
Graph Transformations for
Dynamic Knowledge Processing

Bodo Kraft
Aachen University of Technology

Department of Computer Science III
Ahornstr. 55, 52074 Aachen, Germany

Email: kraft@i3.informatik.rwth-aachen.de

Daniel Retkowitz
Aachen University of Technology

Department of Computer Science III
Ahornstr. 55, 52074 Aachen, Germany

Email: daniel@i3.informatik.rwth-aachen.de

Abstract— The conceptual design phase at the beginning of
the building construction process is not adequately supported
by any CAD-tool. Conceptual design support needs regarding
two aspects: first, the architect must be able to develop concep-
tual sketches that provide abstraction from constructive details.
Second, conceptually relevant knowledge should be available to
check these conceptual sketches.

The paper deals with knowledge to formalize for conceptual
design. To enable domain experts formalizing knowledge, a
graph-based specification is presented that allows the develop-
ment of a domain ontology and design rules specific for one class
of buildings at runtime. The provided tool support illustrates the
introduced concepts and demonstrates the consistency analysis
between knowledge and conceptual design.

I. I NTRODUCTION

The building construction process is subdivided into dif-
ferent phases. The first phase of the construction process is
calledconceptual design. In this early phase, the architect de-
fines the functionality and organization of the whole building
instead of a detailed worked-out construction. Theconstructive
design, based on the conceptual design, is elaborated in later
phases. During conceptual design, the architect has to observe
numerous legal, economical, and design-technical restrictions.
In addition, the functionality of the building, i. e. the correct
arrangement of rooms, their equipment, and meaningful rela-
tions between them, has to be guaranteed.

Currently, architects still use pencil drawings for developing
first sketches of the future building. This information, specified
in the conceptual design phase, is essential for all following
phases. However, current industrial CAD tools are restricted to
store only constructive design information, i. e. all semantics,
stored in the pencil drawing explicitly or implicitly, getslost.
Thereby, all conceptual information has to be stored in addi-
tional documents mostly in an informal way. The correctness
of the sketch in terms of regarding all given restrictions has
to be observed manually, as no tool support for conceptual
design analysis exists.

A. ConDes Project

The ConDes (Conceptual Design) project aims at elaborat-
ing a new conceptual design support for industrial CAD-tools.
To provide more adequate tools for the early design phase,
we introduce and implementroomobjectsand roomlinks [1]

with predefined semantics by way of example to the CAD-
tool ArchiCAD [2] on the one hand. On the other hand we
develop graph-based support for the domain of architectural
engineering, especially for the formalization ofconceptual
design knowledgeand consistency analyses checking a con-
ceptual design. For knowledge specification, we provide a
graph-based visual language [3] used by aknowledge engineer.
The knowledge engineer [4] is in our approach a domain
expert, i. e. an experienced architect or civil engineer andnot
a computer scientist. Thus, knowledge formalization has tobe
done in a visual and easily usable way.

To be able to evaluate the formalized knowledge, we further
provide a graph-based conceptual design tool used by an
architect for developing early conceptual sketches. Restriction
violations are automatically discovered and highlighted in the
conceptual sketch. The developed concepts are implemented
using the graph rewriting system PROGRES [5]; the UP-
GRADE framework [6] serves as basis for generating user-
friendly visual applications.

B. Related Work

In the field of early architectural design, Christopher
Alexander describes a way to define architectural design
patterns [7]. Although design patterns are extensively used in
computer science, this approach has never been formalized,
implemented and used in architectural design. The SEED sys-
tem [8] provides a support for the early phase in architectural
building design. Different modules –SEED-Pro, SEED-Layout
and SEED-Config– allow for specifying the requirements of
the buildings, generating floor plans and three dimensional
models based on these requirements. Knowledge specification
is done in so called specification units, storing the require-
ments of the future building. Even if the SEED approach also
provides user interaction, mainly the generation of building
sketches is aimed at and not an integrated, interactive design
support.

Graph rewriting has been used by Göttler [9] to build a
CAD-tool that supports the design of a kitchen. In contrast
to our approach, the domain knowledge is not dynamic, but
it is fixed in the specification. In [10][11], graph grammars
are used to find reasonable positions of rooms and to generate
an initial floor plan as a suggestion for the architect. In [12],

functional requirements for a building, especially the traffic
flow inside, are formalized in UML use case and UML activity
diagrams. These diagrams are then mapped onto a room graph
representing an abstract structure of the future building.In
contrast to our approach, all knowledge is fixed in the PRO-
GRES specification and can only be defined by a computer
scientist. Moreover, this approach focuses the formalization of
the buildings’ usage. The approach presented in this paper is
more general and allows knowledge formalization for different
domains.

In [13], an informative overview on knowledge representa-
tion is given. Five distinct roles are identified and discussed
to explain the term knowledge representation independently
from an actual knowledge representation. A lifecycle for
knowledge –definition, use, adaption, and reuse– is described
in [14]. A distinction is made here between internal and
external knowledge and the lack of meaningful formalization
methods is identified. Finally, the CoMem system, a kind
of knowledge browser, is demonstrated without describing
the internal realization. [15] engages in an empiric survey.
According to this survey, a visual representation of knowledge
using e. g. semantic nets [16] is more clearly comprehensible
than a textual representation like e. g. predicate logic.

The semantic web approach [17] tries to improve the quality
of information in the world wide web. This approach forms the
basis of RDF [18], a language developed especially for mod-
eling knowledge. In [19], an ontology definition specification
is presented that supports expressive knowledge representation
for multiple ontologies. The approach is based on the seman-
tics of UML [20]. We use a UML-like representation of for-
malized domain knowledge as well, but we implement it with
specifically tailored graphs and achieve a higher expressive-
ness. We further provide concepts for knowledge formalization
optimized to the addressed architecture and civil engineering
domain, and not for arbitrary knowledge. Finally, we develop
consistency analyses checking the conceptual design against
the defined knowledge by complex graph-transformations.

C. Paper Overview

In this paper, the graph-based knowledge specification part
of the ConDes project is presented. In the next section, we
introduce the system architecture to provide an orientation
about the parts concerned in this paper and their context in the
complete project organization. A parameterized and layered
PROGRES specification is presented which allows for creating
and processing a host graph, containing adomain ontology,
anddesign rules, both dynamic at tool runtime. Furthermore,
the motivation for dynamic knowledge specification is dis-
cussed. The following main part of the paper describes a
graph-based specification for dynamic knowledge processing
based on PROGRES. By way of the dynamic approach, we dis-
tinguish different kinds of instantiation mechanisms, thePRO-
GRES node type instantiation and the dynamic instantiationof
ontology elements. In the following section, some design rules
concerning a conceptual building design are presented by way
of an example host graph. Graph-based parameterized design

checks identify conceptual design errors, their functionality
is shown by way of example, too. Finally, two screenshots
depict the developed tool support that abstracts from the
internal graph structure to give a user-friendly representation.
In a summary, the expressiveness of the provided knowledge
definition language and their complexity is discussed, and an
outlook of future extensions is given.

II. K NOWLEDGE FORMALIZATION SYSTEM

ARCHITECTURE

Knowledge formalization in conceptual architectural design
covers rules and restrictions concerning the internal organiza-
tion of a building, e. g. the equipment and arrangement of
rooms, the aggregation of rooms to cohesive areas, or the
allowed respectively restricted traffic flow inside a building.
The architect has to resolve the difficulty of developing a
conceptual sketch of the future building which is consistent
to all defined restrictions. Further analyses, e. g. static,stress
or climatisation calculations, are elaborated by civil engineers
in later phases. These analyses are based on a detailed con-
structive sketch, with a complete specification of all materials
and components. In our work, we concentrate on the support
of the conceptual design phase, in this paper especially on the
knowledge formalization part.

A. Visual Knowledge Formalization

We follow a dynamic knowledge formalization approach,
i. e. a domain expert, an architect or a civil engineer, should
be able to formalize his personal domain knowledge. In a
fixed approach, the domain knowledge would be formalized
by the tool developer as an internal part of the source code.
In our scenario, knowledge formalization is done in two steps:
First, the basic concepts, i. e.semantic objects, relations, and
attributes, have to be defined in adomain ontology. Based on
this conceptualization [21],design rulesare used in a second
step to insert conceptual relevant knowledge. The ontologyas
well as the formalized knowledge is specific to one class of
buildings, both are valid for any project of the corresponding
class. The domain ontology [22] is prestructured in three basic
elements:

• Semantic objects describe the conceptually relevant
functional entities in architectural design,

• Relations describe connections between semantic ob-
jects,

• Attributes describe necessary equipment or properties of
a semantic object.

Semantic objects are defined by the knowledge engineer at
tool runtime for one class of buildings. We support the knowl-
edge engineer in developing the domain ontology by providing
predefined fundamental concepts for conceptual architectural
design. These concepts,building site, building, storey, area,
room, andsectionhave invariant semantics, independent from
the class of buildings. They, as well as their aggregation
relation, are fixed in the ontology model part of the PROGRES
specification (ref. figure 3).

Sanitary

Room

Toilet

Men’s

Toilet

Women’s

Toilet

Customer

Room

Contact ExpositionLounge

Handicapped

Toilet

Room Access

Staff

Access

Customer

Access

Surface

Area
Section

Attribute Semantic Object Relation

Area

Garage

Room

Garage

Surface

Area

Garage

Access

Fixed Ontology Model – Predefined Terms

Dynamic Domain Ontology

Fig. 1. Cutout of domain specific ontology

The new defined semantic objects are the fundamental
components of the design rules. Their definition requires spe-
cialized domain knowledge. The conceptual relevant attributes
and relations are defined analogously. Figure 1 depicts a
cutout of the (fixed) ontology model and a sample domain
ontology, specific for car-garages. The predefined ontology
model elementroom is used to define the semantic object
garage roomas a root node for the domain ontology. The
semantic objectscustomer room, sanitary room, and their
subclasses inherit fromgarage room. In addition, there is an
attribute surface areaand a relationaccesspredefined. The
relationaccessis used by the knowledge engineer to define a
customer accessandstaff access.

The definition ofdesign rulesis based on two parts. One
part isruntime dynamicand consists of the elements defined in
the domain ontology. The second part, namely thedesign rule
model, is fixed in the PROGRES specification. It consists of
predefined types of design rules, e. g.attribute rules, relation
rules, andcardinality rules. Attribute rules allow for defining
properties for one semantic object, e. g. a size restrictionor
the demand respectively the prohibition of certain equipment.
Relation rules demand or forbid an interrelationship between
semantic objects, e. g. the access between two rooms. Car-
dinality rules restrict the number of occurrences of semantic
objects in the building design. Further rule types (aggregation
rules, complex path rules, etc.) and advanced concepts (multi-
plicity restrictions, complex and runtime dynamic expressions,
etc.) are available, but not covered in this paper. See [23],[3]
for further information.

Four examples of basic design rules are depicted in their
abstract syntax in figure 2. The attribute rule depicted topmost
expresses a restriction of the surface area for sanitary rooms,
which has to be between 10.0 and 15.0 sqm (ref. [24]). Look-
ing at the domain ontology (figure 1), one can identify four
semantic objects inheriting from sanitary room. Corresponding
to this inheritance hierarchy, the attribute rule is automatically
valid for all four subclasses as well. Figure 2 further depicts
two relation rules. The first relation rule demands astaff access

Sanitary Room

Lounge Staff Access

srcMult = 1
trgMult = 1..5

Car Repair

Handicapped
Toilet

Surface Area

min = 10

max = 15

Cardinality

min = 1

max = 3

Relation Rule

Attribute Rule

Cardinality Rule

Customer Room Customer Access

srcMult = 0
trgMult = 0

Car Repair

Fig. 2. Example design rules

relation between the customerloungeand thecar repair. The
number of allowed connections is specialized by multiplicity
restrictions of the relation: Each lounge has to be connected
by the staff access relation to at least one and at most five car
repair rooms. For the second relation rule the multiplicities are
specified to be zero. Thus, the rule forbids customer access
from any customer room to a car repair room. Finally, the
cardinality rule at the bottom of figure 2 demands at least one
and at most three handicapped toilets to be installed insidethe
garage.

The abstract syntax [25] depicted in figure 2 serves for
illustrating the internal structure of design rules. A more
user-friendly concrete syntax is provided by the visual tool,
presented in section V.

B. System Architecture

Graphs as a general data structure allow for storing the
needed information for our knowledge formalization approach.
The graph rewriting system PROGRES provides the possibility
to specify a graph schema for defining a valid class of graphs.
Graph transformations are specified to build-up and modify a
graph at runtime (host graph). In this way, we develop purely
graph-based programs, all functionality is realized bygraph
tests, graph transformations, and control structures provided
by the PROGRES language. All program data is stored in
graph nodes and edges. To execute these graph-based pro-
grams we use the UPGRADE framework which provides the
functionality to represent and layout graphs, and to execute the
graph transformations defined in PROGRES. The UPGRADE
framework is highly extendable and customizable. In our
project we extend it to the needs of knowledge formalization.

The complete project scenario consists of two parts, the
knowledge formalization part on the one hand and the con-
ceptual design part on the other hand. We combine both
parts by checking the conceptual design against the formalized
knowledge. Thesedesign checksare graph-based as well, they
notify the architect if his sketch violates the given restrictions.

The knowledge formalization part is structured in a multi-
layered graph specification. Based on the PROGRES language,
the PROGRES specification is structured in four layers that

P
R

O
G

R
E

S

S
p

e
c
ific

a
tio

n

PROGRES Language

Knowledge Specification Package

Design Rules
Specific to one class

of buildings

Ontology Model Package Design Model Package

Conceptual Design Package

Domain Ontology
Specific to one class

of buildings

H
o

s
tg

ra
p

h

static instantiation

runtime instantiation

Base Package

Fig. 3. Multi-layered system architecture for dynamic knowledge formaliza-
tion

stepwise encapsulate realization details and provide higher-
level functionality. The complete specification does not contain
any domain knowledge specific to a class of buildings, but it
provides the functionality to formalize domain knowledge at
tool runtime. The approach is parameterized in two perspec-
tives: first, the domain ontology (see figure 1) is not fixed in
the PROGRES graph schema, it is created at runtime by a
knowledge engineer. This way the ontology can be designed
specific to a certain class of buildings and specific to a certain
knowledge sub domain, e. g. fire prevention or other legal
restrictions. Second, the actual domain knowledge (see figure
2), can be defined at runtime in terms of design rules.

Looking at figure 3, the initial point of the system architec-
ture is thePROGRES languageand its provided expressiveness
to describe and modify arbitrarily attributed, node- and edge-
labeled graphs. At our department, PROGRES is used for
several projects from diverse application domains (project
management, telecommunication, etc.).

The most general package of the specification is calledbase
package, it realizes the fundamental parts. First, the basic
types for modeling (semantic object, attribute and relation) and
their relationships in the graph are defined in thebasic graph
schema. Because of the two-phase knowledge formalization
approach aruntime instantiation mechanismis needed. This
mechanism allows to build-up the domain ontology and to
instantiate its elements for defining design rules. To be able to
dynamically develop object-oriented structured ontologies, a
mechanism to define aruntime-dynamic inheritance hierarchy
andruntime-dynamic aggregation relationshipsare realized in
the base package. Finally, some basic operations for mainte-
nance and graph queries of the runtime graph are provided
in the base package. Because these features are used for
the conceptual design support as well, the base package is
independent from knowledge specification.

The second layer of our system architecture comprises
the knowledge specification package, to fix the specifics of
the knowledge formalization approach. Using the defined

functionality of the base package, specialized graph nodesfor
domain ontology elementsand for design rule elementsare
defined. Furthermore, the different types ofdesign rules(e. g.
attribute, relation, and cardinality rules) are fixed here.The
knowledge specification package is furthermore fundamental
for the design checking package (not depicted) implementing
the consistency analyses.

Up to here, the PROGRES specification does not contain
any domain specific information, it could be used for knowl-
edge specification from several domains. To provide a more
adequate support for the domain of conceptual design in civil
engineering, we fixed basic architectural knowledge inside
the specification, thoroughly modularized in theconceptual
design package. Basic concepts (area, room, section, etc.), and
fundamental calculations (e. g.surface = width ∗ length,
volume = surface∗height, etc.) are predefined here to give
the knowledge engineer a reasonable basis for the elaboration
of domain knowledge. Additionally, more powerful consis-
tency analyses are possible using the domain specific base
knowledge.

The bottom layer of the PROGRES specification is subdi-
vided into two parts. Thedomain ontology model packageis
for ontology definition, it provides all functionality to define,
classify and aggregate semantic objects, and to specify the
needed attributes and relations. The second part consists of
the design rule model packagethat contains all functionality
to define design rules, based on the domain ontology and on
the predefined design rule types. In contrast to the knowledge
specification package, which defines the basics for knowledge
formalization, the concepts defined in this layer are more
abstract and allow a comfortable handling.

Corresponding to the bottom layer of the PROGRES spec-
ification, the host graph is also sectioned in two main parts.
One part is used to store the domain ontology, a second part
to store design rules. Both parts are developed at tool runtime
and specific to one class of buildings e. g. car garages. Looking
at the bottom of figure 3, this separation is represented by two
boxes. The ontology elements in the host graph, depicted in
the left box, are instances from PROGRES node types defined
in the domain ontology model package. This part describes
the common,static PROGRES instantiationmechanism, its
consistency is ensured by the PROGRES runtime environment.

The design rule elements, depicted in the right lower box,
are also instances from PROGRES node types, which are
defined in the design rule model package. Up to here, these
elements are still unspecific placeholders for storing design
rule elements in the host graph. The assignment of design
rules to the previously defined, domain specific concepts is
established by way ofassociating ontology elements to design
rule elements. Because both parts –ontology elements and
design rule elements– are runtime dynamic in the host graph,
the assignment cannot be realized through the PROGRES
runtime environment, but is manually implemented within
the PROGRES specification. We call this mechanismruntime
dynamic instantiation.

ONTOLOGY

_OBJECT

INSTANCE

_OBJECT
instance_of

INSTANCE

_RELATION
INSTANCE

_SEMANTIC

_OBJECT

INSTANCE

_ATTRIBUTE
ONTOLOGY

_RELATION
ONTOLOGY

_ATTRIBUTE

to_rel

from_rel

isA isA

1 0..n

0..1 1

1

0..1
0..1

0..n
0..n

ONTOLOGY

_SEMANTIC

_OBJECT

1

CONTAINS

to_attr

0..n

1

1

0..1

0..n

0..1

Fig. 4. Base package implementing the dynamic instantiation, inheritance, and aggregation

III. B ASICS OF THEPARAMETERIZED SPECIFICATION

APPROACH

In this section we describe the basics of our specification,
which are fundamental for our approach. The PROGRES
graph schema for knowledge formalization consists of several
layers as discussed in the previous section. Here, we concen-
trate on thebase packageimplementing the runtime dynamic
instantiation mechanism. The base package is independent
from the knowledge specification, in the complete scenario the
provided functionality is also used for the conceptual design
part of our project. Therefore, the presented concepts are at
the level of general graph nodes.

A. Runtime Dynamic Instantiation

Figure 4 shows two parts in the graph schema. The left
hand side of the figure depicts the graph schema nodes here
used for theontology elements, the right hand side of the figure
depicts the graph schema nodes fordesign rule elements. Both
parts are connected, via the instantiation relation, because the
design rule elements are instances of theontology elements. In
the following, this runtime dynamic instantiation mechanism
is explained in more detail.

There are two root nodes,ONTOLOGY OBJECT for the
elements in the domain ontology, andINSTANCE OBJECT
for the design rules. Theinstance of-edge, connecting the two
root nodes, realizes the runtime instantiation relation between
ontology elements and design rule elements. Each time a new
instance object is created, e. g. a certain semantic object,the
instance of-edge is established to the corresponding semantic
object in the domain ontology. We call this mechanism, de-
picted as dashed line in figure 3, runtime dynamic instantiation
(see previous section). This instantiation has to be done at
runtime, since the domain ontology as well as the design rules
are elaborated at tool runtime and stored in the PROGRES host
graph.

According to the graph schema, the instance relation is not
typed, i. e. an attribute could be an instance of a relation and
so on, because it would be possible to connect them with
an instance of-edge. The type equivalence between ontology
elements and instance elements is ensured by means of the
PROGRES transformations, for the creation of these instance

elements. When an instance of an ontology element is created,
the type of the new node is automatically set correctly accord-
ing to the instantiated ontology element. The reason not to use
different types ofinstance of-edges in the graph schema is to
keep it more concise and to avoid many case differentiations
in PROGRES transformations following these edges. So even
though the instance relationship is on an abstract level in the
graph schema, the type equivalence can be guaranteed through
the concerned PROGRES transformations.

B. Ontology Part

In the ontology part and instance part there is a root node
ONTOLOGY OBJECT and INSTANCE OBJECT, respec-
tively. On both sides, the root node is further specialized
into the three basic conceptssemantic object, relation, and
attribute.

On the ontology side, there areisA-edges attached to the
nodes for semantic objects and relations. These edges are used
to implement inheritance in the dynamic domain ontology.
An isA-edge connects the node of a specialized concept to
the node of a more general one. The multiplicity shows that
we do not allow multiple inheritance for simplicity reasons.
In contrast to relations and attributes, semantic objects can
also be aggregated. Using runtime dynamic aggregation, the
knowledge engineer can develop complex semantic objects,
composed of other semantic objects. The runtime dynamic
aggregation is realized by a reflexiveCONTAINS-relation,
storing the encapsulated semantic objects, and their multiplic-
ity. One can see that each complex semantic object can consist
of arbitrary many semantic objects, analogously each semantic
object can be part of arbitrary many aggregations.

C. Instance Part

On the instance side of the graph schema (right hand
side of figure 4), the three basic design rule elements
and their connections are implemented. These elements
are linked up to describe the three different design rule
types (ref. figure 2). An attribute rule consists of oneIN-
STANCE SEMANTIC OBJECT, connected with ato attr-
edge to oneINSTANCE ATTRIBUTE; it defines a valid
range of values for the attribute. Relation rules consist
of two INSTANCE SEMANTIC OBJECTS, interrelated by

an INSTANCE RELATION and correspondingto rel- and
from rel-edges. According to the edge multiplicities, each
INSTANCE SEMANTIC OBJECT is related to only one
relation. This design decision was made to ease consistency
analyses and knowledge modularization.

As already mentioned, the graph schema depicted here is
part of the base package. The cutout of this graph schema is
extended in all following packages to complete the knowledge
specification approach.

D. Host Graph Example

To illustrate the introduced functionality, figure 5 de-
picts an example host graph. The upper part of the figure
shows a cutout of an example domain ontology at tool
runtime. Six ONTOLOGY SEMANTIC OBJECTS are de-
fined, structured by inheritance starting fromRoom. Fur-
thermore, twoONTOLOGY RELATIONS and oneONTOL-
OGY ATTRIBUTE are shown. The lower part of the host
graph shows the runtime representation of some design rules.
Their connections to the corresponding nodes in the ontology
are established by way ofinstance of-edges from the graph
nodes in the design rules part to those representing the
ontology elements.

The design rule part depicts four rules: one integer attribute
rule (IAttrRule1), two reference rules (RefRule1, RefRule2),
and one cardinality rule (CardRule1). A reference rule is au-
tomatically derived for specialized semantic objects, according

Room
: KM_SemO

Lounge

: KM_SemO

CustomerRoom
: KM_SemO

SanitaryRoom
: KM_SemO

isA isA

SurfaceArea
: KM_IntAttr

Access
: KM_Relation

StaffAccess
: KM_Relation

HandicappedToilet
: K_SemO

: K_Cardinality
_Range

Toilet

: KM_SemO

HandicappedToilet

: KM_SemO

is
A

is
A

isA

isA

: K_Star

CardRule1
: K_CardRule

to_card

to_concerns to_min

to_max

: K_ConstInt
value = 1

Domain Ontology

Design Rules

SanitaryRoom
: K_SemO

SurfaceArea
: K_IAttr

IAttrRule1
: K_IAttrRule

to_attrto_concerns
to_min

to_max

: K_ConstInt
value = 10

: K_ConstInt
value = 15

Toilet

: K_SemO

RefRule1

: K_RefRule

RefRule2

: K_RefRule

HandicappedToilet

: K_SemO

to_rule

to_rule

to_concerns

to_concerns

instance_of

instance_of

instance_of

instance_of

instance_of

rule_attr

Fig. 5. Example host graph

to the ontology. In the knowledge specification package (ref.
figure 3), design rules are extended by an additional node,
to explicitly identify each rule. Thisrule node is connected
by a to concerns-edge to one semantic object. The integer
attribute rule topmost is composed of

• a rule nodeIAttrRule1
• a semantic objectSanitaryRoom
• an integer attributeSurfaceArea
• two constant integer nodes describing the range of the

attribute

The valid range of values is set to be between 10 and 15 sqm,
both values are represented each by one node. More expressive
functionality is provided, too. For example it is possible to
define runtime dynamic integer terms for attribute values
(ref. [3]). To concentrate on the graph technical realization we
restrict ourselves here to the basics. Looking again at the first
design rule, the runtime dynamic instantiation is realizedby
the instance of-edge, e. g. between the sanitary room in the
domain ontology and the sanitary room as a part of the design
rule. The other design rule elements are related analogously
to their corresponding ontology elements.

The concept ofreference rulesimplements theinheritance
of rules, based on inheritance in the domain ontology. In
the ontology part of figure 5,Toilet is a specialSanitary-
Room. Thus, in the design rule part, the integer attribute
rule concerning the surface area is inherited. A reference
rule is automatically created and connected to the original
rule by ato rule-edge. Reference rules are linked to a chain,
depending on how many specialized semantic objects exist in
the ontology. In the example, there is one further specialization
of Toilet to HandicappedToilet. Accordingly, there is another
reference rule for the surface area attribute connected to
the first reference rule. If needed, reference rules can be
overwritten to set more adequate values. In that case, the chain
of reference rules is broken and a new rule is created.

At the bottom of figure 5 an example of a cardinality rule
is shown. The ruleCardRule1demands at least oneHandi-
cappedToilet to be available in the building. The cardinality
range is set by a constant integer (1) and the star literal (*)to
express an unlimited upper bound.

IV. CONSISTENCYANALYSIS

In this section, we describe the benefits of the formalized
knowledge when checking a conceptual sketch. Based on
graph transformations, we realize consistency analyses that
identify rule violations and inform the architect about possible
design errors. In the conceptual design part of our project
we develop a graph representation for storing conceptual
sketches, based on semantic objects, relations and attributes,
too. The consistency analyses therefore work on similar graph
schemata. By way of example, we now present a simplified
form of a consistency analysis for checking Boolean attribute
rules. The description presented here concentrates on the basic
notification mechanism and the resolving of inheritance of
design rules.

’2:KG_I_SEMANTIC_OBJECT ’3:DG_I_SEMANTIC_OBJECT

’5:DG_I_BooleanAttribute

to_attr

valid(not(’4.value = self.value))

corrto_semo

2':KG_I_SEMANTIC_OBJECT 3':DG_I_SEMANTIC_OBJECT

4':KG_I_BooleanAttribute 5':DG_I_BooleanAttribute

to_attr

1':KG_I_RULE
to_semo

6':DG_I_Notification

to_notif

to_orig_attr

’1:KG_I_RULE

::=

transformation CheckBooleanAttributes * =

end;

corr

’6:DG_I_Notification

to_notif

valid(self.rule = ’1)

’4:KG_I_BooleanAttribute

Fig. 6. Design check for Boolean attribute rule

In figure 6, a PROGRES transformation is depicted that
implements the analysis of a Boolean attribute rule. Each
PROGRES transformation consists of a left hand side (upper
box) and a right hand side (lower box), separated by the
symbol::=. The pattern shown on the left hand side is searched
in the host graph, and if it is found, it is replaced by the
right hand side of the transformation. The left hand side of
the PROGRES transformation in figure 6 comprises graph
nodes of both, the conceptual design part, and the knowledge
formalization part. The relevant cutout of the conceptual
design consists of a semantic object (node’3) and a Boolean
attribute (node’5). Knowledge formalization in terms of a
Boolean attribute rule is realized by the rule node’1, which
is connected to the concerned semantic object (node’2) and
to a certain attribute node (node’4). In the transformation, the
attribute node’s connection to the semantic object is checked
indirectly by a path expressionto orig attr from the rule
node ’1 to the attribute node’4. This path is necessary
to handle manually defined rules as well as reference rules.
The path may consist of several reference rule edges until the
original rule’s attribute node is reached. The definition ofthis
path is depicted in figure 7, as explained below.

’3:KG_I_ATTRIBUTE_RULE

’2:KG_I_ATTRIBUTE

to_attrto_orig_rule

’1:KG_I_ATOMIC_RULE

path to_orig_attr : KG_I_ATOMIC_RULE [1:1] -> KG_I_ATTRIBUTE [1:1] = ’1 => ’2 in

end;

folding {’1, ’3};

path to_orig_rule : KG_I_ATOMIC_RULE [0:n] -> KG_I_ATOMIC_RULE [1:1] =

((not instance_of KG_I_ReferenceRule)

or ((instance_of KG_I_ReferenceRule & -to_rule->) +

 & not instance_of KG_I_ReferenceRule)) : KG_I_ATOMIC_RULE [1:1]

end;

Fig. 7. Two paths to find the original rule

A further pathcorr is used to find the correspondences be-
tween semantic objects in design (node’3) and in knowledge
(node’2), and for attributes alike. Therefore, correspondence
links between thedomain ontology for knowledgeand that
one for theconceptual designare defined by the knowledge
engineer. A separate package, not described here, providesthe
functionality to process these links.

Up to here, the pattern to be searched in the host graph
is specified. The actual mechanism for identifying design
errors is realized by arestriction at node’5 that requires
the two attribute values to be opposite. In this case, and if
there is no notification node yet (crossed out node’6), a new
notification node is created (node6’ on the right hand side
of the transformation). All other parts of the graph remain the
same as before.

Figure 6 shows theto orig attr-path to connect the se-
mantic object with the correct attribute node. This mechanism
realizes the correct processing of reference rules. The path
covers two situations: if the rule has been defined manually,
the rule node’1 is connected via arule attr-edge with
the attribute node’4. If the rule is a reference rule, the path
follows the chain of reference rules until a manually defined
rule is found.

Figure 7 depicts the visual definition of the
to orig attr-path. This path always leads from an
atomic rule node’1 to an attribute node’2, as shown in the
header of the path definition. Node’1 is a placeholder for
either a reference rule, or a manually defined rule. In the first
case, the pathto orig rule connects thereference rule
nodeto the firstmanually defined rule nodealong the chain of
reference rules. In the second case, theto orig rule-path
is empty, and the rule node’1 is already connected with the
attribute node’2 by therule attr edge.

In the lower part of the figure, the textual definition of the
to orig rule path is depicted. Theto orig rule path
connects two atomic rule nodes. If the start node is not a
reference rule, the target node is the same as the start node,
i. e. it is already the original rule. Otherwise, if it is a reference
rule, anyto rule edges are followed until a node is reached,
that is not a reference rule, i. e. it is the searched originalrule.

V. V ISUAL TOOLS FORCONCEPTUAL DESIGN SUPPORT

To prove the feasibility of our approach supporting the
conceptual design phase, we implemented prototype versions
of different tools that support the definition of knowledge,
the creation of actual conceptual designs of buildings, and
the design checks that analyze whether the specified rules are
met. These tools, their construction process, and their usage
are described in this section.

A. Tool Construction Process

All the tools we implemented are created in the same
way. As already mentioned in the introduction, our tools are
based on the graph rewriting system PROGRES [5]. The
UPGRADE framework [6] allows to generate automatically
a basic visual prototype tool using C-code that is exported by

Graph-based
Consistency

Analysis

Knowledge Ontology Editor

Domain Knowledge Editor

Design Graph Editor

Fig. 8. Screenshot of the knowledge editor (left) and the conceptual design tool (right)

PROGRES. This basic prototype provides only some generic
base-functionality. Also the representation of the graph nodes
and edges is initially generic. To provide a tool that is
customized to knowledge specification and conceptual design,
several extensions have to be made. First, different views
are defined so that information can be represented in tables
or trees, additionally to the graph representation. Indeed, the
graph view is provided with certain filters, so that for each
tool only a certain part of the entire graph is displayed. For
the respective graph nodes that appear in such a cutout of
the graph, adequate node-representations are defined, so that
the user of the tool gets an easy and intuitive access to the
information. Additionally, layout-algorithms are offered for
positioning the graph-nodes automatically and obtaining as
much clarity as possible. The transformations specified in the
PROGRES-specification are not called directly by the user.
Instead all the functionality provided by the transformations
is encapsulated within user-friendly dialogs.

B. Knowledge Formalization

First, we take a look at the knowledge formalization part.
The corresponding tools are shown in the two overlapping
screenshots on the left hand side of figure 8. The topmost
window depicts the ontology editor, which is used by a knowl-
edge engineer to formalize a domain specific ontology. In this
tool, semantic objects like rooms, relations like access, and
attributes like width can be defined. These ontology elements
can be related to each other by the inheritance relation and by
the aggregation relation. In the screenshot, thesemantic object
view is shown in the upper half and theaggregation viewin
the lower half of the editor window. The ontology defined in
the depicted example is related to that one in figure 1.

The lower window in the background depicts the knowledge

editor, which is used by a knowledge engineer to specify
design rules. The knowledge editor supports the engineer in
navigating through the domain knowledge by providing a
visual, compact, and concise representation that is optimized
for knowledge formalization of conceptual design knowledge.
The design rules specified herein will be checked later against
an actual building design. In the graph view of the knowledge
editor, the different rules from figure 2 are shown. The first rule
in figure 2 restricts the surface area of a sanitary room to be
between 10 and 15 sqm. This is represented in the knowledge
editor by showing the attribute surface area in the node for
sanitary room together with the specified bounds of 10 and 15
sqm. The arrow pointing to the right in front of that row shows
that this attribute rule is newly defined for sanitary rooms and
is not inherited. The first relation rule in figure 2 demands staff
access from the lounge to the car repair room. Customer access
from any customer room to a car repair room is prohibited by
the second relation rule. These rules are represented by edges
in the knowledge editor. The edge with arrows at its ends
shows that staff access isdemandedbetween a lounge and a
car repair room. The multiplicities for this relation are also
shown at the ends of the edge. The edge with a circle at its
end shows that it isforbiddento allow customer access from a
customer room to a car repair room. The last rule in figure 2 is
a cardinality rule. It demands that there has to be at least one
handicapped toilet and at most three. In the knowledge editor,
this cardinality range is shown in the node for handicapped
toilet on the right hand side in the title row. At the bottom of
the window, all subclasses of sanitary room are shown. Each
of these nodes contains a row for the attribute surface area,
which is restricted to be between 10 and 15 sqm. This way the
inheritance of the attribute rule for the surface area of sanitary
rooms is visualized. The arrow pointing to the top in front of

these lines indicates that the attribute restriction is inherited
from some superclass.

C. Conceptual Design

Our tool for creating conceptual building designs is shown
on the right hand side of figure 8. This tool is used by an
architect in the conceptual design phase of a specific building
design process. It is a prototypic CAD-system that providesthe
functionality for creating coarse-grained designs, i. e. designs
on a conceptual level. Using this tool, conceptual elements
for the respective building and the relations between theseel-
ements within the building can be defined. The representation
is related to so calledbubble diagrams[24] that are extensively
used by architects during the early phase of architectural
design. This way, an adequate support for the conceptual
design phase is provided.

In the example depicted on the right hand side of figure 8,
a first simple sketch of a building is shown in our tool. We
defined a lounge with a surface area of 40 sqm, shown in the
middle of the graph view. Two toilets are accessible from this
lounge. One general, not further specified type of toilet and
another toilet for handicapped persons, which is adjacent to
the first toilet. Furthermore, a contact room is adjacent to the
lounge. A car repair room is accessible from the lounge for
both staff and customers.

D. Design Checks

The conceptual design tool provides the functionality to
check a conceptual building sketch. This means that the
conceptual design developed by an architect is checked against
the design rules specified by a knowledge engineer. The
example sketch described in the previous section contains
some rule violations. First, the handicapped toilet in the
example design has a surface area of 8 sqm, which is too
small. In the knowledge definition we defined a rule that
demands a surface area between 10 and 15 sqm for all
sanitary rooms. As the handicapped toilet is a sanitary room,
according to the definition in the domain ontology, it has to
have a surface area between 10 and 15 sqm. Second, in the
conceptual design, customer access is allowed between the
lounge and the car repair room. According to the defined
rules, no customer access is allowed between a customer room
and the car repair room. As the lounge is a customer room
(refer the ontology definition), this rule is violated. The rule
violations are visualized in the conceptual design editor by
boxes containing an exclamation mark, a meaningful error
message can be displayed optionally.

The rule violations visualized in the conceptual design tool
are advices to the architect to review the conceptual design
at the highlighted parts. It is not mandatory for the architect
to eliminate all notifications and warnings in the design, as
we do not intend to constrain the creativity and personal
responsibility of architects. These notifications are rather to be
understood as hints to problems that might arise later when
the designed building is actually to be built and the restrictions
from legal, economical, and many other domains are not met.

VI. SUMMARY AND OUTLOOK

In this paper, we presented a novel method for knowledge
formalization and processing based on graph technology. We
motivated the need for knowledge formalization in the domain
of early architectural design and illustrated our idea with
some example rules. A multi-layered PROGRES specification
was introduced as basis for understanding the following pa-
rameterized specification approach. The relationship between
a domain ontology and predefined design rule types were
discussed and a runtime-dynamic instantiation mechanism was
shown on some hostgraph examples. The basic mechanism
for consistency analysis, checking the formalized knowledge
against a conceptual design was depicted. Finally, the user-
friendly tool support, abstracting from the hostgraph repre-
sentation, was demonstrated.

A. Discussion

In the field of knowledge formalization, one can distin-
guish between internal and external knowledge specification
[4]. Using the internal specification approach, the complete
knowledge is formalized in terms of algorithms and data
structures within a computer program and fixed at tool runtime.
Knowledge formalization has to be done by a programmer in
cooperation with a domain expert. In most applications based
on graph grammars, the domain specific underlying knowledge
is implicitly stored as a fundamental part of a graph schema
and graph rewriting rules. Using the PROGRES system, such
a graph transformation specification can be developed in a
declarative, visual way [26]. Thistraditional specification
method is applicable, if the complete domain knowledge is
available and invariant. The tool construction process (ref.
[27]) has to be run only once and the derived visual graph-
based application is given to the end-user.

In our project, it is not realistic to assume a closed set of
design rules. It is rather the goal to elaborate and evaluatethe
knowledge, relevant to conceptual design, in many iterations. It
is moreover not realistic to expect a fixed domain ontology that
comprises all concepts needed for the afterward elaboration
of knowledge in the general context of civil engineering. Both
have to be done by a domain expert, e. g. an architect or a civil
engineer. In general, these experts will not be familiar with
graph rewriting, the PROGRES system and its tool construc-
tion process. Therefore, we follow theparametric specification
method, i. e. not only the design rules, but also their basic
components can be developed by the knowledge engineer at
tool runtime. All graph-based realization is completely hidden
from the knowledge engineer, instead he can work with user-
friendly graphical interfaces.

Two aspects demonstrate the effort providing such a dy-
namic knowledge processing. First, the complexity of the
underlying graph specification is higher because of the pa-
rameterization needed for processing all domain unspecific
concepts. Second, the expressive power of the knowledge
formalization is restricted to a limited set of predefined design
rule types rather than providing the complete breadth of the
PROGRES language. Nevertheless, in our opinion, there is

no alternative to the dynamic approach, due to the above
discussed nature of knowledge formalization.

B. Future Work

There are two main extensions to the current state of
our project that are planned for the near future. The first
extension is the enhancement of the expressiveness of design
rules. Design rules are atomic at the moment and it is not
possible to combine them to complex constructs. When a
conceptual design is checked against these design rules,each
of them has to be fulfilled. Rules with practical relevance,
for example lawful regulations, are often complex in that they
are composed of alternative, conditional, or negated rules. To
represent complex rules in our system, the atomic design rules
will be extended to complex design rules which are composed
of other design rules using Boolean operators as connectors.
By Boolean operators the knowledge engineer has intuitive
means to represent and build-up complex design rules using
our tool.

The second main extension concerns the modularization
of knowledge and the integration of knowledge modules. It
is unrealistic to assume that the complete knowledge rep-
resented by the design rules is acquired and formalized by
one single knowledge engineer at once. So, it is our goal
to open up the opportunity to store knowledge in different
modules. Therefore, the domain ontology as well as the design
rules will be modularized, reasonably subdivided according
to knowledge subdomains. Modules will be layered, so it
will be possible to define for example some base knowledge
about industrial buildings on the topmost layer and to define
specialized knowledge, like knowledge for car-garages, on
some lower layer.

These future extensions will enhance the practical usability
of our approach. Even when the developed tools are rather
research prototypes than easy usable applications, we hopethat
demonstrating the concepts will contribute to the acceptance
in the architecture and civil engineering domain.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of this
project by the German Research Foundation (DFG) within the
scope of the priority program ”Network-based Co-operative
Planning Processes In Structural Engineering” (SPP 1103).

REFERENCES

[1] B. Kraft and G. Schneider, “Semantic Roomobjects for Conceptual
Design Support: A Knowledge-based Approach,” inProc. of the 11th
Intl. Conf. on Computer Aided Architectural Design Futures(CAAD
Futures ’05), B. Martens and A. Brown, Eds. Springer, 2005, pp.
207–216.

[2] Graphisoft, “ArchiCAD,” http://www.graphisoft.com/products/archicad/
(06/09/2005), 2005.

[3] B. Kraft and N. Wilhelms, “Visual Knowledge Specificationfor Con-
ceptual Design,” inProc. of the 2005 Intl. Conf. on Computing in Civil
Engineering (ICCC 2005), L. Soibelman and F. Pena-Mora, Eds. ASCE
(CD-ROM), 2005, pp. 1–14.

[4] P. Jackson,Introduction to Expert Systems, 3rd ed. Addison Welsey,
1998.

[5] A. Schürr, “Operationales Spezifizieren mit programmierten Grapherset-
zungssystemen,” Dissertation, Aachen University of Technology, Wies-
baden, 1991.

[6] B. Böhlen, D. J̈ager, A. Schleicher, and B. Westfechtel, “UPGRADE:
A Framework for Building Graph-based Interactive Tools,” ser. LNCS
2505, A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, Eds.
Springer, 2002, pp. 270–285.

[7] C. Alexander, S. Ishikawa, and M. Silverstein,A Pattern Language:
Towns, Buildings, Construction. Oxford: Oxford University Press, 1977.

[8] U. Flemming, “Case-based Design in the SEED System,” inKnowledge-
based Computer-aided Architectural Design, G. Carrara and Y. E. Kalay,
Eds. Elsevier, 1994, pp. 69–91.

[9] H. Göttler, J. G̈unther, and G. Nieskens, “Use of Graph Grammars to
Design CAD-Systems,” inGraph Grammars and their Application to
Computer Science, ser. LNCS 532. Springer, 1990, pp. 396–409.

[10] A. Borkowski, A. Scḧurr, and J. Szuba, “GraCAD – Graph-based Tool
for Conceptual Design,” ser. LNCS 2505, A. Corradini, H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, Eds. Springer, 2002, pp. 363–377.

[11] A. Borkowski, E. Grabska, and E. Nikodem, “Floor Layout Design
with the Use of Graph Rewriting System PROGRES,” inAdvances in
Intelligent Computing in Engineering, Proc. of the 9th Intl. EG-ICE
Workshop, M. Schnellenbach-Held and H. Denk, Eds. Darmstadt: VDI
Fortschritt-Berichte, 2002, pp. 149–157.

[12] J. Szuba, “Graphs and Graph Transformations in Design inEngineering,”
PhD thesis, Darmstadt University of Technology, 2005.

[13] R. Davis, H. Shrobe, and P. Szolovits, “What is a Knowledge Repre-
sentation?”AI Magazine, vol. 14, no. 1, pp. 17–33, 1993.

[14] R. Fruchter and P. Demian, “Knowledge Management for Reuse,” in
Proc. of the Conf. on Distributing Knowledge in Building (CIB w78
2002), P. Christianson, Ed. Denmark: Aarhaus School of Architecture,
Juni 2002.

[15] J. T. Nosek and I. Roth, “A Comparison of Formal Knowledge Represen-
tation Schemes as Communication Tools,”Intl. Journal of Man-Machine
Studies, vol. 33, no. 2, pp. 227–239, 1990.

[16] J. Sowa,Priciples of Semantic Networks. San Mateo: Morgan Kauf-
mann, 1991.

[17] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, no. 5, 2001.

[18] S. Powers,Practical RDF. Sebastopol, CA, USA: O’Reilly, 2003.
[19] DSTC Pty Ltd., “Ontology Definition MetaModel – InitialSubmission,”

http://www.omg.org/docs/ad/03-08-01.pdf (03/04/2005),2003.
[20] Object Management Group, “Unified Modelling Language,”

http://www.uml.org/ (06/09/2005), Mai 2004.
[21] G. Stumme and R. Wille, Eds.,Begriffliche Wissensverarbeitung.

Springer, 2000.
[22] R. D. A. Falbo, G. Guizzardi, and K. C. Duarte, “An Ontological

Approach to Domain Engineering,” inProc. of the 14th Intl. Conf.
on Software Engineering and Knowledge Engineering, R. A. Falbo,
G. Guizzardi, A. C. C. Natali, G. Bertollo, F. F. Ruy, and P. G.Mian,
Eds. New York, NY, USA: ACM Press, 2002, pp. 351–358.

[23] B. Kraft and N. Wilhelms, “Interactive distributed Knowledge Support
for Conceptual Building Design,” inProc. of the 10th Intl. Conf. on
Computing in Civil and Building Engineering (ICCCBE-X), K. Beucke,
B. Firmenich, D. Donath, R. Fruchter, and K. Roddis, Eds. Bauhaus-
Universiẗat Weimar, 2004, pp. 1–14.

[24] E. Neufert and P. Neufert,Architects’ Data, 3rd ed. Oxford, Great
Britain: Blackwell Science, 2000.

[25] M. Erwig, “Abstract Syntax and Semantics of Visual Languages,”
Journal of Visual Languages and Computing, vol. 9, no. 5, pp. 461–
483, 1998.

[26] A. Scḧurr, A. Winter, and A. Z̈undorf, The PROGRES approach:
Language and Environment. Singapore: World Scientific Publishing
Co., 1999, vol. 2. Applications, Languages, and Tools, pp. 487–550.

[27] B. Kraft and M. Nagl, “Parameterized Specification of Conceptual
Design Tools in Civil Engineering,” inProc. of the Intl. Workshop
on Applications of Graph Transformation with Industrial Relevance
(AGTIVE ’03), ser. LNCS 3072, J. Pfalz, M. Nagl, and B. Böhlen, Eds.
Springer, 2004, pp. 90–105.

[28] A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, Eds.,Proc.
of the 1st Intl. Conf. on Graph Transformation (ICGT’02), ser. LNCS
2505. Springer, 2002.

	Text1: Proc. of the 39th Hawaii Intl. Conf. on System Sciences (HICSS'06)
ed. Eileen Robichaud, Kauai, Hawaii, Seite 1-10, IEEE Press (CD-ROM), 2006

