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Abstract
We introduce a UML-based model for concep-

tual design support in civil engineering. Therefore,
we identify required extensions to standard UML.
Class diagrams are used for elaborating building type-
specific knowledge: Object diagrams, implicitly con-
tained in the architect’s sketch, are validated against
the defined knowledge. To enable the use of indus-
trial, domain-specific tools, we provide an integrated
conceptual design extension.

The developed tool support is based on graph
rewriting. With our approach architects are enabled to
deal with semantic objects during early design phase,
assisted by incremental consistency checks.

1 Introduction

When designing a building, an experienced archi-
tect implicitly applies his aggregated knowledge to the
new sketch. Constructive elements, like walls, win-
dows or doors are used with their conceptual mean-
ing, namely to form organizational areas or rooms, to
guarantee e.g. light and ventilation, or to ensure acces-
sibility. These conceptual elements, therefore, form a
functional view of the design structure which, however,
is not explicitly defined. In this early design phase,
called conceptual design, most architects do not elab-
orate their sketches using a CAD system. They rather
work with pencil and paper. Without being directly
aware of, the architect considers design rules, func-
tional requirements, economic and legal restrictions.

Existing CAD systems give no support for this con-
ceptual design, which is a creative process. There is
no smooth transition to constructive design. The ar-
chitect manually elaborates the constructive design,
now using a CAD system. He manually replaces the
functional elements of the sketch by constructive ones,
e.g. ventilation by a window, the access by a door
etc, without explicitly storing information about this
transformation process. The conceptual information

he had in mind gets lost. Furthermore, there are many
changes within the development process. E.g., if the
client is not satisfied, the architect has to go back to
the conceptual design phase. The modified concep-
tual data are lost again after the next transformation
step. Such iterations are risky and expensive in terms
of time and money. So, we want to enable the archi-
tect to work with semantic objects instead of syntactic
elements.

The Unified Modeling Language (UML) [1] is
mainly used for the requirements engineering and the
design of complex software systems. Different diagram
types reflect the specific aspects of different develop-
ment phases and modeling tasks. We use UML class
diagrams and object diagrams in a new application do-
main, namely the conceptual design of buildings. The
above mentioned restrictions can be described with the
aid of UML. We introduce a graph model for seman-
tic objects. Based on our graph model, a knowledge
engineer is able to set up a class hierarchy consist-
ing of semantic objects, attributes and relationships
between the objects. We define this as a UML meta
model for civil engineering of a building type. One can
imagine the knowledge engineer as an experienced ar-
chitect who is able to formalize conceptually relevant
knowledge about a building type. The knowledge is
specific for a class of buildings, due to the significant
differences between certain building types (e.g. single
family houses, office buildings, sky scrapers). While
the UML meta model has to obey certain constraints,
we introduce tool support for this sophisticated task.

We realize a graph-based demonstrator by which a
knowledge engineer can (a) develop the meta model
and (b) specify knowledge, supported by the use of
interactive visual tools. For the realization of these
tools, we use the enhanced machinery developed at
our department.

We further introduce new extensions to the indus-
trial CAD tool ArchiCAD to provide means for the
conceptual design. The above introduced semantic
entities enable the architect to conceptually design a
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building inside the CAD tool he is familiar with. The
UML-based specified constraints are checked automa-
tically against the ArchiCAD sketch and design errors
are identified as soon as they occur. Thus, the archi-
tect can fix the errors or think about design alterna-
tives in a very early design phase. A propagation of
errors to later phases is avoided.

At Department of Computer Science III at Aachen
University of Technology, tools for supporting deve-
lopment processes have been built for software engi-
neering, mechanical engineering, chemical engineering,
process control, telecommunication systems, and au-
thoring support. In all these tools we use a graph-
based tool construction procedure: internal data
structures of tools are modeled as graphs, changes due
to command invocations are specified by graph rewrit-
ing systems. We derive tools automatically from spec-
ifications, using the PROGRES system [3] for speci-
fication development, a code generator for producing
code out of the specification, and the UPGRADE vi-
sual framework environment [4] into which the code
is embedded. The resulting tools are efficient demon-
strators for proof of concept purposes.

This paper is structured as follows: we first intro-
duce an application of UML for conceptual design of
buildings [5, 6]. We then derive a graph model and a
UML meta model and discuss their expressive power.
We will briefly describe our tool construction process
and present the realized tools. We further explain how
the consistency between the specified knowledge and
the architect’s sketch is implemented. We close with
conclusion and discussion of related work.

2 UML for Conceptual Design

UML class diagrams allow structuring of informa-
tion and data. Basic relationships as inheritance and
association can be modeled. UML supports modeling
on an adequate abstraction level.

As important semantic entities for conceptual de-
sign we identify areas, rooms and sections. The most
important element in building design is obviously a
room. We define a room as a space with a certain
functionality, which is usually surrounded by a wall
structure. Rooms are fundamental, because they rep-
resent the cognitive units of the architect and serve
as basic building blocks. The set of rooms gives an
almost complete picture of a building. We define a
section as a part of the room representing a certain
functionality. Using sections, a more detailed view on
the usage of a room can be provided. Finally, an area
is defined as a heterogeneous collection of rooms. In

contains containscontains

SemanticObject

Area Room Section

Figure 1: Graph Schema

a complete example, each floor consists of a set of dif-
ferent rooms, like offices, corridors and a library; one
part of the library is restricted to the library’s staff,
the other part is public. So, the floor will be modeled
as an area, the library as a room with a private and a
public section.

Using UML class diagrams, we define our graph
schema as depicted in Fig. 1. The super class
SemanticObject is inherited by the the classes Area,
Room and Section. There exists a reflexively aggrega-
tion relation of the class Area, because areas can be
composed from several areas. Furthermore, an area
can consist of several rooms, thus the class Area ag-
gregates the class Room. Analogously, the class Room
aggregates the class Section.

Based on the graph schema, a building type-specific
UML meta model is represented in the class hierar-
chy depicted in Fig. 2. The class Room, defined in the
graph schema, serves as a superclass for different cate-
gories of rooms. In the example, we distinguish classes
for traffic rooms, work rooms, and sanitary rooms as
they represent different basic functionalities. In our
case, these classes are modeled as abstract classes as
they should not directly be used for design. While the
abstract classes serve as structurizing elements that
summarize the common characteristics of a room, the
non-abstract classes reflect concrete entities of a build-
ing type. Further functionalities are expressed by a
hierarchy of room classes.

Up to here, we have a functional decomposition for
civil engineering tasks. We use this building type-
specific decomposition to describe knowledge in a UML
class diagram. The knowledge reflects legal, econom-
ical, and technical restrictions, specified on the type
level with the aid of class attributes, cardinalities
and associations. The defined knowledge can later be
checked against a specific building sketch.

We add certain notations for restrictions and re-
quirements to standard class diagrams. As each ar-
chitect’s sketch implicitly integrates the defined enti-
ties of Fig. 2, the building sketch can also be seen as
a UML object diagram. In contrast to UML used in
software engineering, no strict reference between UML
class diagrams and the architect’s sketch (the UML ob-
ject diagram) is demanded here. We rather allow the
construction of arbitrary sketches, as we do not want
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Figure 2: UML Meta Model for Conceptual Design

to restrict the architect’s creativity. In a later step,
not until the architect wishes, the sketch is validated
against the knowledge defined in the class diagram.
Inconsistencies are not automatically resolved, but in-
formative error messages and hints are propagated into
the architect’s tool. He can then decide to fix or to ig-
nore the discovered inconsistencies. Our tool support
is incremental and integrated into the CAD tool, thus
it allows a comfortable efficient work flow [2].

In the following, we describe the use of UML class
attributes, cardinalities, and associations for knowl-
edge engineering. In some cases, the semantics have
to be extended.

Local requirements and restrictions of areas, rooms
and sections can be viewed as attributes. In our ap-
proach they are modeled as UML class attributes.
We distinguish between Boolean attributes and integer
range attributes. In contrast to the semantics of stan-
dard UML class attributes, we define the semantics of
attributes as follows: the attribute value in the class
diagram represents a guideline, how the corresponding
attributes in the concrete sketch (the UML object dia-
gram) have to be set. Boolean attributes can demand
properties to be existent, e.g. all sanitary rooms have
to be equipped with sanitary installations. This fact is
modeled as a Boolean attribute with the value true.
To prohibit properties to be existent, the Boolean at-
tribute is set to false. E.g., the offices should not
be equipped with sanitary installations. Integer at-
tributes are used to specify number restrictions or size
restrictions. They can be associated with equality re-
lationships, less-than relationships, or greater-than re-
lationships. For example, each room type has a defined
minimal length, width and size, which is denoted by
a greater-than relationship of the respective attribute.
Again, the architect is able to sketch buildings ignoring
all these facts and tune it at a suitable point in time.
Everything not modeled in the class diagram is op-
tional, so the architect can set additional attributes at
will. This stands again in contrast to standard UML,
where the object structure is completely determined
through the class diagram.

As a further extension of the UML class diagram,
we introduce class cardinalities. They determine the
minimal and maximal number of instances of a class in
the object diagram. In civil engineering, the number
of certain rooms is limited to a certain range. E.g.,
each single family house has to have one kitchen, one
floor, one living room, one bathroom, and one ore more
bedrooms. A guest toilet is optional, so the minimal
cardinality is set to zero, the maximal cardinality is set
to one. The minimal and maximal cardinality can be
defined as a value or a as a complex expression. These
complex expressions can reflect dependencies between
the cardinality of objects of different classes in the
sketch. In civil engineering such cardinality relation-
ships between room types very often ensure the func-
tioning of a building. To express the requirement for
an office building that one toilet is needed for each five
offices, the minimal cardinality of the class attribute is
set to 1+(card(Office) div 5). With complex ex-
pressions, the expressive power of class cardinalities is
leveraged to an appropriate level for civil engineering.

Besides the local requirements of the semantic en-
tities, relations between them exist. In civil engineer-
ing, relations can express dependencies between areas,
rooms, and sections, e.g. accessibility or neighborhood.
We use UML associations between classes to reflect
relations between our semantic objects. The associa-
tion’s name is set to the concrete relation description.
We distinguish between symmetric relations, e.g. ac-
cessibility between rooms, and asymmetric relations
e.g. waste air from a kitchen to the outside. These re-
lations are modeled using UML by directed and undi-
rected associations. Relations between semantic en-
tities can be demanded or forbidden. For example,
while the chief’s office should have an access relation
to the secretariat’s office, it must not have a direct
access from the corridor. To formalize these facts
in the class diagram, we use association multiplici-
ties. As in standard UML, upper and lower bounds
specify minimal and maximal number of instances. A
demanded relation between two semantic objects is
expressed through a lower bound greater than zero.
E.g., each office must have an access to one corridor
and a corridor can have access to some offices, the re-
sulting multiplicity is depicted in Fig. 3. A forbidden
relation is expressed by an upper bound of zero, so no
instances can be related. For another type of optional

Office Corridor
access

0..* 1..1

Figure 3: Association Multiplicity
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relations, we redefine again the semantics of standard
UML. We allow associations in the object diagram,
which are not defined in the class diagram. With that
extension to express optional relations, we enable the
creation and reasonable usage of incomplete knowl-
edge. This extension is required, because knowledge
definition for civil engineering is a more evolutionary
process than the design of software systems.

3 Tools for Conceptual Design Support

Based on the graph rewriting system PROGRES,
we develop a graph-based tool for the knowledge engi-
neer. The tool construction process works as follows:
Using the PROGRES language [3], a graph schema
and graph transformations are specified in a declara-
tive way, supported by a visual editor [7]. The graph
schema is fixed; based on it, graph transformations
allow constructing and modifying a graph data struc-
ture at runtime. Graph tests allow querying the graph.
In the specification of the civil engineering tools, the
above defined graph schema (Fig. 1) is fixed. The
building-specific class hierarchy, so the meta model
(Fig. 2), can be elaborated at runtime. The opera-
tional part of the specification follows a new param-
eterized PROGRES specification method [8]. The
PROGRES system provides a code generation, the
generated code can be compiled together with the UP-
GRADE framework [9] to an external visual applica-
tion called an UPGRADE prototype. This prototype
allows executing graph transformations, so to create
and modify a graph at runtime. Basic graph layouts
are already implemented. To adapt the prototype to
the needs of a special application domain, further lay-
outs and unparsers can be integrated. The applica-
tion in Fig. 4 is an UPGRADE prototype, extended
to a UML-like knowledge editor, where graph nodes
are layouted as UML classes.

A knowledge engineer uses this tool to define
domain-specific knowledge, like room types, relations
between rooms and room attributes. On the left-hand
side, the tree views represent the defined semantic
objects from the meta model classes, especially the
rooms. Furthermore, pre-defined relation types and
attribute types are depicted. The main part of the ap-
plication shows the domain knowledge graph, the data
structure which represents domain-specific knowledge.
The first step of the knowledge input is the defini-
tion of the meta model, so semantic objects, rela-
tions and attributes. In the bottom tree in Fig. 4,
three relations, access to demand accessibility, aera-
tion to demand air supply, and view to demand visi-

Figure 4: Domain Knowledge Graph Editor

bility between two areas have already been defined. In-
teger attributes represent length or width restrictions.
Boolean attributes like heating are used to demand or
forbid a room to have a certain equipment installed.
If a meta model has already been defined, it can be
imported into the tool.

The second step is to describe knowledge on the type
level. The access relation between Office and Corridor
(Fig. 4) expresses that in a building, each office has to
have an access to a corridor. In the same way, the
attributes do not describe restrictions for an actual
area, they describe restrictions valid for all areas of
the specified type in an actual building.

The so defined knowledge can be checked against a
sketch in ArchiCAD. It supports architects during the
conceptual design phase. Using new conceptual design
objects inside of ArchiCAD, the architect can concep-
tually elaborate an early sketch of the building [10]. As
he uses the same semantic objects as in the domain
knowledge graph, namely rooms, areas and sections,
he implicitly creates a UML object diagram. Room
sizes and positions sketched by the architect implicitly

Conceptual Design
in ArchiCAD

(object diagram)

Building type specific
knowledge

(class diagram)

incremental checks

Figure 5: Tool Support integrated in ArchiCAD

IASSE-2004 - 13th International Conference on Intelligent and Adaptive Systems and Software Engineering
eds. W. Dosch, N. Debnath, pp. 245-250, ISCA, Cary, NC, 1-3 July 2004, Nice, France



determine attribute values. The consistency between
the defined knowledge and the architect’s sketch can
now be checked.

4 Conclusion and Discussion

In this paper, we introduced the usage of UML
in architectural knowledge and design. We identified
semantic entities in the conceptual design of build-
ings and showed an adequate representation based on
UML. The merits of UML are, that it is well-known
by computer scientists and is heavily used in soft-
ware systems design and other domains. The stan-
dardized diagram types have a good readability and
many editors and tools for UML exist. The modeling
task benefits from the object oriented approach, thus
the inheritance relationship is one of the basic con-
cepts. Furthermore, standardized concepts and visual
representations for class attributes, inheritance of at-
tributes, associations, aggregations, and cardinalities
exist. The demerits of UML are, that the defined se-
mantic is purely based on software systems engineering
and does not perfectly cover the domain of civil en-
gineering, especially architectural knowledge and de-
sign. Although defined semantics exist, some parts are
missing: first, no meta model concept is defined. This
is required to restrict classes of sketches. Second, no
means for cardinalities of instances of a class are pro-
vided (e.g., for the singleton pattern). Third, the class
diagram fully determines the object diagram.

The drawbacks of a UML-based approach are solved
by the definition of extensions to UML. We intro-
duced new semantics of attributes, pre-determing val-
ues if present in the architect’s sketch. Boolean at-
tributes represent specific requirements, whereas inte-
ger attributes are combined with relationship type for
evaluation during consistency checks. The concept of
classes is extended by class cardinalities with lower
and upper bounds. These bounds can be atomic or
complex, giving the opportunity to specify arbitrary
dependencies (in terms of cardinalities) between in-
stances of classes. For the specification of relations be-
tween semantic entities, we discussed a notation based
on associations, and cardinalities of associations for
demanded and forbidden features. While other con-
straint languages exist, we follow an approach which
enables an architect, not a computer scientist, to for-
malize domain-specific knowledge in a visual represen-
tation. Therefore, the underlying graph technology [8]
is fully hidden.

While the determination of object diagrams by class
diagrams is a reasonable approach in software systems
engineering, in civil engineering this viewpoint is not

suitable. We define a model of a building as a set of
minimal requirements for a class of buildings. Thus,
the sketch contains certain elements at least, but can
contain further elements, even if they are not included
in the model. This applies to classes, attributes, and
associations. This flexibility is required to meet the
architect’s need for freedom during design, as it has
been shown that too tight boundaries imposed by tools
led to dismissing tool support [2].

Although complex class cardinalities represent re-
lations between two or more objects, we model them
as class attributes in order to focus the number of in-
stances to the class itself. This ensures a separation
of concerns. Up to now, we applied the UML con-
cepts of classes, attributes, inheritance, aggregation,
and association to civil engineering. The semantic of
UML methods is subject of future research. Ongo-
ing research is done in the field of integrated eHome
systems and eBusiness elaborating such an approach.

There are several approaches to support architects
in design. Christopher Alexander describes a way to
define architectural design pattern [11]. Although de-
sign patterns [12] are extensively used in computer sci-
ences, in architectural design this approach has never
been formalized, implemented and used. The object
constraint language OCL [13] allows a more precise
definition of UML. In our approach, the detailed for-
malization of constraints is done using graph transfor-
mations. The underlying constraint language is hidden
in the graph specification due to usability reasons. In
[14] Shape Grammars are introduced to support archi-
tectural design, e.g. the design of Queen Ann Houses
[15]. The concept of shape grammars is related to
graph grammars. However, this approach rather sup-
ports a generation of building designs than an inter-
active support while designing.

Graph technology has been used by [16] to build
a CAD system that supports the design process of a
kitchen. In contrast to our approach, the knowledge
is hard-wired in the specification. In [17, 18], graph
grammars are used to find optimal positions of rooms
and to generate an initial floor plan as a suggestion
for the architect. UML use case diagrams and activity
diagrams are used by [19] to derive functional require-
ments of a building. This kind of knowledge defini-
tion is a rather implicit way and not as general as
our approach. Formal concept analysis [20] and con-
ceptual graphs [21] describe a way to store knowledge
in a formally defined but human readable form. The
TOSCANA system [22], based on formal concept anal-
ysis, describes a system to store building rules. In con-
trast to our approach, the TOSCANA system concen-
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trates on collecting and structurizing statute books.
It is neither optimized for the conceptual design phase
nor integrated into a CAD system. Our approach aims
at direct practical use for architects.
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[26] Nagl, M., Schürr, A., Münch, M., eds.: Proc.
Workshop on Applications of Graph Transfor-
mation with Industrial Relevance (AGTIVE’99)
LNCS 1779. Springer (2000)

[27] Flood, I., ed.: Towards a Vision for Information
Technology in Civil Engineering. Proc. of the 4th

Joint Int. Symp. on Information Technology in
Civil Engineering. CD-ROM (2003)

IASSE-2004 - 13th International Conference on Intelligent and Adaptive Systems and Software Engineering
eds. W. Dosch, N. Debnath, pp. 245-250, ISCA, Cary, NC, 1-3 July 2004, Nice, France


