Proc. of the 39th Hawaii Intl. Conf. on System Sciences (HICSS'06)
ed. Eileen Robichaud, Kauai, Hawaii, Seite 1-10, IEEE Press (CD-ROM), 2006

Graph Transformations for
Dynamic Knowledge Processing

Bodo Kraft Daniel Retkowitz
Aachen University of Technology Aachen University of Technology
Department of Computer Science I Department of Computer Science I
Ahornstr. 55, 52074 Aachen, Germany Ahornstr. 55, 52074 Aachen, Germany
Email: kraft@i3.informatik.rwth-aachen.de Email: daniel@i3.informatik.rwth-aachen.de

Abstract— The conceptual design phase at the beginning of with predefined semantics by way of example to the CAD-
the building construction process is not adequately supported tool ArchiCAD [2] on the one hand. On the other hand we
by any CAD-tool. Conceptual design support needs regarding geyelop graph-based support for the domain of architelctura

two aspects: first, the architect must be able to develop concep- . h iallv for the formalization obncentual
tual sketches that provide abstraction from constructive deails. engineering, especially for the formalization obnceptua

Second, conceptually relevant knowledge should be available to design knowledgand consistency analyses checking a con-
check these conceptual sketches. ceptual design. For knowledge specification, we provide a

The paper deals with knowledge to formalize for conceptual graph-based visual language [3] used bynawledge engineer
Crnbanad st rieames o i o Seion I knowledge engineer 4] is in our approach a comin
?neﬁt of a domgin ontology an?i design rules specific for one clags expert, 1.e. an_ expe”enced architect or civil e_ng',neer o
of buildings at runtime. The provided tool support illustrates the & computer scientist. Thus, knowledge formalization haseto
introduced concepts and demonstrates the consistency analysisdone in a visual and easily usable way.
between knowledge and conceptual design. To be able to evaluate the formalized knowledge, we further
provide a graph-based conceptual design tool used by an
architectfor developing early conceptual sketches. Restriction

The building construction process is subdivided into difviolations are automatically discovered and highlightedhie
ferent phases. The first phase of the construction processd®iceptual sketch. The developed concepts are implemented
calledconceptual desigrin this early phase, the architect deusing the graph rewriting system PROGRES [5]; the UP-
fines the functionality and organization of the whole builyli GRADE framework [6] serves as basis for generating user-
instead of a detailed worked-out construction. thastructive friendly visual applications.
design based on the conceptual design, is elaborated in later
phases. During conceptual design, the architect has tovansd3: Related Work
numerous legal, economical, and design-technical résin In the field of early architectural design, Christopher
In addition, the functionality of the building, i.e. the cect Alexander describes a way to define architectural design
arrangement of rooms, their equipment, and meaningful refgatterns [7]. Although design patterns are extensivelyl lise
tions between them, has to be guaranteed. computer science, this approach has never been formalized,

Currently, architects still use pencil drawings for deyéhg implemented and used in architectural design. The SEED sys-
first sketches of the future building. This information, sified tem [8] provides a support for the early phase in architettur
in the conceptual design phase, is essential for all folhgwi building design. Different modules —SEED-Pro, SEED-Layou
phases. However, current industrial CAD tools are resiitd and SEED-Config— allow for specifying the requirements of
store only constructive design information, i.e. all setitan the buildings, generating floor plans and three dimensional
stored in the pencil drawing explicitly or implicitly, getsst. models based on these requirements. Knowledge specificatio
Thereby, all conceptual information has to be stored in-adds done in so called specification units, storing the require
tional documents mostly in an informal way. The correctnessents of the future building. Even if the SEED approach also
of the sketch in terms of regarding all given restrictions harovides user interaction, mainly the generation of bnidi
to be observed manually, as no tool support for conceptisketches is aimed at and not an integrated, interactivejalesi

I. INTRODUCTION

design analysis exists. support.
. Graph rewriting has been used bybter [9] to build a
A. ConDes Project CAD-tool that supports the design of a kitchen. In contrast

The ConDes (Coreptual Deggn) project aims at elaborat-to our approach, the domain knowledge is not dynamic, but
ing a new conceptual design support for industrial CAD4oolit is fixed in the specification. In [10][11], graph grammars
To provide more adequate tools for the early design phasee used to find reasonable positions of rooms and to generate
we introduce and implemenmbomobjectsand roomlinks[1] an initial floor plan as a suggestion for the architect. In][12

functional requirements for a building, especially theffita checks identify conceptual design errors, their functibna
flow inside, are formalized in UML use case and UML activitys shown by way of example, too. Finally, two screenshots
diagrams. These diagrams are then mapped onto a room grdepict the developed tool support that abstracts from the
representing an abstract structure of the future building. internal graph structure to give a user-friendly repressior.
contrast to our approach, all knowledge is fixed in the PR a summary, the expressiveness of the provided knowledge
GRES specification and can only be defined by a computifinition language and their complexity is discussed, and a
scientist. Moreover, this approach focuses the formadinadf outlook of future extensions is given.

the buildings’ usage. The approach presented in this paper i

more general and allows knowledge formalization for défer Il. KNOWLEDGE FORMALIZATION SYSTEM
domains. ARCHITECTURE

_In [13], an informative overview on knowledge representa- knowledge formalization in conceptual architectural desi
tion is given. Five distinct roles are |dent|f|¢d apd dis@ass oyers rules and restrictions concerning the internal roega

to explain the term knowledge representation indepenglentl,, of a building, e.g. the equipment and arrangement of
from an actual knowledge representation. A lifecycle fqfooms, the aggregation of rooms to cohesive areas, or the
knowledge —definition, use, adaption, and reuse- is destriby|owed respectively restricted traffic flow inside a builgli

in [14]. A distinction is made here between internal anghe architect has to resolve the difficulty of developing a
external knowledge and the lack of meaningful formalizatiozonceptual sketch of the future building which is consisten
methods is identified. Finally, the CoMem system, a kingh 4| defined restrictions. Further analyses, e.g. statiess

of knowledge browser, is demonstrated without describing climatisation calculations, are elaborated by civil ieegrs

the internal realization. [15] engages in an empiric SUIVey, |ater phases. These analyses are based on a detailed con-
According to this survey, a visual representation of knalg® ¢ctive sketch, with a complete specification of all miater
using e.g. semantic nets [16] is more clearly comprehemsibl,g components. In our work, we concentrate on the support

than a textualirepresentation like e. 9. preQicate logic. of the conceptual design phase, in this paper especiallpen t
The semantic web approach [17] tries to improve the qua“%owledge formalization part.

of information in the world wide web. This approach forms the
basis of RDF [18], a language developed especially for mog: Visual Knowledge Formalization
eling knowledge. In [19], an ontology definition specificati We follow a dynamic knowledge formalization approach
is presented that supports expressive knowledge repetent i.e. a domain expert, an architect or a civil engineer sdhoui
f_or multiple ontologies. The approgch is based on the sem .r(]a'.able to formalize’ his personal domain knowledg;e. In a
::::zilig(i:gﬂol_rn[;?]].kx\(l)ivll:ascjzg :st\I/_eIIIIk?)J?\I/Dvree?rigtlitrlr?gn?:tf\?vrit ixed approach, the domain knowledge would be formalized
o) - . by the tool developer as an internal part of the source code.
specifically tailored graphs and achieve a higher EXPreSS our scenario knowledge formalization is done in two step
ness. We further provide concepts for knowledge formabnat '

. . o . First, the basic concepts, i.semantic objectgelations and
optimized to the addressed architecture and civil enginger __". : :)
: : . attributes have to be defined in domain ontologyBased on
domain, and not for arbitrary knowledge. Finally, we depelo

consistency analyses checking the conceptual design sagamls conceptualization [21fesign rulesare used in a second

the defined knowledge by complex graph-transformations. Step to insert conce ptual relevant k.n owledgg. The ontodgy
well as the formalized knowledge is specific to one class of

C. Paper Overview buildings, both are valid for any project of the correspoigdi

In this paper, the graph-based knowledge specification pglr:tlss. Th(.e domain ontology [22] is prestructured in thregda
of the ConDes project is presented. In the next section, V(\a/eements.
introduce the system architecture to provide an oriematio * Semantic objects describe the conceptually relevant
about the parts concerned in this paper and their contekeint ~ functional entities in architectural design,
complete project organization. A parameterized and lajere Relations describe connections between semantic ob-
PROGRES specification is presented which allows for crgatin ~ JECtS,
and processing a host graph, containingemain ontology . Attributes. desgribe necessary equipment or properties of
and design rulesboth dynamic at tool runtime. Furthermore, ~ @ Semantic object.
the motivation for dynamic knowledge specification is dis- Semantic objects are defined by the knowledge engineer at
cussed. The following main part of the paper describest@ol runtime for one class of buildings. We support the krrowl
graph-based specification for dynamic knowledge procgssiedge engineer in developing the domain ontology by progidin
based on PROGRES. By way of the dynamic approach, we disedefined fundamental concepts for conceptual architctu
tinguish different kinds of instantiation mechanisms, BRO- design. These conceptbuilding site building, storey area,
GRES node type instantiation and the dynamic instantiaifonroom, andsectionhave invariant semantics, independent from
ontology elements. In the following section, some desidasu the class of buildings. They, as well as their aggregation
concerning a conceptual building design are presented lpy walation, are fixed in the ontology model part of the PROGRES
of an example host graph. Graph-based parameterized desigecification (ref. figure 3).

Attribute Semantic Object Relation Attribute Rule i Sanitary Room i— Surface Area

Surface i Area M Room M Sectioni min = 10
Area

max = 15
Fixed Ontology Model — Predefined Terms Relation Rule i Lounge i— Staff Access —i Car Repair i
Dynamic Domain Ontology sroMult = 1
Garage Garage Garage trgMult = 1..5
Surface Room Access
Area T iCustomer Room i— Customer Access —i Car Repair i
Customer Sanitary Staff || Customer sreMult = 0
Room Room Access || Access trgMult = 0
" . A Handicapped .
Lounge| | Contact || Exposition Toilet Cardinality Rule Toilet Cardinality
T min =1
Men’s | |Handicapped| | Women’s max =3
Toilet Toilet Toilet

Fig. 2. Example design rules
Fig. 1. Cutout of domain specific ontology

relation between the customéwsungeand thecar repair. The

The new defined semantic objects are the fundamen'i‘élmpe_r of allowed con.nections is specialized by multipfici
components of the design rules. Their definition requires sg€strictions of the reIathn: Each lounge has to be con@ecte
cialized domain knowledge. The conceptual relevant attei by the staff access relation to at least one and at most five car
and relations are defined analogously. Figure 1 depicts'&Par rooms. For the second relation rule_the multipksitare
cutout of the (fixed) ontology model and a sample domafpecified to be zero. Thus, the rule forbids customer access

ontology, specific for car-garages. The predefined ontolofpM @ny customer room to a car repair room. Finally, the
model elementroom is used to define the semantic Objecgardmallty rule at the bottom of figure 2 demands at least one

garage roomas a root node for the domain ontology. Thé&nd at most three handicapped toilets to be installed irtbiele
semantic objectsustomer room sanitary room and their 9arage. , L

subclasses inherit frorgarage room In addition, there is an _ 1he abstract syntax [25] depicted in figure 2 serves for
attribute surface areaand a relationaccesspredefined. The illustrating the intemal structure of design rules. A more
relationaccesss used by the knowledge engineer to define 4Ser-friendly concrete syntax is provided by the visual,too
customer accesand staff access presented in section V.

The definition ofdesign rulesis based on two parts. OneB. System Architecture

part isruntime dynami@nd consists of the elements defined in Graphs as a general data structure allow for storing the
the domain ontology. The second part, namelydasign rule needed information for our knowledge formalization apptoa
mode] is fixed in the PROGRES SpeCificatiOI’l. It consists the graph rewriting System PROGRES provides the pos&bmt
predefined types of design rules, eagtribute rules relation tg specify a graph schema for defining a valid class of graphs.
rules andcardinality rules Attribute rules allow for defining Graph transformations are specified to build-up and modify a
properties for one semantic object, e.g. a size restriadion graph at runtime (host graph). In this way, we develop purely
the demand respectively the prohibition of certain equipme graph-based programs, all functionality is realizedgsgph
Relation rules demand or forbid an interrelationship bemetests graph transformationsand control structures provided
semantic objects, e.g. the access between two rooms. Ga%f'the PROGRES language. All program data is stored in
dinality rules restrict the number of occurrences of semangyraph nodes and edges. To execute these graph-based pro-
objects in the building design. Further rule types (agdiega grams we use the UPGRADE framework which provides the
rules, complex path rules, etc.) and advanced conceptsi{muynctionality to represent and layout graphs, and to exethe
plicity restrictions, complex and runtime dynamic expiess, graph transformations defined in PROGRES. The UPGRADE
etc.) are available, but not covered in this paper. See [3B], framework is highly extendable and customizable. In our
for further information. project we extend it to the needs of knowledge formalization
Four examples of basic design rules are depicted in theirThe complete project scenario consists of two parts, the
abstract syntax in figure 2. The attribute rule depicted wgtm knowledge formalization part on the one hand and the con-
expresses a restriction of the surface area for sanitamypspo ceptual design part on the other hand. We combine both
which has to be between 10.0 and 15.0 sgm (ref. [24]). Loofarts by checking the conceptual design against the fozxawhli
ing at the domain ontology (figure 1), one can identify fouknowledge. Thesdesign checkare graph-based as well, they
semantic objects inheriting from sanitary room. Corresfiay notify the architect if his sketch violates the given regtons.
to this inheritance hierarchy, the attribute rule is auttoadly The knowledge formalization part is structured in a multi-
valid for all four subclasses as well. Figure 2 further depiclayered graph specification. Based on the PROGRES language,
two relation rules. The first relation rule demandstaf access the PROGRES specification is structured in four layers that

PROGRES Language functionality of the base package, specialized graph némtes
N domain ontology elementsnd for design rule elementare
Base P'ackage defined. Furthgrmore, the differgnt typesdm‘sign rulege. g.
attribute, relation, and cardinality rules) are fixed herae
knowledge specification package is furthermore fundanenta
for the design checking package (not depicted) implemgntin

Knowledge Specification Package

Conceptual Design Package

uoleonoadsg
SIUO0¥Ud

Ontology Model Package ‘ ‘ Design Model Package the consistency analyses
' T Up to here, the PROGRES specification does not contain
Domain Ontology o any domain specific information, it could be used for knowl-
Specific to one class | «Q ope . . .
of buildings N 8 edge specification from several domains. To provide a more
N Design Rules = adequate support for the domain of conceptual design ih civi
— N Specific to one class engineering, we fixed basic architectural knowledge inside
1‘ static instantiation of buildings h f . h hl d | . d . h |
<— — runtime instantiation the specification, thoroughly modularized in thenceptua

design packageBasic concepts (area, room, section, etc.), and
Fig. 3. Multi-layered system architecture for dynamic knedde formaliza- fundamental calculations (e. gur face = width * length,
tion volume = sur face x height, etc.) are predefined here to give
the knowledge engineer a reasonable basis for the elatworati
of domain knowledge. Additionally, more powerful consis-
stepwise encapsulate realization details and provideenigh!ency analyses are possible using the domain specific base
level functionality. The complete specification does nattain Knowledge.
any domain knowledge specific to a class of buildings, but it The bottom layer of the PROGRES specification is subdi-
provides the functionality to formalize domain knowledge avided into two parts. Thelomain ontology model package
tool runtime. The approach is parameterized in two perspdor ontology definition, it provides all functionality to tiee,
tives: first, the domain ontology (see figure 1) is not fixed inlassify and aggregate semantic objects, and to specify the
the PROGRES graph schema, it is created at runtime byneeded attributes and relations. The second part condists o
knowledge engineer. This way the ontology can be designé design rule model packaghat contains all functionality
specific to a certain class of buildings and specific to a rertdo define design rules, based on the domain ontology and on
knowledge sub domain, e.g. fire prevention or other legdie predefined design rule types. In contrast to the knowledg
restrictions. Second, the actual domain knowledge (seeefigspecification package, which defines the basics for knowledg
2), can be defined at runtime in terms of design rules. formalization, the concepts defined in this layer are more
Looking at figure 3, the initial point of the system architecabstract and allow a comfortable handling.
ture is thePROGRES languagend its provided expressiveness Corresponding to the bottom layer of the PROGRES spec-
to describe and modify arbitrarily attributed, node- andeed ification, the host graph is also sectioned in two main parts.
labeled graphs. At our department, PROGRES is used One part is used to store the domain ontology, a second part
several projects from diverse application domains (ptojet store design rules. Both parts are developed at toolmenti
management, telecommunication, etc.). and specific to one class of buildings e. g. car garages. bgoki
The most general package of the specification is cdlkesk at the bottom of figure 3, this separation is represented by tw
package it realizes the fundamental parts. First, the baslioxes. The ontology elements in the host graph, depicted in
types for modeling (semantic object, attribute and retgtand the left box, are instances from PROGRES node types defined
their relationships in the graph are defined in basic graph in the domain ontology model package. This part describes
schema Because of the two-phase knowledge formalizatidhe common,static PROGRES instantiatiomechanism, its
approach auntime instantiation mechanisis needed. This consistency is ensured by the PROGRES runtime environment.

mechanism allows to build-up the domain ontology and to The design rule elementsiepicted in the right lower box,
instantiate its elements for defining design rules. To be &bl are also instances from PROGRES node types, which are
dynamically develop object-oriented structured ontasgia defined in the design rule model package. Up to here, these
mechanism to define mintime-dynamic inheritance hierarchyelements are still unspecific placeholders for storing giesi
andruntime-dynamic aggregation relationshipge realized in rule elements in the host graph. The assignment of design
the base package. Finally, some basic operations for mainigles to the previously defined, domain specific concepts is
nance and graph queries of the runtime graph are providgstablished by way aissociating ontology elements to design
in the base package. Because these features are usednflef elements Because both parts —ontology elements and
the conceptual design support as well, the base packageidsign rule elements— are runtime dynamic in the host graph,
independent from knowledge specification. the assignment cannot be realized through the PROGRES
The second layer of our system architecture comprisemtime environment, but is manually implemented within
the knowledge specification packagm® fix the specifics of the PROGRES specification. We call this mechanismtime
the knowledge formalization approach. Using the definetynamic instantiation

ONTOLOGY | 1 . . 0.n | INSTANCE
instance_ of

_OBJECT _OBJECT
IS.
L 0.1, 1 1 o
<——to_re .
ONTOLOGY ONTOLOGY |, | ONTOLOGY INSTANCE INSTANCE | —to_atir— po T2 NCE
omnl_ L semanTic _ATTRIBUTE _RELATION | (| SEMANTIC y
-n| = OBJECT 0. _OBJECT

Fig. 4. Base package implementing the dynamic instantiatidreritance, and aggregation

1. BASICS OF THEPARAMETERIZED SPECIFICATION elements. When an instance of an ontology element is created,
APPROACH the type of the new node is automatically set correctly atcor

In this section we describe the basics of our specificatio'rrfg to the instantiated ontology elemem' The reason noS@ u

which are fundamental for our approach. The PROGR ere_”‘ types oinstance,of-edge_s in the graph s_chema_ls_to

graph schema for knowledge formalization consists of sadavelr e[erRg (anI(?)IrEeSCt(;gr?ssfgr?nnadti;?1sa\flglllivyr?mt/h(izee(élﬁggergfz(\)/gi

layers as discussed in the previous section. Here, we conct %u h the instance relationship is ongan abstracgt Ie.vdhén i

trate on thebase packagémplementing the runtime dynamic 9 Ship

instantiation mechanism. The base package is indepen rﬁa}ph schema, the type equivalence can be guaranteed ihroug

e . the concerned PROGRES transformations.

from the knowledge specification, in the complete scen#eo t

provided functionality is also used for the conceptual giesi B. Ontology Part

part of our project. Therefore, the presented concepts tare

4 the ontolo art and instance part there is a root node
the level of general graph nodes. 9y P b

ONTOLOGY_OBJECT and INSTANCE_OBJECT, respec-
tively. On both sides, the root node is further specialized
into the three basic concepsemantic objegtrelation, and
Figure 4 shows two parts in the graph schema. The Igfftribute
hand side of the figure depicts the graph schema nodes hergn the ontology side, there aigA-edges attached to the
used for theontology elementshe right hand side of the figure nodes for semantic objects and relations. These edgeseue us
depicts the graph schema nodesdesign rule element8oth to implement inheritance in the dynamic domain ontology.
partS are Connected, Via the instantiation relation, tm:alﬂe An isA_edge connects the node of a Specia"zed Concept to
design rule elements are instances ofdhelogy elementsn the node of a more general one. The multiplicity shows that
the following, this runtime dynamic instantiation mectemi we do not allow multiple inheritance for simplicity reasons
is explained in more detail. In contrast to relations and attributes, semantic objeats c
There are two root nodeNTOLOGY _OBJECT for the also be aggregated. Using runtime dynamic aggregation, the
elements in the domain ontology, atdSTANCE_OBJECT knowledge engineer can develop complex semantic objects,
for the design rules. Thiastance_of-edge, connecting the two composed of other semantic objects. The runtime dynamic
root nodes, realizes the runtime instantiation relationvben aggregation is realized by a reflexN@ONTAINS-relation,
ontology elements and design rule elements. Each time a ng@ring the encapsulated semantic objects, and their pticiti
instance object is created, e.g. a certain semantic olife=t, jty. One can see that each complex semantic object can tonsis
instance_of-edge is established to the corresponding semanggarbitrary many semantic objects, analogously each séman

object in the domain ontology. We call this mechanism, denbject can be part of arbitrary many aggregations.
picted as dashed line in figure 3, runtime dynamic instantiat

(see previous section). This instantiation has to be done Gt Instance Part

runtime, since the domain ontology as well as the desigrsrule On the instance side of the graph schema (right hand

are elaborated at tool runtime and stored in the PROGRES hsiste of figure 4), the three basic design rule elements

graph. and their connections are implemented. These elements
According to the graph schema, the instance relation is reve linked up to describe the three different design rule

typed, i.e. an attribute could be an instance of a relatiah atypes (ref. figure 2). An attribute rule consists of oli¢

so on, because it would be possible to connect them wWBTANCE_SEMANTIC_OBJECT, connected with ao_attr-

aninstance_of-edge. The type equivalence between ontologgdge to oneINSTANCE_ATTRIBUTE; it defines a valid

elements and instance elements is ensured by means ofrdrege of values for the attribute. Relation rules consist

PROGRES transformations, for the creation of these instaraf two INSTANCE_SEMANTIC_OBJECTS, interrelated by

A. Runtime Dynamic Instantiation

an INSTANCE_RELATION and correspondingo_rel- and to the ontology. In the knowledge specification package (ref
from_rel-edges. According to the edge multiplicities, eacfigure 3), design rules are extended by an additional node,
INSTANCE_SEMANTIC_OBJECT is related to only one to explicitly identify each rule. Thisule nodeis connected
relation. This design decision was made to ease consistebgya to_concerns-edge to one semantic object. The integer
analyses and knowledge modularization. attribute rule topmost is composed of

As already mentioned, the graph schema depicted here i§ 5 rule noddAttrRulel
part of the base package. The cutout of this graph schema ig 5 semantic objecBanitaryRoom
extended in all following packages to complete the knowéedg , an integer attributSurfaceArea

specification approach. « two constant integer nodes describing the range of the
attribute

To Iillustrate the introduced functionality, figure 5 de—The valid range of values is set to be between 10 and 15 sam,
picts an example host graph. The upper part of the figu ch yalugs are reprgsented each by one nod'e..More EXEressiv
shows a cutout of an example domain ontology at to \inctionality is provided, too. For example it is possibe t
runtime. Six ONTOLOGY _SEMANTIC_OBJECTS are de- define runtime dynamic integer terms for attribute values
fined, structured by inheritance starting froRoom. Fur- (ref. [3]). To concentrate on the graph technical realrawe
therrr’wre tWOONTOLOGY _RELATIONS and oneONTOL- restrict ourselves here to the basics. Looking again at the fi

OGY_ATTRIBUTE are shown. The lower part of the hOSpesign rule, the runtime dynamic instantiation is realibgd
graph shows the runtime representation of some design. ruﬁ? instance.of-edge, e.g. between the sanitary room in the

D. Host Graph Example

Their connections to the corresponding nodes in the onyolo omain ontology anql the sanitary room as a part of the design
are established by way dfistance_of-edges from the graph le. The other de§|gn rule elements are related analogousl
nodes in the design rules part to those representing fffeth€lr corresponding ontology elements.
ontology elements. The concept ofeference rulesmplements thenheritance
The design rule part depicts four rules: one integer atiibi®’ "UleS based on inheritance in the domain ontology. In
rule (AttrRulel), two reference rulesRefRulel, RefRule2), e ontology part of figure 5SJoilet is a specialSanitary-
and one cardinality ruleGardRulel). A reference rule is au- R00M- Thus, in the design rule part, the integer attribute

tomatically derived for specialized semantic objectspediog rule concerning the surface area is inherited. A refere_nce
rule is automatically created and connected to the original

rule by ato_rule-edge. Reference rules are linked to a chain,

— . A : T e o
depending on how many specialized semantic objects exist in
: o 754, 5‘>

the ontology. In the example, there is one further specittn

L]
: Ec.,smmemoom] { SanitaryRoom j [StaffAcce_ss j of Toilet to HandicappedToilet. Accordingly, there is another
: i Zem® J 7K SemO e reference rule for the surface area attribute connected to
] .
; bt e the first reference rule. If needed, reference rules can be
: dkMRsemo) ¢ EKMESemO overwritten to set more adequate values. In that case, #ia ch
: instanco of (FiandicanoedTor of reference rules is broken and a new rule is created.
: : AiESe) At the bottom of figure 5 an example of a cardinality rule
ansteneecol oo - S— :

[]

.

: is shown. The ruleCardRuleldemands at least ortdandi-
-- -1~ cappedToilet to be available in the building. The cardinality

.

Domain Ontology E
L)

Design Rules H
H

.

L}

range is set by a constant integer (1) and the star literatbo(*)
R L express an unlimited upper bound.
to_concerns -
aClAttrRu/ﬂ} SurfaceArea | | " IV. CONSISTENCYANALYSIS
: K_IAttrRule oot : K_IAttr © max
:‘_—L In this section, we describe the benefits of the formalized
_ __________________ instance_of knowledge when .checking a c;onceptugl sketch. Based on
| K ReRue :K_SemO graph transformations, we realize consistency analysat th
Lo rule identify rule violations and inform the architect about gibte
t ----_----_---------in.s'.anc.e;o.f, design errors. In the conceptual design part of our project
: efRule B em . .
N B we develop a graph representation for storing conceptual
instance.of sketches, based on semantic objects, relations and &sjbu

HandicappedToilet
: K_SemO

too. The consistency analyses therefore work on 5|m|l_ang_rg
CaraRaio T W«me schemata. By way of example, we now present a simplified
:K_GardRule - Range W form of a consistency analysis for checking Boolean atteibu
1 K_Star

rules. The description presented here concentrates oratie b
notification mechanism and the resolving of inheritance of

Fig. 5. Example host graph .
design rules.

transformation CheckBooleanAttributes * =

A further pathcor r is used to find the correspondences be-
"KG_I_RULE 2=/ 5:KG_|_SEMANTIC_OBJECT |———{ 3:DG_|_SEMANTIC OBJECT| tween semantic objects in design (ndd) and in knowledge
to-orig_attr to_attr (node’ 2), and for attributes alike. Therefore, correspondence
TKG_ | BooleanAfitbule ———f 506 | BooeanAtrbuie] liNks between thedomain ontology for knowledgand that
one for theconceptual desigmre defined by the knowledge
vaidot(4vae = seiivaiiey €NYINEET. A separate package, not described here, pravieles
valid(self rule = '1) =] = '6:DG_{_Nofification | functionality to process these links.
Up to here, the pattern to be searched in the host graph
o semo is specified. The actual mechanism for identifying design
[LRULE} =" ZiKG | SEMANTIC_ 0B JECT] ‘3':DG"’SEgAgJ'C’OBJECT‘ errofs is realized by aestriction at node’ 5 tha’fy reguires ’
[4Ko 1 Boearhivbuie | | 556 T BocleanAibuis | the two attribu_tg vglues to be opposite. In this case, and if
o ot there is no notification node yet (crossed out nbé¢, a new
notification node is created (nod on the right hand side
of the transformation). All other parts of the graph remdie t
same as before.
Fig. 6. Design check for Boolean attribute rule Figure 6 shows théo_ori g_at t r -path to connect the se-
mantic object with the correct attribute node. This mecbm@mni
realizes the correct processing of reference rules. Thie pat

i o] covers two situations: if the rule has been defined manually,
In figure 6, a PROGRES transformation is depicted thgie rule node 1 is connected via aul e_at t r -edge with

implements the analysis of a Boolean attribute rule. Eaghe attribute node 4. If the rule is a reference rule, the path
PROGRES transformation consists of a left hand side (UPRgfiows the chain of reference rules until a manually defined
box) and a right hand side (lower box), separated by thgie is found.

symbol::=. The pattern shown on the left hand side is searchedrjgyre 7 depicts the visual definiton of the
in the host graph, and if it is found, it is replaced by they or; g.attr-path. This path always leads from an
right hand side of the transformation. The left hand side @komic rule node 1 to an attribute nodé 2, as shown in the
the PROGRES transformation in figure 6 comprises grapader of the path definition. Nodel is a placeholder for
nodes of both, the conceptual design part, and the knowledggher a reference rule, or a manually defined rule. In the firs
formalization part. The relevant cutout of the conceptughse the path o.ori g.rul e connects thereference rule
design consists of a semantic object (nod and a Boolean npogeto the firstmanually defined rule nodslong the chain of
attribute (node’ 5). Knowledge formalization in terms of areference rules. In the second case, ttoeor i g.r ul e-path

Boolean attribute rule is realized by the rule ndde which s empty, and the rule nodel is already connected with the
is connected to the concerned semantic object (n"@eand attribute node 2 by therul e_attr edge.

to a certain attribute node (nodd). In the transformation, the |, the lower part of the figure, the textual definition of the
attribute node’s connection to the semantic object is ob@ck; o or grul e path is depicted. Theo_ori g.rul e path
|nd|ref:tly by a path expressidno_ori g.attr from the rule connects two atomic rule nodes. If the start node is not a
node’ 1 to the attribute node 4. This path is necessaryeference rule, the target node is the same as the start node,
to handle manually defined rules as well as reference ruleg, it is already the original rule. Otherwise, if it is aeence

The path may consist of several reference rule edges ustil {hye. anyt o_r ul e edges are followed until a node is reached,
original rule’s attribute node is reached. The definitiortto$ nat is not a reference rule. i. e. it is the searched original

path is depicted in figure 7, as explained below.

to_notif

)
=1
e

V. VISUAL ToOLS FORCONCEPTUALDESIGN SUPPORT
To prove the feasibility of our approach supporting the

path to_orig_attr : KG_I_ATOMIC_RULE [1:1] > KG_|_ATTRIBUTE [1:1]="1 =>"2in . : .
conceptual design phase, we implemented prototype version
’1;KG7I7AT%LRULE‘ of different tools that support the definition of knowledge,
to_orig_rule to_attr the creation of actual conceptual designs of buildings, and
g\ 3:KG_|_ATTRIBUTE_RULE the design checks that analyze whether the specified rutes ar
— met. These tools, their construction process, and theigaisa
folding {'1, '3};
end: are described in this section.
path to_orig_rule : KG_I_ATOMIC_RULE [0:n] -> KG_I_ATOMIC_RULE [1:1] = A. Tool Construction Process

((not instance _of KG_|_ReferenceRule) . .
or ((instance_of KG | ReferenceRule & -to_rule->) + All the tools we implemented are created in the same

¬ instance _of KG_|_ReferenceRule)) : KG_I_ATOMIC_RULE [1:1] way. As already mentioned in the introduction, our tools are
based on the graph rewriting system PROGRES [5]. The
UPGRADE framework [6] allows to generate automatically
a basic visual prototype tool using C-code that is exported b

Fig. 7. Two paths to find the original rule

Sanitary Room

= Surface Area= 10 .15 maz 1
Lounge: Lounge S eeems 7 Car Repair: Car Repair]
Lounge Acce
e e [~[ae]
“Custorner Acces:

Graph-based
Consistency
Analysis

| [Handicapped Toilet (1..3)] [Women's Toilet |
[# surface Area =10 15 maz| [# Surfacc Area=10.15m#2 | |4 SurfaccArea=10.15m42]
i | |]

. owd
\ Handicapped Teilet: Handicapped Toilet
e e e = A [=] [Ds.

Sanduhr AN L | =

Domain Knowledge Editor [

[Men's Toilet

Fig. 8. Screenshot of the knowledge editor (left) and theceptual design tool (right)

PROGRES. This basic prototype provides only some geneeditor, which is used by a knowledge engineer to specify
base-functionality. Also the representation of the grapties design rules. The knowledge editor supports the engineer in
and edges is initially generic. To provide a tool that isavigating through the domain knowledge by providing a
customized to knowledge specification and conceptual desigisual, compact, and concise representation that is opdieni
several extensions have to be made. First, different viefes knowledge formalization of conceptual design knowlkedg
are defined so that information can be represented in tabldse design rules specified herein will be checked later again
or trees, additionally to the graph representation. Indéeel an actual building design. In the graph view of the knowledge
graph view is provided with certain filters, so that for eachditor, the different rules from figure 2 are shown. The fiog r
tool only a certain part of the entire graph is displayed. Fam figure 2 restricts the surface area of a sanitary room to be
the respective graph nodes that appear in such a cutoutbefween 10 and 15 sgm. This is represented in the knowledge
the graph, adequate node-representations are definedatso eHitor by showing the attribute surface area in the node for
the user of the tool gets an easy and intuitive access to gamnitary room together with the specified bounds of 10 and 15
information. Additionally, layout-algorithms are offefefor sgm. The arrow pointing to the right in front of that row shows
positioning the graph-nodes automatically and obtainieg that this attribute rule is newly defined for sanitary roomd a
much clarity as possible. The transformations specifiedhén tis not inherited. The first relation rule in figure 2 demanddfst
PROGRES-specification are not called directly by the userccess from the lounge to the car repair room. Customerscces
Instead all the functionality provided by the transforraa from any customer room to a car repair room is prohibited by
is encapsulated within user-friendly dialogs. the second relation rule. These rules are represented lBsedg
in the knowledge editor. The edge with arrows at its ends
B. Knowledge Formalization shows that staff access demandedetween a lounge and a

First, we take a look at the knowledge formalization par€ar repair room. The multiplicities for this relation aresal
The corresponding tools are shown in the two overlappiriiown at the ends of the edge. The edge with a circle at its
screenshots on the left hand side of figure 8. The topmd¥td shows that it iforbiddento allow customer access from a
window depicts the ontology editor, which is used by a knowfkustomer room to a car repair room. The last rule in figure 2 is
edge engineer to formalize a domain specific ontology. Is th cardinality rule. It demands that there has to be at least on
tool, semantic objects like rooms, relations like access, ahandicapped toilet and at most three. In the knowledge rdito
attributes like width can be defined. These ontology elemerihis cardinality range is shown in the node for handicapped
can be related to each other by the inheritance relation gndtgilet on the right hand side in the title row. At the bottom of
the aggregation relation. In the screenshot,sdmantic object the window, all subclasses of sanitary room are shown. Each
view is shown in the upper half and tleggregation viewin Of these nodes contains a row for the attribute surface area,
the lower half of the editor window. The ontology defined invhich is restricted to be between 10 and 15 sqm. This way the
the depicted example is related to that one in figure 1. inheritance of the attribute rule for the surface area oftagn

The lower window in the background depicts the knowledg@0oms is visualized. The arrow pointing to the top in front of

these lines indicates that the attribute restriction iseritbd VI. SUMMARY AND OUTLOOK

from some superclass. In this paper, we presented a novel method for knowledge
formalization and processing based on graph technology. We
_ o _] motivated the need for knowledge formalization in the domai
Our tool for creating conceptual building designs is showgf early architectural design and illustrated our idea with
on the right hand side of figure 8. This tool is used by agyme example rules. A multi-layered PROGRES specification
architect in the conceptual design phase of a specific mgldiyas introduced as basis for understanding the following pa-
design process. Itis a prototypic CAD-system that provitles rameterized specification approach. The relationship detw
functionality for creating coarse-grained designs, i.&signs 5 gomain ontology and predefined design rule types were
on a conceptual level. Using this tool, conceptual elemenjgcyssed and a runtime-dynamic instantiation mechaniasn w
for the respective building and the relations between tle$se ¢ ,own on some hostgraph examples. The basic mechanism
ements within the building can be defined. The representatig,, consistency analysis, checking the formalized knogted
is related to so calledubble diagramg$24] that are extensively gqainst a conceptual design was depicted. Finally, the- user

used by architects during the early phase of architectufgengly tool support, abstracting from the hostgraph eepr
design. This way, an adequate support for the conceptdghiation, was demonstrated.

design phase is provided. _)

In the example depicted on the right hand side of figure 8; Discussion
a first simple sketch of a building is shown in our tool. We In the field of knowledge formalization, one can distin-
defined a lounge with a surface area of 40 sgm, shown in theish between internal and external knowledge specifigatio
middle of the graph view. Two toilets are accessible frons thj4]. Using the internal specification approach, the congplet
lounge. One general, not further specified type of toilet adhowledge is formalized in terms of algorithms and data
another toilet for handicapped persons, which is adjacentdtructures within a computer program and fixed at tool ruatim
the first toilet. Furthermore, a contact room is adjacenh#® tKnowledge formalization has to be done by a programmer in
lounge. A car repair room is accessible from the lounge fapoperation with a domain expert. In most applications thase
both staff and customers. on graph grammars, the domain specific underlying knowledge

. is implicitly stored as a fundamental part of a graph schema

D. Design Checks and graph rewriting rules. Using the PROGRES system, such

The conceptual design tool provides the functionality ta graph transformation specification can be developed in a
check a conceptual building sketch. This means that tdeclarative, visual way [26]. Thidraditional specification
conceptual design developed by an architect is checkedstgamethodis applicable, if the complete domain knowledge is
the design rules specified by a knowledge engineer. Theailable and invariant. The tool construction process. (re
example sketch described in the previous section conta[@3]) has to be run only once and the derived visual graph-
some rule violations. First, the handicapped toilet in theased application is given to the end-user.
example design has a surface area of 8 sqm, which is todn our project, it is not realistic to assume a closed set of
small. In the knowledge definition we defined a rule thatesign rules. It is rather the goal to elaborate and evalhate
demands a surface area between 10 and 15 sgm for kalbwledge, relevant to conceptual design, in many itenatitt
sanitary rooms. As the handicapped toilet is a sanitary roois moreover not realistic to expect a fixed domain ontology th
according to the definition in the domain ontology, it has toomprises all concepts needed for the afterward elaboratio
have a surface area between 10 and 15 sgm. Second, indhknowledge in the general context of civil engineeringitBo
conceptual design, customer access is allowed between liage to be done by a domain expert, e. g. an architect or a civil
lounge and the car repair room. According to the defineghgineer. In general, these experts will not be familiathwit
rules, no customer access is allowed between a customer ragrnaph rewriting, the PROGRES system and its tool construc-
and the car repair room. As the lounge is a customer rodion process. Therefore, we follow tiparametric specification
(refer the ontology definition), this rule is violated. Thde method i.e. not only the design rules, but also their basic
violations are visualized in the conceptual design editpr lkomponents can be developed by the knowledge engineer at
boxes containing an exclamation mark, a meaningful errtwol runtime. All graph-based realization is completelgiden
message can be displayed optionally. from the knowledge engineer, instead he can work with user-

The rule violations visualized in the conceptual desigr tofriendly graphical interfaces.
are advices to the architect to review the conceptual designfwo aspects demonstrate the effort providing such a dy-
at the highlighted parts. It is not mandatory for the araftitenamic knowledge processing. First, the complexity of the
to eliminate all notifications and warnings in the design, asiderlying graph specification is higher because of the pa-
we do not intend to constrain the creativity and personedmeterization needed for processing all domain unspecific
responsibility of architects. These notifications areeath be concepts. Second, the expressive power of the knowledge
understood as hints to problems that might arise later whiarmalization is restricted to a limited set of predefinediga
the designed building is actually to be built and the retnits rule types rather than providing the complete breadth of the
from legal, economical, and many other domains are not MBROGRES language. Nevertheless, in our opinion, there is

C. Conceptual Design

no alternative to the dynamic approach, due to the above]
discussed nature of knowledge formalization.
B. Future Work R

There are two main extensions to the current state of
our project that are planned for the near future. The firgtr)
extension is the enhancement of the expressiveness ofndesi%
rules. Design rules are atomic at the moment and it is n
possible to combine them to complex constructs. When a
conceptual design is checked against these design edel, [©]
of them has to be fulfilled. Rules with practical relevance,
for example lawful regulations, are often complex in thagyth [10]
are composed of alternative, conditional, or negated rdles
represent complex rules in our system, the atomic desigs rU|!11]
will be extended to complex design rules which are composed
of other design rules using Boolean operators as connectors
By Boolean operators the knowledge engineer has intuitive
means to represent and build-up complex design rules usjmng
our tool.

The second main extension concerns the modularizati%r%]
of knowledge and the integration of knowledge modules. [it4]
is unrealistic to assume that the complete knowledge rep-
resented by the design rules is acquired and formalized by
one single knowledge engineer at once. So, it is our gdab]
to open up the opportunity to store knowledge in different
modules. Therefore, the domain ontology as well as the desigg)
rules will be modularized, reasonably subdivided accaydin
to knowledge subdomains. Modules will be layered, so &7]
will be possible to define for example some base knowledg._%]
about industrial buildings on the topmost layer and to defires]
specialized knowledge, like knowledge for car-garages, ?2%]
some lower layer.

These future extensions will enhance the practical usgbili21]
of our approach. Even when the developed tools are rattfg]
research prototypes than easy usable applications, wethape
demonstrating the concepts will contribute to the accegan
in the architecture and civil engineering domain.

[23]
ACKNOWLEDGMENT

The authors gratefully acknowledge the support of this
project by the German Research Foundation (DFG) within the
scope of the priority program "Network-based Co—operati\,@4
Planning Processes In Structural Engineering” (SPP 1103)[25]

REFERENCES

[26]
[1] B. Kraft and G. Schneider, “Semantic Roomobjects for Cpteal
Design Support: A Knowledge-based Approach,’Rroc. of the 11th
Intl. Conf. on Computer Aided Architectural Design Futuf@&sAAD [27]
Futures '05) B. Martens and A. Brown, Eds. Springer, 2005, pp.
207-216.
Graphisoft, “ArchiCAD,” http://www.graphisoft.comfpducts/archicad/
(06/09/2005), 2005.
B. Kraft and N. Wilhelms, “Visual Knowledge Specificatidor Con-
ceptual Design,” irProc. of the 2005 Intl. Conf. on Computing in Civil
Engineering (ICCC 2005).. Soibelman and F. Pena-Mora, Eds. ASCE
(CD-ROM), 2005, pp. 1-14.
P. Jackson|ntroduction to Expert System8rd ed.
1998.

(2]
3] [28]

[4] Addison Welsey,

] E. Neufert and P. Neufertirchitects’ Data 3rd ed.

A. Schirr, “Operationales Spezifizieren mit programmierten Gragster
zungssystemen,” Dissertation, Aachen University of Tetdmyo Wies-
baden, 1991.

B. Bohlen, D. &ger, A. Schleicher, and B. Westfechtel, “UPGRADE:
A Framework for Building Graph-based Interactive Tools,f. 4eNCS
2505, A. Corradini, H. Ehrig, H.-J. Kreowski, and G. RozemheEds.
Springer, 2002, pp. 270-285.

C. Alexander, S. Ishikawa, and M. SilversteiA, Pattern Language:
Towns, Buildings, ConstructionOxford: Oxford University Press, 1977.
U. Flemming, “Case-based Design in the SEED SystemKriowledge-
based Computer-aided Architectural Desigh Carrara and Y. E. Kalay,
Eds. Elsevier, 1994, pp. 69-91.

H. Gottler, J. Ginther, and G. Nieskens, “Use of Graph Grammars to
Design CAD-Systems,” irGraph Grammars and their Application to
Computer Sciengeser. LNCS 532. Springer, 1990, pp. 396-409.

A. Borkowski, A. Schiirr, and J. Szuba, “GraCAD — Graph-based Tool
for Conceptual Design,” ser. LNCS 2505, A. Corradini, H. ighH.-J.
Kreowski, and G. Rozenberg, Eds. Springer, 2002, pp. 36B-37

A. Borkowski, E. Grabska, and E. Nikodem, “Floor Layouedign
with the Use of Graph Rewriting System PROGRES,"Aidvances in
Intelligent Computing in Engineering, Proc. of the 9th InHG-ICE
Workshop M. Schnellenbach-Held and H. Denk, Eds. Darmstadt: VDI
Fortschritt-Berichte, 2002, pp. 149-157.

J. Szuba, “Graphs and Graph Transformations in Desigmgineering,”
PhD thesis, Darmstadt University of Technology, 2005.

R. Davis, H. Shrobe, and P. Szolovits, “What is a Knowkedgepre-
sentation?”Al Magazine vol. 14, no. 1, pp. 17-33, 1993.

R. Fruchter and P. Demian, “Knowledge Management for B&ua
Proc. of the Conf. on Distributing Knowledge in Building BCW78
2002) P. Christianson, Ed. Denmark: Aarhaus School of Architegtu
Juni 2002.

J. T. Nosek and I. Roth, “A Comparison of Formal KnowledgpResen-
tation Schemes as Communication Toolsfl. Journal of Man-Machine
Studies vol. 33, no. 2, pp. 227-239, 1990.

J. Sowa,Priciples of Semantic Networks San Mateo: Morgan Kauf-
mann, 1991.

T. Berners-Lee, J. Hendler, and O. Lassila, “The Sermakteb,
Scientific Americanno. 5, 2001.

S. PowersPractical RDE Sebastopol, CA, USA: O'Reilly, 2003.
DSTC Pty Ltd., “Ontology Definition MetaModel — Initig@ubmission,”
http://www.omg.org/docs/ad/03-08-01.pdf (03/04/20@F)03.
Object Management Group, “Unified Modelling
http://www.uml.org/ (06/09/2005), Mai 2004.

G. Stumme and R. Wille, Eds.Begriffliche Wissensverarbeitung
Springer, 2000.

R. D. A. Falbo, G. Guizzardi, and K. C. Duarte, “An Ontglcal
Approach to Domain Engineering,” ifProc. of the 14th Intl. Conf.
on Software Engineering and Knowledge EngineeriRg A. Falbo,
G. Guizzardi, A. C. C. Natali, G. Bertollo, F. F. Ruy, and P. [&an,
Eds. New York, NY, USA: ACM Press, 2002, pp. 351-358.

B. Kraft and N. Wilhelms, “Interactive distributed Kndsdge Support
for Conceptual Building Design,” irfProc. of the 10th Intl. Conf. on
Computing in Civil and Building Engineering (ICCCBE;X). Beucke,
B. Firmenich, D. Donath, R. Fruchter, and K. Roddis, Eds. Bash
Universi@t Weimar, 2004, pp. 1-14.

Language,”

Oxford, Great
Britain: Blackwell Science, 2000.

M. Erwig, “Abstract Syntax and Semantics of Visual Laages,”
Journal of Visual Languages and Computingl. 9, no. 5, pp. 461—
483, 1998.

A. Schirr, A. Winter, and A. Zindorf, The PROGRES approach:
Language and Environment Singapore: World Scientific Publishing
Co., 1999, vol. 2. Applications, Languages, and Tools, @7-450.

B. Kraft and M. Nagl, “Parameterized Specification of Ceptual
Design Tools in Civil Engineering,” inProc. of the Intl. Workshop
on Applications of Graph Transformation with Industrial IReance
(AGTIVE '03) ser. LNCS 3072, J. Pfalz, M. Nagl, and Bolden, Eds.
Springer, 2004, pp. 90-105.

A. Corradini, H. Ehrig, H.-J. Kreowski, and G. RozenypeEds.,Proc.
of the 1st Intl. Conf. on Graph Transformation (ICGT'02gr. LNCS
2505. Springer, 2002.

	Text1: Proc. of the 39th Hawaii Intl. Conf. on System Sciences (HICSS'06)
ed. Eileen Robichaud, Kauai, Hawaii, Seite 1-10, IEEE Press (CD-ROM), 2006

