
1

VISUAL KNOWLEDGE SPECIFICATION
 FOR CONCEPTUAL DESIGN

Bodo Kraft1, Nils Wilhelms2

ABSTRACT

Current CAD tools are not able to support the fundamental conceptual design phase, and
none of them provides consistency analyses of sketches produced by architects. To give ar-
chitects a greater support at the conceptual design phase, we develop a CAD tool for concep-
tual design and a knowledge specification tool allowing the definition of conceptually rele-
vant knowledge. The knowledge is specific to one class of buildings and can be reused.
Based on a dynamic knowledge model, different types of design rules formalize the knowl-
edge in a graph-based realization. An expressive visual language provides a user-friendly,
human readable representation. Finally, consistency analyses enable conceptual designs to be
checked against this defined knowledge. In this paper we concentrate on the knowledge
specification part of our project.

KEYWORDS

Visual Language, Knowledge Specification, Conceptual Design, Graph Transforma tion

INTRODUCTION

The difficulty and complexity of construction processes coupled with the wider and increas-
ing distribution and interaction of the players involved in these processes means that cur-
rently existing CAD tools are no longer able to provide adequate support in their execution.
Currently, there is no CAD tool available for supporting the fundamental conceptual design
phase, and none of the currently available CAD tools enables consistency analyses of
sketches produced by architects.

To provide architects with greater support at the conceptual design phase, there is a need
for CAD tools to be extended from their currently detailed (yet limited) constructional design
application. Rather than thorough and detailed plans, conceptual design focuses on the func-
tionality of buildings as a whole, consisting of various functional, interrelated entities. This
abstraction allows identification of the organizational configuration of a building and ensures
its usability.

Even when the conceptual design phase is executed at the beginning of a building con-
struction process and the degree of detail remains low, account needs to be taken of a large
number of restrictions arising from various domains, such as legal aspects, technical restric-
tions, functional specifications, and financial restrictions. The majority of these restrictions
are specific to one class of buildings, e. g. office buildings, car garages or residential build-

1 Department of Computer Science III, Aachen University of Technology
D-52074 Aachen, PH +49/241/8021314
kraft@i3.informatik.rwth-aachen.de

2 nilsw@i3.informatik.rwth-aachen.de

2

ings. Since the conceptual design takes place at the beginning of the building construction
process, a consistent sketch forms the basis of all following design stages.

In the next step architects manually transfer the conceptual design, usually in the form of
a hand drawing, into a CAD tool. Today existing CAD tools can only handle constructive
design information, e. g. all kinds of used materials, constructive elements like walls and
doors, and their exact dimensions. Thus, the valuable conceptual design information, i. e. all
decisions about the organizational structure of the building, gets lost.

The complete scenario of our project comprises two approaches. First, we formally spec-
ify a CAD tool, the Design Graph Editor, for conceptual design via graph technology, based
on the graph rewriting system PROGRES (Schürr 1991) and the UPGRADE framework
(Böhlen et al. 2002). A further graph-based tool, the Knowledge Graph Editor, allows the
definition of conceptually relevant knowledge specific to one class of buildings. Consistency
analyses enable conceptual designs to be checked against this defined knowledge with notifi-
cations to the architect when restrictions are violated (Kraft and Wilhelms 2004; Kraft et al.
2002). These graph-based tools can be seen as research prototypes. Even when it provides a
graphical user interface and is user-friendly, there is always an effort learning a new tool. For
this reason, in the second part of our project (Kraft and Schneider 2005), by way of example
we extend the CAD tool ArchiCAD (GRAPHISOFT 2005) with new functionality for con-
ceptual design and consistency analyses.

In this paper we concentrate on the knowledge specification part of the project, introduc-
ing a model architecture for graph-based knowledge specification, conceptual design and
parameterized consistency analyses (Kraft and Nagl 2004). Based on this architecture, in the
main part of the paper we describe a new visual language for graph-based knowledge defini-
tion specific to the domain of conceptual building design. We outline both, the power of ex-
pression of this visual language and its graph-theoretical background.

SYSTEM ARCHITECTURE

The system architecture describes the organization of the complete project and the dependen-
cies between its parts, to illustrate how the knowledge specification is embedded in the con-
text of the whole project.

Figure 1 depicts the system architecture of the complete scenario for conceptual design
support. The two main sections in the scenario, separated by vertical columns, are the knowl-
edge specification part on the left hand side and the conceptual design part on the right hand
side. Furthermore, the system architecture is structured into three horizontal layers. On top,
the implementation with PROGRES is depicted, in the middle layer the knowledge definition
part and below the developed tool support. The arrows depicted between the columns de-
scribe the necessary integration between knowledge and design in each layer.

The first layer at the top of Figure 1 stands for a graph grammar specification using the
graph rewriting system PROGRES. In this layer, a graph schema determines graph node
classes, node attributes, and edge types to restrict the valid graph class to the needed subset
(Kraft and Nagl 2003; Kraft and Wilhelms 2004). Additionally, the PROGRES specification
comprises graph transformations that determine valid modifications of a graph, they provide
the realized functionality. The graph transformations can be executed, to build-up and modify
a host graph, representing the underlying data structure for modeling a certain application

3

domain. In this layer, knowledge and design are combined inside the PROGRES specifica-
tion as they are built-up from a similar internal graph representation. Integration between
knowledge and design is therefore already given. The PROGRES specification, as well as the
extensions to the UPGRADE framework, are fixed by the tool developer; they do not com-
prise any building class specific knowledge.

The second layer encloses the runtime dynamic part of the system architecture. On the
left hand side, a domain expert, usually an experienced civil engineer or architect formalizes
conceptual knowledge specific to a certain class of buildings. We call this domain expert
knowledge engineer. The knowledge formalization part is again subdivided into two layers,
namely the definition of the knowledge model, and based hereon the definition of design
rules.

The knowledge model serves as a definition and classification of the relevant concepts for
knowledge formalization in conceptual design. The knowledge model is specific for one
class of buildings. Among other things, different room and attribute types are defined here,
they serve as atomic components for the following specification of design rules. In our sys-
tem architecture, the definition of the knowledge model is done at tool runtime by a knowl-
edge engineer and is not fixed in the implementation, because knowledge formalization has
to be done by a domain expert (not the tool developer). Furthermore, the formalization is an
evolutionary process with much iteration, so that a fixed knowledge model definition would
not be applicable.

Based on the defined concepts, the actual domain knowledge in the form of design rules
is defined by the knowledge engineer. We therefore provide a graph-based visual language
for knowledge specification which allows defining attribute, cardinality and relation rules,
complex relations and parameterized rules in form of runtime depending expressions (see

Knowledge
Graph

Schema

Design
Graph

SchemaF
ix

ed

Knowledge
Model

Design
Model

Rules
Conceptual

Design

R
un

tim
e

Knowledge
formalization

Conceptual
Design

Integration

ArchitectKnowledge
Engineer

Specification

Correspondence

Design Checks

T
oo

ls

Displaying Rule Violations

Figure 1: System Architecture and Tool Support

4

section Design Rules). The effort of knowledge formalization only pays off, if several pro-
jects of the same class of buildings are conducted.

Looking at the right hand side of the second layer in Figure 1, the same architecture is
depicted, now for the conceptual design of buildings. To support architects during conceptual
design, we follow two approaches. First, we extend the industrial CAD tool ArchiCAD with
new functionality. In this case, the design model is determined by the CAD tool developer, in
our case GRAPHISOFT. A less proprietary example of a design model would be the IFC-
interface, developed to improve the portability of architectural sketches. Second, we develop
an own graph-based CAD tool for conceptual design support. Here, the design model can be
elaborated at runtime, analogously to the knowledge model. The conceptual design is elabo-
rated in the first case by an architect using ArchiCAD (Kraft und Schneider 2005); in the
second case the architect creates a graph-based conceptual design.

In both cases, an integration document (Becker and Westfechtel 2004) between the
knowledge model on the left hand side and the design model on the right hand side has to be
defined, to determine the corresponding model elements. The integration document is essen-
tial for checking the consistency between the design rules and the conceptual design by
graph-based analyses. The model-integration is not the main focus of our work; we currently
just use a simple integration solution.

Finally, in the last layer the developed tools are depicted. The graph-based tools are de-
rived from the PROGRES specification. The UPGRADE framework provides a reusable and
extensible platform for executing such graph-based programs in a problem adequate repre-
sentation. For knowledge specification we develop a graph-based visual application, used by
the knowledge engineer, the Knowledge Graph Editor (KGE). The KGE provides functional-
ity to elaborate a knowledge model and to define the actual domain knowledge in form of
design rules. The knowledge engineer is supported by problem adequate views on the knowl-
edge graph and by layout algorithms displaying the graph in an ordered matter. For concep-
tual design we develop the Design Graph Editor (DGE). This graph-based CAD tool allows
elaborating conceptual sketches corresponding to the defined design model. Using the DGE,
the architect can concentrate on the relevant functional entities, their attributes and interrela-
tionships. By executing the graph-based Design Checks, inconsistencies between the knowl-
edge specification and the conceptual design are discovered and visualized inside the DGE to
inform the architect.

A VISUAL LANGUAGE FOR KNOWLEDGE SPECIFICATION

In this section, we describe the new developed visual language for knowledge specification.
Because the dynamic knowledge model definition is an essential part of the knowledge for-
malization process, we start by introducing a knowledge model as an example for explaining
the expressiveness of the actual knowledge definition. A more complete description of the
internal realization of the knowledge model can be found in (Kraft and Wilhelms 2004). Be-
cause our knowledge formalization is based on object-oriented concepts, we use UML like
diagrams for representation.

5

KNOWLEDGE MODEL

The knowledge engineer uses the knowledge model to define and classify the relevant con-
cepts for knowledge specification. It contains three groups of elements, which are defined in
the graph schema: semantic objects describe functional entities of a building, e. g. rooms;
relations describe relationships between them, e. g. access between two rooms; finally at-
tributes describe properties of the functional entities, e. g. what size a room should have.

We distinguish three types of semantic objects: a room is defined as a usually wall en-
closed element; a section is a part of a room, and an area is an aggregation of several rooms
or again areas. The inheritance relationship between semantic objects is expressed by an ar-
row with a white head. In Figure 2 one can see a cut-out of a sample knowledge model for
car garages. The middle part contains the definition of the semantic objects. Looking at
Figure 2, the semantic object “Room” is the root class of all rooms. It has three subclasses,
“Motor Vehicle Room”, “Customer Room” and “Sanitary Room” and so on.

The aggregation relationship between an area and several rooms is represented by a con-
nection edge with a diamond at its beginning. At the end of an aggregation edge the number
of contained semantic objects is shown in form of UML multiplicities. The “Customer Toilet
Area”, e. g., must contain one men's toilet (“1”), one women's toilet (“1”), and can optionally
contain a handicapped toilet (“0..1”).

To express relationships between semantic objects the knowledge model also contains re-
lations (Figure 2, left hand side). In the example knowledge model one can see three root
relations: “Adjacency”, “Connection” and “Separation”. While “Adjacency” and “Separa-
tion” express that two semantic objects should be neighbored and separated, respectively, the
“Connection” relation is specialized into an “Open Connection”, e. g. no wall in between,
and a “Separated Connection”, e. g. a door. Finally, the separated “Access” connection is
specialized into three further types of connection determining in which way it is used.

On the right hand side of Figure 2 six attributes are defined. “Sanitary” is a Boolean at-
tribute describing if a semantic object should have a sanitary installation (“true” valued) or
not (“false” valued). The “Surface Area” determines the size of a semantic object; it’s al-
lowed values in the later design are defined by an integer range.

Motor Vehicle
Room

RepairReceiving

Sanitary
Room

Toilet

Men’s
Toilet

Women’s
ToiletBreak Test

Section

Customer
Room

Contact ExpositionLounge

Handicapped
ToiletChassis Test

Section

Customer’s
Toilet Area

1 0..1

11

1

Room

Lifting Platform
Section

1

Relation Semantic Object Attribute

Connection

Open
Connection

Separated
Connection

Car
Gateway

Adjacency

Customer
Access

Access

Staff
Access

Separation Sanitary
Surface

Area

Break Test
Facility

Suspension
Tester

Width

Wash
Basins

Figure 2: Knowledge Model, specific for Car Garages

6

DESIGN RULES

The knowledge engineer defines design rules based on the knowledge model (see Figure 2).
Design rules instantiate the defined components. Each design rule concerns one semantic
object. There are three basic types of design rules:

• Attribute rules demand semantic objects to have particular properties (s. section Attribute
und Relation Rules).

• Relation rules define the obligation or prohibition of the existence of certain relationships
between semantic objects (s. section Attribute und Relation Rules).

• Cardinality rules restrict the number of actual semantic objects of one class in the con-
ceptual design (s. section Cardinality Rules).

In the graph schema, the composition of design rules is formally specified. Each design
rule is composed of one semantic object, and corresponding to the type of rule, a relation
with a second semantic object, an attribute, or a cardinality range.

A simplified cutout of the graph schema is depicted in Figure 3. An attribute rule is com-
posed of a “SEMANTIC_OBJECT” connected via a “to_attr”-edge with an “ATTRIBUTE”.
The constituent parts of a relation rule are two “SEMANTIC_OBJECTS”, interrelated with
two edges, “to_rel” and “from_rel”, with a “RELATION”. Finally, a cardinality rule consists
of a “SEMANTIC_OBJECT” and a “CARDINALITY_RANGE”, with a “to_card”-edge in
between.

For knowledge specification integer expressions are needed in several places: an “INTE-
GER_ATTRIBUTE” defines a range of values, valid for numerically describable attributes,
e. g. length between 4 and 6 m. The realization of this range in the graph schema is defined
by an “INTEGER_TERM” as lower bound, and a “MULT_TERM” for the upper bound. An
integer term can be a constant integer literal or a complex integer expression. A
“MULT_TERM” can either be an integer term or the star symbol which allows arbitrarily
values. In the same way, minimal and maximal multiplicity restrictions of a relation and a
valid cardinality range for semantic objects are formalized using integer expressions, based
on “INTEGER_TERM” and “MULT_TERM”.

to_rel

from_rel
to_attr ATTRIBUTERELATION

SEMANTIC
_OBJECT

INTEGER
_TERM

max

min_trgMult
min_srcMult

INTEGER_
ATTRIBUTE

max_trgMult
MULT_TERM

min

max_srcMult

CARDINALITY
_RANGE

to_card

min

max

Figure 3: Cut-out of Graph-Schema for Design Rules

http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=parts
http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=constituent

7

In the following, the characteristics of the visual language are introduced. For a better
readability, the concepts are represented in a condensed form that gives an abstraction from
the internal graph-based realization.

Attribute und Relation Rules

Attribute and relation rules constitute the basis of our knowledge specification approach. In
conceptual design, a precise description of semantic objects and their relationships is essen-
tial.

As mentioned before, attribute rules determine valid properties of semantic objects in the
design. There are three types of attribute rules which differ in the used data type. Integer at-
tributes describe an interval of valid values, e. g. size of a room. Boolean attributes deter-
mine the availability of certain equipment, e. g. sanitary installation. Finally, enumeration
attributes define a set of valid string values, e. g. orientation of a room to “north”, “south”,
“west” or “east”. On the left hand side of Figure 4 a sample Boolean attribute rule is shown.
The rule demands each “Sanitary Room” to have a “Sanitary” installation, in order to guaran-
tee fluent water.

Relation rules determine the existence or non existence of relationships between semantic
objects in the conceptual design. The number of semantic objects connected by a relation is
restricted. The declaration of the source and target multiplicities allows a precise definition of
how two semantic objects can be interrelated. A target multiplicity greater than zero as lower
bound demands each semantic object of the source class to be minimally interrelated with the
specified number of semantic objects of the target class. The upper bound restricts the maxi-
mally allowed number of connected semantic objects. A special case forms a zero multiplic-
ity for lower and upper bound: Such a rule prohibits the existence of a relation between the
corresponding semantic objects. Analogously, the source multiplicity restricts the number of
connected semantic objects of the target class.

The relation rule depicted on the right hand side of Figure 4 demands the existence of an
“Access” relation between the “Lounge” and a “Repair” room, thus a customer can show the
garage foreman the location of his car's problem. To determine that a “Repair” room has only
access to exactly one “Lounge”, the source multiplicity (“srcMult”) has the value “1”. On the
other hand the “Lounge” should have access to at least one “Repair” room, so the target mul-
tiplicity (“trgMult”) is “1..*”.

Cardinality Rules

In conceptual design, the number of occurrences of semantic objects is important for the
building organization. Again, we distinguish if a semantic object is essential to guarantee the

: Sanitary Room : Sanitary

value = true

: Lounge : Access

srcMult = 1
trgMult = 1..*

: Repair

Figure 4: Attribute and Relation Rules

8

functionality of the building, if a semantic object can optionally occur, and if a semantic ob-
ject must not exist in the future building. A regulation is possible by defining the lower and
upper bound of a cardinality rule. The lower bound determines if a semantic object is option-
ally (= 0) or essential (> 0), while the upper bound defines the maximal number of allowed
occurrences of semantic objects. The upper bound is represented by a constant integer value
or an integer expression, including the star symbol.

Regarding the example of a car garage again, a customer lounge can be optional and the
maximal number of lounges is one. This fact is expressed by the cardinality rule on the left
hand side of Figure 5: since a lounge is optional the “min” value of the cardinality range is
set to “0”; the “max” value is set to “1”. On the right hand side of Figure 5 another example
of a cardinality rule is given. Again, a customer toilet area is optional as the minimal number
is “0”. The maximal number, however, depends on the actual number of lounges, which can
be “0” or “1”, as seen before. Thus, the semantics of this rule can be stated by: “There can be
one customer toilet area, but only if there is a lounge”. This rule already uses the later intro-
duced concept of runtime dynamic expressions.

Inheritance and Aggregation

As presented in Figure 2, the knowledge model follows an object oriented classification. The
semantics of the described design rules are thereby extended by inheritance of semantic ob-
jects. Design rules, specified for a semantic object, are propagated to all inheriting semantic
objects in the knowledge model hierarchy. This mechanism allows defining common knowl-
edge on a general level and reduces the effort of knowledge specification. Analogously to the
object oriented concepts, design rules can also be redefined if necessary.

The analyses and structuring of inheritance for knowledge specification is realized in the
PROGRES specification by special nodes and edges. Complex graph transformations, operat-
ing on these graph elements, ensure the consistency of the object oriented structuring. The
internal realization, however, is hidden from the user.

The example in Figure 6 demonstrates the semantics of inheritance. The attribute rule for
“Sanitary Room” demands the surface area to be between 10.0 and 15.0 square meters (“De-
fined” in Figure 6). Regarding the knowledge model cut-out one can see that the “Sanitary
Room” is specialized into a “Toilet” which itself is specialized into particular types of toilets.
The above defined attribute rule is now stepwise inherited by all subclasses (“Derived”). The
attribute rule for “Handicapped Toilet”, however, is redefined to guarantee a minimum turn-
ing circle for wheelchairs. All semantic objects inheriting from “Handicapped Toilet” must
then fulfill the redefined rule.

: Customer
Toilet Area

: Cardinality

max = card(Lounge)
min = 0

: Lounge : Cardinality

max = 1
min = 0

Figure 5: Cardinality Rules

9

A further concept appointed in the knowledge model definition is the aggregation of se-
mantic objects. Using the aggregation relation, complex semantic objects can be defined,
composed of a collection of simple or again complex semantic objects. In contrast to the ob-
ject oriented classification mechanism, which describes a homogeneous set of semantic ob-
jects with similar properties, aggregation usually combines a heterogeneous set of different
semantic objects. In conceptual design several constraints concerning these aggregations are
relevant. We therefore provide the functionality to define attribute, relation, and cardinality
rules for complex semantic objects, too. To archive unambiguous semantics, further informa-
tion is needed to determine how such a design rule is interpreted. We use a “mode” flag to
distinguish different evaluation alternatives: “one”, “all”, and for integer attributes addition-
ally “sum”, “max” and “min”. If the “mode” flag is set to “one” or “all”, the design rule is
effectual for one single semantic object inside the aggregation, or all of them, respectively. If
the “mode” flag of an integer attribute is set to “sum”, the design rule prescribes the summa-
tion of all concerned integer attribute values of the semantic objects inside the aggregation.

Regarding the example in Figure 7, a cut-out of the knowledge model and three example
design rules with a complex semantic object are depicted. In the knowledge model, a “Cus-
tomer Area” is composed of optionally one “Lounge”, one “Contact” room, one “Exposition”
room, and one optional “Customer Toilet Area”. To restrict the surface area of this aggrega-

Knowledge Model

: Toilet : Surface Area

value = 10..15 sqm

: Men’s Toilet : Surface Area

value = 10..15 sqm

: Handicapped
Toilet

: Surface Area

value = 15..20 sqm

Design Rules

Defined

Derived

Redefined
Men’s
Toilet

Women’s
Toilet

Toilet

Sanitary Room

Handicapped
Toilet

: Sanitary
Room

: Surface Area

value = 10..15 sqm

Figure 6: Inheritance and Redefinition of Design Rules

Knowledge Model
: Customer Area : SurfaceArea

value = 54-96 [sqm]
mode = sumLounge

Contact

Exposition

Customer
Toilet Area

Customer Area

Design Rules

0..1

0..1

1

1

: Customer Area : FireDrencher

value = true
mode = one

: Customer Area : SmokeDetector

value = true
mode = all

Figure 7: Design Rules with Aggregation

10

tion to be between 54 and 96 square meters, an attribute rule concerning the “Customer
Area” is defined (Figure 7, first design rule). The “mode” flag is set to “sum”, therefore the
summation of the surface areas of all aggregated semantic objects in the conceptual design
must be within the defined interval. The second and third rule demand at least one semantic
object in the aggregation to be equipped with a fire drencher, and all with a smoke detector,
respectively.

Complex relation rules

As an extension to relation rules, which determines mandatory and forbidden intermediate
relationships between two semantic objects, we further introduce complex relation rules. Es-
pecially in conceptual design, composed relations are needed to express advanced concepts
like transitive accessibility or restricted reachability.

Complex relations are realized as a concatenation of semantic objects and relations. The
semantic objects at the beginning and the end of a complex relation definition restrict the
application of connecting semantic objects to the determined class and its subclasses in the
knowledge model. The inner components of the complex relation definition determine its
internal built-up.

An example of a complex relation design rule is depicted in Figure 8. The definition of
the complex relation “IndirectAccess” demands that the access from one room to another
contains an intermediate vestibule, e. g. to avoid noise pollution or bad smell. Below the
definition in Figure 8 an application of this complex relation is given. To avoid a direct ac-
cess between the lounge and the customer toilet area two design rules are defined. The first
one, a complex relation rule, demands an indirect access between the “Lounge” and the
“Customer Toilet Area”. Additionally, the second rule, a simple relation rule, forbids the
direct access between the two semantic objects. Thus, the customer toilet area is only al-
lowed to be accessible through an intermediate vestibule.

Runtime dynamic expressions

We previously introduced a cut-out of the graph schema as the internal realization of design
rules (Figure 3) and briefly motivated the need for runtime dynamic expressions. With this
concept we provide a powerful possibility to define complex integer and Boolean expres-
sions. These dynamic expressions are evaluated at runtime in dependency to an actual build-

IndirectAccess
srcMult = min .. max
trgMult = min .. max

: Room : Access : Vestibule : Access :Room

: IndirectAccess

srcMult = 1..1
trgMult = 1..*

: Lounge : Customer
Toilet Area

: Access

srcMult = 0..0
trgMult = 0..0

: Lounge : Customer
Toilet Area

Definition

Application

Figure 8: Complex Relation Rules: Definition and Application

11

ing design. Runtime dynamic expressions do not introduce a new kind of design rule, but
extend the existing expressive power of the visual language. The concept of expressions is
fundamental because it is applied to the definition of attribute values and relation multiplic-
ities, as well as cardinality ranges.

On the left hand side of Figure 9 the graph schema for runtime dynamic integer expres-
sions is depicted. The root class “MULT_TERM” is used to define the upper bound of an
integer range, thus upper bounds can be an “INTEGER_TERM” or a “STAR” (infinite).
Lower bounds can only be integer terms, as the star symbol is not allowed to be used. An
“INTEGER_TERM” is specialized into a “CONSTANT_INTEGER” to represent a static
integer literal, and a composite “INTEGER_EXPRESSION”. We distinguish three different
specialized integer expressions:

• An integer operator expression (“INTEGER_OP_EXPR”) represents an arithmetic ex-
pression, e. g. the multiplication of two integers. It consists of an arithmetic operator (*,
+, /, –), and a left and a right operand of type “INTEGER_TERM”. The inductive defini-
tion allows arbitrarily nested operator expressions.

• An integer attribute expression (“INTEGER_ATTR_EXPR”) refers to an actual attribute
value of a semantic object in the conceptual design.

• A cardinality operator (“CARDINALITY_OPERATOR”) computes the actual number of
semantic objects of one class in the conceptual design (see Figure 5 for an example). In
the graph schema the operator references a semantic object.

An example application of a runtime dynamic expression is shown in Figure 9 on the
right hand side. The German law for working places (ArbStättV §35 (3)) demands a mini-
mum surface area for washing rooms depending on the number of wash basins in the room.
For each wash basin there must be a minimal surface area of 0.7 times 0.7 square meters.
Figure 9 illustrates how this regulation is expressed.

: Washing
Room

: SurfaceArea
INT_OP_EXPR

STARmax

min

op = *

INT_OP_EXPR

op = *

INT_ATTR_EXPR

NumWashBasins

rightleft

rightleft

Design RulesGraph schema

INTEGER
_TERM

INTEGER
_EXPRESSION

CONSTANT
_INTEGER

value : integer

INTEGER
_OP_EXPR

op : {*,+,/,-}

INTEGER
_ATTR_EXPR

CARDINALITY
_OPERATOR

SEMANTIC
_OBJECT

ATTRIBUTE

to semo to attr

to_right

STAR

to semo

MULT_TERM

to_left

: SurfaceArea

max = *
min = 700*700*NumWashBasins [sqmm]

: Washing
Room

Graph-based realization

User-friendly representation

CONST_INT

value = 700

CONST_INT

value = 700

Figure 9: Runtime Dynamic Expressions, Graph Schema and Example Rule

12

Instead of defining a simple attribute rule for “Washing Room” with static integer values,
now the attribute “Surface Area” references two integer expressions for the lower and upper
bound. There is no need to restrict the size of a washing room, therefore the upper bound of
the attribute rule is determined by a “STAR” (unlimited). The lower bound is composed of
runtime dynamic integer expressions. The “INTEGER_OP_EXPR” is calculated by the mul-
tiplication (“op = *”) of the left term, again an “INTEGER_OP_EXPR”, and the right term,
an “INTEGER_ATTR_EXPR”. The value of the left term is computed by the product of two
“CONST_INTEGER” with value 700. The right one is an integer attribute expression; it gets
the number of wash basins which is represented by the actual value of the attribute “Num-
WashBasins” for the actual washing room.

The above representation (Figure 9, right hand side) shows the internal data structure to
store the expression as a graph. The representation below is more readable and thus user
friendly; it matches the user interfaces representation.

CONCLUSION

In this paper we introduced an expressive visual knowledge specification language to support
conceptual design in civil engineering. Based on graph technology, we described a dynamic
knowledge model and a possibility to define design rules. We further presented the expres-
sive power of the visual language with examples. The expressiveness of the three basic de-
sign rule types (attribute, relation and cardinality rules) is extended by the concepts of inheri-
tance and aggregation as well as by runtime dynamic expression and complex relations.

The defined knowledge in form of design rules serves on the one hand as reference work
for architects and civil engineers. A more powerful usage results from graph-based consis-
tency analyses checking a conceptual sketch. The consistency analyses (Kraft and Nagl
2003), not presented in this paper, are specified in the form of graph transformation using the
graph rewriting system PROGRES. The developed tool support (Kraft and Wilhelms 2004)
provides a useful representation for knowledge engineers and architects and demonstrate the
feasibility of such an approach.

RELATED WORK

In literature there are several approaches to support architects in design. Christopher Alexan-
der describes a way to define architectural design patterns (Alexander et al. 1977). Although
design patterns are extensively used in computer sciences, in architectural design this ap-
proach has never been formalized, implemented and used. The SEED system (Flemming
1994) provides support for the early phase in architectural building design. In contrast to our
approach, the SEED system focuses on the generation of sketches and not on an interactive
design support. (Gips and Stiny 1972) use shape grammars to formalize knowledge about
different classes of buildings, this approach also focuses on the generation of sketches. The
importance of knowledge processing for architectural design is comprehensively discussed in
(Coyne et al. 1990). In (Schmitt 1993), different new paradigms for a conceptual design sup-
port are proposed. Among other things, the top-down decomposition and modularization of
sketches and the use of object-orientation for architectural design is introduced. Even if the
work is neither implemented nor integrated into a CAD tool, the ideas are fundamental for

13

our research. The semantic web approach (Berners-Lee et al. 2001) aims to improve the qual-
ity of information in the World Wide Web. This approach is based on RDF (Powers 2003), a
language developed especially for modeling knowledge.

In (Meniru et al. 2002) a tool is presented that works like a CAD system but additionally
can identify the functional entities in a CAD sketch. Furthermore it is considered to check a
sketch against knowledge. However, the tool is not implemented, yet, and no idea for the
formalization and use of architectural knowledge is presented. Extracting all relevant infor-
mation, concerning legal restrictions, from a 3D CAD model is the aim in (Sulaiman et al.
2002). This information should be used to check the model. However, none of that is imple-
mented and how the knowledge should be structured is not explained.

Nosek and Roth were able to show in (Nosek and Roth 1990) that visual semantic net-
works are easier to understand than textual logic. Visual semantic networks constitute the
basis for the visual language presented here. Semantic networks were first introduced in the
area of artificial intelligence. Formal concept analysis (Stumme and Wille 2000) and concep-
tual graphs (Sowa 1984), based on semantic networks, also describe a way to store knowl-
edge in a formally defined but human readable form. The TOSCANA system, which is based
on formal concept analysis, describes a tool to store legal building rules. In contrast to our
approach, it is restricted to store and classify texts of law, dependencies between laws cannot
be represented. Finally, the TOSCANA system is not integrated with a CAD tool.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of this project by the German Research
Foundation (DFG) within the scope of the priority program “Network-based Co-operative
Planning Processes in Structural Engineering” (Meissner 2005). Furthermore, we would like
to thank the Nussbaum GmbH, especially Gerd Schneider, for fruitful discussions and pre-
paring a collection of design rules.

REFERENCES
Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language: Towns, Build-

ings, Construction. Oxford University Press.
Becker, S. and Westfechtel, B. (2004). „UML-based Definition of Integration Models for

Incremental Development Processes in Chemical Engineering”, SDPS, J. of Integrated
Design and Process Science: Transactions of the SDPS. 8 (1) 49-63. IOS Press.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001). “The Semantic Web”. Scientific Ameri-
can, (5). 2001

Böhlen, B., Schleicher, A., Westfechtel, B., and Jäger, D. (2002). “UPGRADE: Building
Interactive Tools for Visual Languages”. 6th World Multiconf. on Systemics, Cybernetics
and Informatics (SCI2002). Information Systems Development I. pp 17-22.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and Gero, J. S. (1990).
Knowledge-Based Design Systems. Addison Wesley.

Flemming, U. (1994). “Case-Based Design in the SEED System”. Knowledge-Based Com-
puter-Aided Architectural Design. pp. 69–91. Elsevier.

Gips, J. and Stiny, G. (1972). “Shape Grammars and the Generative Specification of Painting
and Sculpture”. Information Processing. 71:1460–1465.

14

GRAPHISOFT. (2005). “GRAPHISOFT Homepage”. www.graphisoft.com.
Kraft, B., Meyer, O., and Nagl, M. (2002). “Graph Technology Support For Conceptual De-

sign”. Proc. of the 9th Intl. Workshop of the Europ. Group for Intelligent Computing in
Engineering (EG-ICE2002). pp 1-35. VDI Verlag.

Kraft, B. and Nagl, M. (2003). “Semantic Tool Support for Conceptual Design”. Proc. of the
4th Int. Symp. on Information Technology in Civil Engineering. pp 1-12. ASCE.

Kraft, B. and Nagl, M. (2004). “Parameterized Specification of Conceptual Design Tools in
Civil Engineering”. LNCS 3072, Proc. of the Intl. Workshop on Applications of Graph
Transformation with Industrial Relevance (AGTIVE'03). pp 90-105. Springer.

Kraft, B. and Schneider, G. (2005). “Semantic Roomobjects for Conceptual Design Support”
Proc. of CAAD Futures 2005 (accepted).

Kraft, B. and Wilhelms, N. (2004). “Interactive Distributed Knowledge Support for Concep-
tual Building Design”. Proc. of the 10th Intl. Conf. on Computing in Civil and Building
Engineering (ICCCBE-X). pp 1-14 (CD-ROM).

Meissner et al. (2005). “DFG - Priority Program 1103 Network-based Co-operative Planning
Processes”. www.dfg-spp1103.de.

Meniru, K., Bedard, C. and Rivard, H. (2002). “Early Building Design using Computers”.
Proc. of the Conf. on Distributing Knowledge in Building (CIB w78 2002). Aarhaus
School of Architecture.

Nosek, J. T., and Roth, I. (1990). “A Comparison of Formal Knowledge Representatin
Schemes as Communication Tools”. Intl. J. of Man-Machine Studies, 33 (2) 227–239.

Powers, S. (2003). Practical RDF. O’Reilly.
Schmitt, G. (1993). Architectura et Machina – Computer Aided Architecural Design und

Virtuelle Architektur. Vieweg.
Schürr, A. (1991). Operationales Spezifizieren mit programmierten Graphersetzungssyste-

men. Ph. D. Thesis. RWTH Aachen. Wiesbaden.
Sowa, J. (1984). “Conceptual Structures: Information Processing”. Mind and Machine. Addi-

son-Wesley, Boston, MA, USA.
Stumme, G. and Wille, R. (2000). “Formal Concept Analysis on its Way from Mathematics

to Computer Science”. LNCS 2393, Proc. of the 10th Intl. Conf. on Conceptual Struc-
tures. Springer.

Sulaiman, M. J., Weng, N. K., Theng, C. D. and Berdu, Z. (2002). “Intelligent CAD Checker
For Building Plan Approval”. Proc. of the Conf. on Distributing Knowledge in Building
(CIB w78 2002). Denmark. Aarhaus School of Architecture.

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	SYSTEM ARCHITECTURE
	A VISUAL LANGUAGE FOR KNOWLEDGE SPECIFICATION
	Knowledge Model
	Design Rules
	Attribute und Relation Rules
	Cardinality Rules
	Inheritance and Aggregation
	Complex relation rules
	Runtime dynamic expressions

	CONCLUSION
	RELATED WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	Text1: Proc. of the 2005 ASCE Intl. Conf. on Computing in Civil Engineering (ICCC 2005)
eds. L. Soibelman und F. Pena-Mora, Seite 1-14, ASCE (CD-ROM), Cancun, Mexico, 2005

