach. Volume 1170 of Lecture Notes in Computer Science. Springer, Berlin (1996)

2. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for modeling and
managing development processes. In Nagl, M., Schürr, A., Münch, M., eds.: AGTIVE’99.
Volume 1779 of Lecture Notes in Computer Science., Kerkrade, The Netherlands, Springer,
Berlin (2000) 325–339

3. Marburger, A., Herzberg, D.: E-CARES research project: Understanding complex legacy
telecommunication systems. In: Proceedings of the 5th European Conference on Soft-
ware Maintenance and Reengineering, Lisbon, Portugal, IEEE Computer Society Press, Los
Alamitos, CA, USA (2001) 139–147

4. Gatzemeier, F.: Patterns, Schemata, and Types — Author support through formalized ex-
perience. In Ganter, B., Mineau, G.W., eds.: Proc. International Conference on Conceptual
Structures 2000. Volume 1867 of Lecture Notes in Artificial Intelligence., Springer, Berlin
(2000) 27–40

5. Scḧurr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssystemen. PhD
thesis, RWTH Aachen, DUV (1991)

6. Böhlen, B., J̈ager, D., Schleicher, A., Westfechtel, B.: UPGRADE: A framework for building
graph-based interactive tools. In Mens, T., Schürr, A., Taentzer, G., eds.: Electronic Notes
in Theoretical Computer Science. Volume 72 of Electronical Notes in Theoretical Computer
Science., Barcelona, Spain, Elsevier Science Publishers (2002)

7. Kraft, B., Meyer, O., Nagl, M.: Graph technology support for conceptual design in civil
engineering. [18] 1–35

8. Kraft, B.: Conceptual design tools for civil engineering, demo description, this workshop
(2003)

9. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language. Oxford University Press, New York, NY, USA (1977)

10. Gips, J., Stiny, G.: Shape grammars and the generative specification of painting and sculp-
ture. In: Proceeding of the IFIP Congressn 71. (1972) 1460–1465

11. Flemming, U.: More than the Sum of Parts: the Grammar of Queen Anne Houses, Environ-
ment and Planning B . Planning and Design (1987)

12. Göttler, H., G̈unther, J., Nieskens, G.: Use of graph grammars to design cad-systems. In:
Graph Grammars and their application to Computer Science, LNCS 532, Springer, Berlin
(1990) 396–409

13. Borkowski, A., Grabska, E., Szuba, J.: On graph based knowledge representation in design.
In Songer, A.D., John, C.M., eds.: Proceedings of the International Workshop on Information
Technology in Civil Engineering, Washington (2002)

14. Borkowski, A., Grabska, E., Nikodem, E.: Floor layout design with the use of graph rewriting
system progres. [18] 149–157

15. Stumme, R., G. Wille, E.e., eds.: Begriffliche Wissensverarbeitung, Springer, Berlin (2000)
16. Sowa, F.J., ed.: Conceptual Structures. Addison Wesley, Reading, MA, USA (1984)
17. Eschenfelder, D., Stumme, R.: Ein Erkundungssystem zum Baurecht: Methoden und En-

twicklung eines TOSCANA Systems. [15] 254–272
18. Schnellenbach-Held, M., Denk, H., eds.: Advances in Intelligent Computing in Engineering,

Proceedings of the9th International EG-ICE Workshop, Darmstadt, Germany (2002)

	Parameterized Specification of Conceptual Design Tools in Civil Engineering
	Bodo Kraft, Manfred Nagl

