
Visual Knowledge Specification For Conceptual Design:

Definition and Tool Support

Bodo Kraft Manfred Nagl
RWTH Aachen University

Abstract

Current CAD tools are not able to support the conceptual design phase, and none of them provides a consistency

analysis for sketches produced by architects. This phase is fundamental and crucial for the whole design and

construction process of a building. To give architects a better support, we developed a CAD tool for conceptual

design and a knowledge specification tool. The knowledge is specific to one class of buildings and it can be

reused. Based on a dynamic and domain-specific knowledge ontology, different types of design rules formalize

this knowledge in a graph-based form. An expressive visual language provides a user-friendly, human readable

representation. Finally, a consistency analysis tool enables conceptual designs to be checked against this formal

conceptual knowledge.

In this article, we concentrate on the knowledge specification part. For that, we introduce the concepts and

usage of a novel visual language and describe its semantics. To demonstrate the usability of our approach, two

graph-based visual tools for knowledge specification and conceptual design are explained.

Key words: Architectural Design, Conceptual Design, Knowledge Specification, Visual Language, Graph Transformation

1. Introduction

The difficulty and complexity of construction

processes coupled with the wider and increasing
distribution and interaction of the players involved
in these processes make some changes necessary.
Current existing CAD tools are not able to provide
adequate support for the process. There is no tool

available supporting the conceptual design phase,
which is fundamental and crucial. Especially, none
of the currently available CAD tools enables a con-

Email addresses:

kraft@i3.informatik.rwth-aachen.de (Bodo Kraft),
nagl@i3.informatik.rwth-aachen.de (Manfred Nagl).

sistency analysis of sketches produced by archi-
tects.

To provide architects with better support in con-
ceptual design, there is a need for novel CAD tools
abstracting from constructional design. Rather
than thorough and detailed plans, conceptual
design focuses on the functionality of buildings
as a whole, consisting of various functional and
interrelated entities. A resulting and consistent
conceptual sketch forms the basis of all following
design stages.

This abstraction allows the identification of the
organizational configuration of a building and en-
sures its usability. Even if the conceptual design

Preprint submitted to Elsevier Science 11 October 2006

phase is performed at the beginning of a construc-
tion process and the degree of details remains
low, a large number of constraints have to be
regarded, arising from various domains, such as
legal aspects, technical, functional, and financial
restrictions. The majority of these restrictions are
specific to a class of buildings, e.g. office buildings,
car garages, or residential buildings.

Currently, after finishing the conceptual design,
architects manually transfer their sketches, usually
in the form of hand drawings, into a CAD tool. The
reason is that CAD tools can only handle construc-
tive design information, e.g. used materials, con-
structive elements like walls and doors, and their
exact dimensions. Thus, the valuable conceptual

design information, i.e. all decisions about the or-
ganizational structure of the building, gets lost.

The ConDes project (Conceptual Design) at
the Department of Computer Science 3 of RWTH
Aachen University aims at novel concepts and sup-
port for conceptual design. The complete scenario
of the project comprises two parts.

In the top-down part, we formally specify a pro-
totype for a CAD tool, the Design Graph Editor,
that allows to sketch conceptual designs. This tool
is internally realized by graph technology [1][2][3].
A further graph-based tool, the Knowledge Graph

Editor, allows the definition of relevant conceptual
knowledge specific to a class of buildings. Knowl-
edge that has been formalized once can be used
for all building projects of the corresponding class.
The effort of formalizing knowledge only pays off
if the knowledge is repeatedly used. A consistency

analysis tool enables conceptual designs to be
checked against this defined knowledge. Notifica-
tions are given to the architect if restrictions are
violated [4]. All these graph-based tools can be
seen as research prototypes.

Even if the tools provide a graphical user inter-
face and are user-friendly, there is always a big ef-
fort to learn a new tool. For this reason, in the sec-
ond bottom-up part of the project [5], we extend

the CAD tool ArchiCAD [6] to offer new function-
ality for conceptual design and consistency anal-
ysis. Both, the graph-based conceptual sketches
as well as the graph-based conceptual knowledge
can be imported in ArchiCAD due to a common
XML-format. The formalized knowledge is then

available in ArchiCAD, an architect can immedi-
ately start developing conceptual sketches and fre-
quently check them.

In this article, we concentrate on the knowledge

specification part of the project, introducing an in-
tegrated system for graph-based knowledge speci-
fication, conceptual design, and consistency anal-
ysis [4]. The main part of the article is the de-
scription of a new visual language for graph-based
knowledge definition. We outline both, the expres-
sive power of this visual language as well as its
graph-theoretical background. To demonstrate the
usability of our approach, the above mentioned
graph-based tools are described and illustrated.

There are some topics not covered by this arti-
cle. The graph-based specification and realization
of tools is described elsewhere [7][8]. Especially,
there is a need for a parameterized specification ap-
proach [7] as the underlying knowledge is changed
or extended within a construction process. Also,
the extension of any industrial tool the reader can
find in [9]. The importance of concurrent engineer-
ing is increasing. In [10] the system architecture is
therefore extended, so that different knowledge en-
gineers can elaborate on a central knowledge base.
In the extended system architecture, also different
architects can access the knowledge base to check
their conceptual sketches. The underlying technol-
ogy is based on the CORBA platform [11].

2. Related Work

In the literature there are several approaches to
support architects in design. Alexander describes
architectural design patterns [12]. In a textual no-
tation, he defines properties and requirements for
buildings and their environment. Design patterns
are extensively used in computer sciences [13]. In
architectural design this approach has never been
formalized, implemented, or used.

When solving a design problem, the first dif-
ficulty is to get into the new project. Joedicke
identifies three different perspectives of a design
problem [14]. First, a construction-oriented per-
spective focusses on the structural system of a
new building. Second, the shape-oriented perspec-

2

tive concentrates on the creation of the outer form
and the building’s front. Finally, a functionality-
oriented perspective regards the organization in-
side the building, e.g. the required rooms, their
dimensions, and relationships. The functionality-
oriented perspective is always specific to one class
of buildings. Steinmann demonstrates that all
three perspectives already exist during the con-
ceptual design phase [15].

Most of the approaches that support archi-
tects during design use concepts from the field
of artificial intelligence [16][17]. They can be
roughly separated into evaluative and generative
approaches [18].

One form of an evaluative approach uses a knowl-
edge base to store information about a specific do-
main and design decisions made in the past to-
gether with their contexts. The system filters those
parts from the knowledge base that are important
for a current problem of the architect. Such sys-
tems support human decision and, therefore, are
called Decision Support Systems (DSS). To know
which part of the knowledge base is relevant, the
design in most cases strictly follows a predefined
process model (Case-based Design) [19]. In [20][21]
a tool is presented that works like a CAD tool
but, additionally, can identify the functional en-
tities in a CAD sketch. Furthermore, it checks a
sketch against knowledge. However, the tool is not
implemented yet. The aim of [22] is to extract all
relevant information, concerning legal restrictions,
from a general 3D CAD model. This information
should be used to check future sketches. In the
ConDes project the formal and explicit represen-
tation of architectural knowledge as a basis for the
consistency analysis is an essential part.

Other forms of evaluative approaches do a tech-
nical analysis of the constructive design. Whereas
simulations, like daylight analysis or stability anal-
ysis, just use numerical calculations, other aspects
– as the fulfillment of customer needs – again make
use of knowledge bases. In [23] a new approach is
presented to support the conceptual design phase
in structural engineering. The authors demonstrate
how description logic [24] can be used as a basis
to formalize structural knowledge. A tool called
ConEd [25] implements the approach. Analogous
to the ConDes project, the aim of the authors is

to formalize knowledge and to used this knowl-
edge to support an engineer during the concep-
tual design phase. Opposite to the ConDes project,
ConEd provides support for structural design. The
developers of ConEd follow a construction-oriented
perspective on the design problem, instead of a
functionality-oriented perspective in the ConDes
project.

Generative approaches mostly use the repre-
sented structural knowledge to create at least an
initial prototypical design. Parts of that design
are then further refined, by applying further gen-
erative rules. So, in these approaches it is mainly
the machine that creates the design. The SEED
system [26][27] provides a support for the early
phase in architectural building design. Different
modules – SEED-Pro, SEED-Layout and SEED-
Config – allow for specifying the requirements for
a building, generating floor plans, and three di-
mensional models based on these requirements.
Knowledge specification is done in so-called speci-
fication units, storing the requirements for the fu-
ture building. Although the SEED approach also
provides user interaction, the generation of build-
ing sketches is the main focus. The ConDes project
rather follows an interactive approach, where the
designer is dominating the design process.

Most of the generative approaches are imple-

mented in Prolog or Lisp and are not integrated
with existing CAD tools. In [28][29][30] graph

grammars are used to find reasonable positions of
rooms and to generate an initial floor plan as a
suggestion for the architect. For that, functional
requirements for a building, especially the traffic
flow inside, are formalized in UML use case and
activity diagrams [31]. These diagrams are then
mapped onto a room graph representing an ab-
stract structure of the future building. In contrast
to the ConDes approach, all knowledge is fixed in
the PROGRES specification and can only be de-
fined by a computer scientist. So, the knowledge is
stored implicitly. Moreover, this approach focuses
the formalization of the buildings’ usage. The ap-
proach presented in this article is more flexible
and allows knowledge formalization for different
domains.

Stiny and Gips use shape grammars to formal-
ize knowledge about different classes of buildings.

3

This approach again focuses on the generation of
sketches [32]. Flemming defined e.g. a comprehen-
sive shape grammar containing design rules for
Queen Anne houses [33]. Although grammars are
mainly used to generate designs, they can also be
used to check whether a design is within a lan-
guage, i.e. that a sketch can be created by a gram-
mar. The ConDes project uses graph grammars
and graph transformations to formally specify con-
ceptual knowledge and conceptual designs. A con-
sistency analysis based on parameterized graph
transformations [8] allows for checking the knowl-
edge against a conceptual design.

In [34] an informative overview on knowledge

representation is given. Five distinct roles are iden-
tified and discussed to explain the term knowl-
edge representation independently from an actual
situation. A lifecycle for knowledge – definition,
use, adaption, and reuse – is described in [35]. In
this paper, a distinction is made between internal
and external knowledge and the lack of meaning-
ful formalization methods is identified. Finally, the
CoMem system, a kind of knowledge browser, is
demonstrated. Knowledge from previous projects
can be stored and reused. In contrast to CoMem,
the main goal of the ConDes project is the formal-
ization of the conceptual knowledge and the pos-
sibility to automatically check a conceptual sketch
against the knowledge.

The importance of knowledge processing for ar-
chitectural design is comprehensively discussed in
[19]. The fundamental techniques are described
and their application in the field of architectural
design is introduced. Fenves and Garrett introduce
in [36] a representation model for storing stan-

dards based on decision tables. Their goal was, like
in the ConDes project, to provide automatically
checks of architectural sketches.

In [37], different new paradigms for a conceptual
design support are proposed. Among other things,
top-down decomposition, modularization, and the
use of object-orientation for architectural design
is introduced. Although the work is neither imple-
mented nor integrated into a CAD tool, the ideas
are fundamental for our research.

The semantic web approach [38] aims to improve
the quality of information in the World Wide Web.
This approach is based on RDF [39], a language de-

veloped especially for modeling knowledge. Formal
concept analysis [40] and conceptual graphs [41],
based on semantic networks, also describe a way to
store knowledge in a formally defined but human
readable form. The TOSCANA system [42], which
is based on formal concept analysis, contains a tool
to store legal building rules. In contrast to the Con-
Des project, it is restricted to store and classify
texts of laws. Dependencies between rules and the
internal structure of them cannot be represented.
Finally, the TOSCANA system is not integrated
with a CAD tool.

Nosek and Roth deliver in [43] an empirical sur-
vey. According to this survey, a visual representa-
tion of knowledge, using e.g. semantic nets [44], is
more clearly comprehensible than a textual repre-
sentation, as e.g. predicate logic. Gross and Do un-
derline the importance of diagrams especially for
architectural design [45].

There are some commercial implementa-
tions in the field of conceptual design support.
SketchUp [46] is a CAD tool that allows archi-
tects to develop early sketches in a 3D view.
Based on geometric shapes, as triangles, circles
and rectangles, a 2D form can be designed and
transformed into a corresponding 3D volume.
SketchUp provides a software tool that is easy to
use and that emulates the work with paper and
pencil. SketchUp concentrates on the shape of the
building, it focuses the shape-oriented conceptual
design (cf. [15]). It is neither possible to repre-
sent and store the functionality of the building
nor to check the consistency of the sketch against
previously defined design rules.

KollabNet [47] develops a design management
software to support the distributed planning of de-
velopment processes. Different tools allow to de-
fine and execute a process model, to manage the
user authorization, the version history of all exist-
ing documents, and to store the requirements of
a product. Opposite to the ConDes project, Kol-
labNet is not restricted to one application domain.
The visual language of the ConDes project has
been developed to enable architects and civil engi-
neers to formalize knowledge specific to architec-
ture. The provided elements of the visual language
therefore allow to store restrictions and require-
ments of this application domain more precisely.

4

3. System Architecture

The ConDes system architecture describes the
organization of the complete solution and the de-
pendencies between its parts. Especially, it illus-
trates, how knowledge specification is embedded in
the whole system. Thus, the most important com-
ponents of the system are knowledge formalization
and conceptual design support.

The overall goals and functionality of ConDes
are the following: In conceptual design, the tools
allow architects to sketch the coarse organization
and functionality of a building. For that, we pro-
vide the possibility to define a set of semantic el-

ements (e.g. areas, rooms, sections) specific to a
class of buildings in an ontology. The architect can
then sketch an actual conceptual design built-up
from these ontology elements. In knowledge for-

malization, which is done by a knowledge engineer,
conceptually relevant knowledge from different do-
mains (law, economy, experience) can be formal-
ized. Because both parts, conceptual knowledge
and conceptual design, are finally available in a for-
mal representation, the conceptual design can be
checked and inconsistencies are presented to the
architect.

Figure 1 depicts the architecture of the com-
plete system for conceptual design support. The
two main sections of the system are structured in
two columns. The knowledge formalization part is
on the left hand side and the conceptual design
part on the right hand side of the figure.

Three horizontal layers structure the system ar-
chitecture in more detail. At the top of Figure 1,
general knowledge and tool functionality are de-
picted. They are – to a certain extend – specific for
civil engineering, but they do not reflect character-
istics of a class of buildings. In the middle layer the
specific knowledge definition part and at the bot-
tom the developed tool support are shown. Now,
both reflect the structure of a class of buildings or
make use of this structural characterization. The
horizontal arrows depicted between the columns
describe the necessary integration between knowl-
edge and design on each layer. The integration al-
lows to check the conceptual design against the
knowledge. At the bottom of Figure 1, we find tool

Implementation

Correspondence

Design Checks

Displaying Rule
Violations

u
s
e

u
s
e

formalizes skeches

import

Knowledge
Engineer Architect

Fig. 1. System Architecture and Tool Support

functionality for making use of this knowledge in
order to produce a conceptual sketch.

The first layer at the top of Figure 1 stands for
a general graph grammar specification using the
graph rewriting system PROGRES [2]. The speci-
fication comprises a graph schema that determines
graph node classes, node attributes, and edge types
to restrict the valid graph class to the needed sub-
set [9]. Additionally, the PROGRES specification
consists of graph transformations that determine
valid modifications of a graph, they provide the
realized functionality. The graph transformations
can be executed, to build up and modify a so-called
host graph, representing the underlying data struc-
ture for modeling a certain application domain,
here civil engineering. At this layer, knowledge and
design are combined inside the PROGRES specifi-
cation as they are built up from a similar internal
graph representation. Integration between knowl-
edge and design is therefore already given. The
PROGRES specification, as well as the extensions
to the UPGRADE framework [3], are fixed by the
tool developer.

The second layer encloses the runtime dynamic
part of the system architecture. On the left hand
side, a domain expert, usually an experienced civil
engineer or architect, formalizes conceptual knowl-

edge specific to a certain class of buildings. The do-
main expert is called knowledge engineer. Concep-
tual knowledge comprises restrictions and require-
ments concerning the organization and functional-
ity of a building, e.g. the size of specific rooms or
the allowed length of an escape route. The knowl-
edge formalization part is again subdivided into

5

two layers, namely the definition of a domain spe-
cific knowledge ontology and, based hereon, the
definition of design rules.

The knowledge ontology serves as a formal defi-
nition and classification of the relevant knowledge
concepts for conceptual design. The knowledge on-
tology is specific for one class of buildings. For ex-
ample, different room, attribute, and relation types
are defined here. They serve as atomic components
for the following specification of design rules. The
definition of the knowledge ontology is done at tool
runtime by a knowledge engineer and is not fixed
in the implementation. As the definition of the on-
tology is already an essential part of knowledge for-
malization, it has to be done by a domain expert
(not the tool developer). Furthermore, this formal-
ization is an evolutionary process with many itera-
tions, so that a fixed knowledge ontology definition
would not suffice.

Based on the concepts, defined in the knowl-
edge ontology, in a second step the actual domain
knowledge in form of design rules is defined by the
knowledge engineer. The ConDes approach pro-
vides a graph-based visual language for knowledge
specification which especially allows to define at-
tribute, cardinality and relation rules, complex re-
lations, and parameterized rules in form of runtime
depending expressions (see section 4.2). The effort
of knowledge formalization only pays off if several
projects for the same class of buildings are carried
out.

The right side of the second layer of Figure 1
is devoted to the conceptual design of buildings.
Here, a design ontology can be elaborated at run-
time analogous to the knowledge ontology. The de-
sign ontology may be specific for a special com-
pany, group of architects, being users of a design
tool. It has to be mapped onto the knowledge on-
tology. To support the architect we further provide
the possibility to import the knowledge ontology.

The conceptual design is elaborated in form of a
purely graph-based representation. Room sizes and
positions are not yet considered, only the existence
and relationships between functional entities are
defined. In literature, these widespread sketches
are called bubble diagrams [48].

An integration document [49][50] between the
knowledge ontology on the left hand side and the

design ontology on the right hand side has to be
defined, to determine the corresponding ontology
elements. The integration document is essential for
checking the consistency between the design rules

and the conceptual design by graph-based analysis.
These Design Checks identify restriction violations
and inform the architect. The semantics of all rule
types is formally defined [51]. A conceptual sketch
is called consistent, if none of the rules formalized
by the knowledge engineer is violated.

Finally, in the last layer the developed tools are
depicted. The graph-based tools are derived from
the PROGRES specification. The UPGRADE
framework provides a reusable and extensible plat-
form for executing such graph-based programs in
a problem adequate representation. The complete
tool construction process using PROGRES and
UPGRADE is shortly presented in section 5.1.

For knowledge specification ConDes develops a
graph-based visual application, used by the knowl-
edge engineer, the Knowledge Graph Editor. This
tool provides functionality to elaborate an object-
oriented knowledge ontology and to define the ac-
tual domain knowledge in form of design rules. The
knowledge engineer is supported by problem ade-
quate views on the knowledge graph, by filters, and
layout algorithms displaying the graph in a struc-
tured manner.

For conceptual design we developed a second
tool, the Design Graph Editor. This graph-based
CAD tool allows to elaborate conceptual sketches,
corresponding to the defined design ontology. Us-
ing the Domain Knowledge Editor, architects can
concentrate on the relevant functional entities,
their attributes and interrelationships.

By executing the graph-based Design Checks, in-
consistencies between the knowledge specification
and the conceptual design are discovered and vi-
sualized inside the Design Graph Editor to inform
the architect. As we do not want to restrict the
architect’s creativity, we explicitly allow inconsis-
tent sketches. The architect is free in his decision
to stay in an inconsistent state, or to fix all identi-
fied errors.

The reader should notice, that for the right side
of layer two and three of Figure 1 there is also some
tool support based on industrial tools (bottom-up
part, see section 1). The knowledge ontology and

6

design rules can be imported via XML-files to the
tool ArchiCAD of GRAPHISOFT. ArchiCAD was
furthermore extended by new concepts as room

objects and room links. An architect may now use
ArchiCAD to produce conceptual sketches. As
above, they are checked against design knowledge
to assure that they are consistent. The bottom-up
tools are not described in this paper (see [5]).

4. A Visual Language for Knowledge

Formalization

In this section, a novel visual language for knowl-

edge specification is described. It corresponds to
the left part of layer 3 in Figure 1 (Design Rules).
The ConDes project follows a dynamic knowledge
formalization approach, i.e. a domain expert, an
architect or a civil engineer, should be able to for-
malize his personal domain knowledge. In a fixed
approach, the domain knowledge would be formal-
ized by the tool developer within the source code.

In the ConDes scenario, knowledge formaliza-

tion as described is done in two steps: First, the
basic concepts have to be defined in a domain on-
tology. Based on this conceptualization [52], pre-
defined design rules can be used in a second step
to insert relevant knowledge. Ontology as well as
rules are specific to a class of buildings. Both are to
be used for any project of the corresponding class.

As the dynamic knowledge definition is an essen-
tial part of the knowledge formalization process, a
domain specific knowledge ontology is introduced
as an example. The purpose of this example is to
explain the expressiveness of the knowledge def-
inition. A complete description of the realization
of the ontology and the underlying graph-based
mechanisms can be found in [4][8]. The knowledge
formalization approach is based on object-oriented
concepts. So, UML-like [53] diagrams are used for
the representation.

4.1. The Domain Knowledge Ontology Part

The knowledge engineer develops the knowledge
ontology thereby defining and classifying the rele-
vant concepts. In the conceptual design approach,

the domain knowledge ontology makes use of three

basic elements:
– Semantic objects describe the conceptually

relevant functional entities of architectural de-
sign,

– Relations describe connections between se-
mantic objects,

– Attributes describe necessary equipment or
properties of a semantic object.
The ConDes approach supports the knowledge

engineer by providing predefined fundamental con-

cepts for conceptual architectural design. These
concepts, building site, building, storey, area,
room, and section have invariant semantics, inde-
pendent from the class of buildings. They, as well
as their aggregation relation, are fixed in the on-
tology model part of the PROGRES specification
(see layer 1 of Figure 1). A room is defined as an
element enclosed by walls, a section is a part of
a room, and an area is an aggregation of several
rooms or areas.

The dynamic ontology can be structured by the
knowledge engineer using aggregation and inher-
itance. The inheritance relationship between se-
mantic objects is expressed, as usual, by an ar-
row with a white head. In Figure 2 one can see a
cutout of a sample knowledge ontology, specific to
car garages. The middle part contains the defini-
tion of the semantic objects. The semantic object
Room is the root class of all rooms. It has three
subclasses, Motor Vehicle Room, Customer Room,
Sanitary Room, and so on.

The aggregation relationship between an area
and several rooms is represented by a connection
edge with a diamond at its beginning. In the ex-
ample ontology, the Customer’s Toilet Area is an
aggregation of the men’s, the women’s, and the
handicapped’s toilet. In contrast to UML, no mul-
tiplicities are defined for the elements included in-
side the aggregation. Such facts are stored in form
of special design rules (see section 4.2.5).

To express and define relationships between se-
mantic objects, the knowledge ontology also con-
tains relations (Figure 2, left hand side). Relations
are used for user-defined relationships; inheritance
and aggregation are predefined relationships. In
the example knowledge ontology one can see three
root relations: Adjacency, Connection and Separa-

7

Fig. 2. Knowledge Ontology, specific for Car Garages

tion. While adjacency and separation express that
two semantic objects should be neighbored and
separated, respectively, the Connection relation is
further specialized into an Open Connection, e.g.
no wall in between, and a Separated Connection,
e.g. a door. Finally, the separated Access connec-
tion is specialized into three further types of con-
nections determining in which way it is allowed to
be used.

On the right hand side of Figure 2, six attributes

are defined. Sanitary is a Boolean attribute de-
scribing whether a semantic object should have a
sanitary installation (”true” valued) or not (”false”
valued). The Surface Area determines the size of a
semantic object. Its allowed values are defined by
an integer subrange.

As to be seen from Figure 2, there are ontology
concepts which depend on a class of buildings, as
Car Gateway, Brake Test Section, and Brake Test

Facility. They are different from Room and Con-

nection, which are specific for civil engineering but
do not take care of a specific class of buildings.
These unspecific parts of the the ontology belong
to the layer 1 of Figure 1.

4.2. The Design Rules Part

Based on predefined or already available knowl-
edge concepts (objects, relations, attributes) and
predefined types of design rules, the knowledge
engineer formalizes conceptually relevant domain
knowledge. The goal is to put in all conceptual
knowledge, specific to a class of buildings. Later,

the design rules containing this knowledge can be
used for automatic checks.

The definition of design rules is based on two

parts. One part is runtime dynamic and consists
of the elements defined in the domain ontology.
The second part, namely the underlying design rule
schema, is fixed in the PROGRES specification. It
consists of a formal specification of the design rules.

The three basic types of rules are attribute rules,
relation rules, and cardinality rules:
– Attribute rules enforce semantic objects to

have particular properties, see section 4.2.2,
– Relation rules define the obligation or prohi-

bition of the existence of certain relationships
between semantic objects, see section 4.2.2, and

– Cardinality rules restrict the number of actual
semantic objects of a certain class in the concep-
tual design, see section 4.2.3.
We now start by explaining the basic types of

design rules and continue by stepwise introducing
more powerful further concepts. The semantics of
all design rules is explained considering some ex-
ample rules, specific for car garages. The formal
semantics of all types of design rules is defined in
[51]. The operational semantic definition [54] forms
the basis for the graph-based consistency analysis.

4.2.1. Building up Design Rules

To get an idea of the internal graph-based real-
ization of the design rules, in this section their built-

up is briefly explained. The description presented
shows the connections between semantic objects,
relations, and attributes in the graph schema in

8

to_rel

from_rel
to_attr ATTRIBUTE

SEMANTIC

_OBJECT

INTEGER

_TERM

max

min_trgMult

INTEGER_

ATTRIBUTE

max_trgMult
MAX_TERM

min

CARDINALITY

_RANGE

to_card

min

max

RELATION

Fig. 3. Cut-out of Graph-Schema for Design Rules

a simplified form. The complete specification con-
tains a number of further components, in order to
be able to process the knowledge formalization and
the consistency analysis.

In the PROGRES graph schema, the composi-
tion of design rules is formally specified. The graph
schema fixes the static parts of graph-based appli-
cations. The dynamic aspects, so the actual pro-
gram logic, is defined in PROGRES in form of
graph transformations. For conceptual design sup-
port, each design rule is composed of one seman-
tic object and, corresponding to the type of a rule,
a relation with a second semantic object, an at-
tribute, or a cardinality range.

A cutout of the graph schema for design

rules is depicted in Figure 3. An attribute
rule is here composed of a SEMANTIC OBJECT-
node connected via a to attr-edge with an
ATTRIBUTE-node. The constituent parts of a re-
lation rule are two SEMANTIC OBJECTS-nodes, in-
terrelated with two edges, to rel and from rel,
with a RELATION-node. Finally, a cardinality
rule consists of a SEMANTIC OBJECT-node and a
CARDINALITY RANGE-node, with a to card-edge in
between. In the complete graph schema, further
nodes and edges are defined, to be able to refer-
ence a rule, to relate a rule to a complex context,
and to handle the consistency analysis efficiently.

An important and repeatedly used concept for
knowledge formalization is the integer expression.
Integer expressions are needed to specify the val-
ues of an integer attribute, to define relation mul-
tiplicities or cardinality ranges. Looking at Fig-
ure 3, the INTEGER ATTRIBUTE defines a range of
values, valid for numerical attributes, e.g. a length
between 4 and 6 m. The realization of this range in

the graph schema is defined by an INTEGER TERM as
lower bound and a MAX TERM for the upper bound.
An integer term can be a constant integer literal
or a complex integer expression. A MAX TERM can
either be an integer term or the star symbol, which
allows arbitrary values. In the same way, minimal
and maximal multiplicity restrictions of a relation
and a valid cardinality range for semantic objects
are formalized, using integer expressions based on
INTEGER TERM and MAX TERM.

In the following, the characteristics of the visual
language are introduced. For a better readability,
the concepts are represented in a condensed form

that gives an abstraction from the internal graph-
based realization. However, all concepts are fully
implemented, the knowledge formalization as well
as the corresponding consistency analysis.

4.2.2. Attribute und Relation Rules

Attribute and relation rules constitute the basis
of the knowledge specification approach. In con-
ceptual design, a precise description of semantic
objects and their relationships is an essential part
of the knowledge specification.

Sanitary Room Sanitary Installation

value = true

Sanitary Room Surface Area

value = 10..15

Fig. 4. Attribute Rules

As mentioned above, attribute rules determine
valid properties of semantic objects in the design.
There are three types of attribute rules which dif-
fer in the used data type. Integer attributes de-
scribe an interval of valid values, e.g. size of a
room. Boolean attributes determine the availabil-
ity of certain equipment, e.g. sanitary installation.
Finally, enumeration attributes define a set of valid
string values, e.g. orientation of a room to ”north”,
”south”, ”west”, or ”east”.

In Figure 4 two example attribute rules are
depicted. The first, a Boolean attribute rule, de-
mands each Sanitary Room to have a sanitary
installation. The second integer attribute rule re-

9

stricts the ground area of such a room to be in
between 10 and 15 sqm.

Relation rules determine the existence or non-
existence of relationships between semantic ob-
jects. The number of semantic objects connected
to a relation can be restricted. The declaration of
target multiplicities allows a precise definition of
how two semantic objects are interrelated. A tar-
get multiplicity greater than zero as lower bound

demands each semantic object of the source class
to be interrelated to at least the specified number
of semantic objects of the target class. The upper

bound restricts the maximum number of con-
nected semantic objects. A special case forms the
zero multiplicity for lower and upper bound. Such
a relation rule prohibits the existence of a relation
between the corresponding semantic objects.

Lounge View

trgMult = 1..*

Repair

Lounge CustomerAccess

trgMult = 0..0

Repair

Fig. 5. Relation Rules

In Figure 5 two example relation rules are shown.
The first relation rule demands the existence of a
View relation between the Lounge and a Repair

room. Thus, a customer can show the garage fore-
man the location of his car’s problem. The multi-
plicity restriction only ensures that there has to be
at least one possibility to look from the lounge to a
car repair place. The upper bound is not restricted.
The second relation rule deals with the customer
access between a lounge and the car repair places.
Here, the relation prohibits a customer access, ex-
pressed by the relation multiplicity set to 0..0.

4.2.3. Cardinality Rules

The number of occurrences of semantic objects
is important for the organization of a building. We
distinguish here, whether a semantic object is es-
sential to guarantee the functionality of the build-
ing whether a semantic object can optionally oc-
cur, or whether a semantic object must not exist
in the future building. A regulation is possible by
defining the lower and upper bound of a cardinality

rule. The lower bound determines if a semantic ob-

ject is optional (= 0) or mandatory (>0), whereas
the upper bound defines the maximum number of
allowed occurrences of semantic objects. The upper
bound is represented by a constant integer value or
an integer expression, including the star symbol.

 telioT remotsuC

aerA
nidraC tila y

im 0 = n

(drac = xam)egnuoL

egnuoL ytilanidraC

0 = nim

1 = xam

Fig. 6. Cardinality Rules

In the example of a car garage, a lounge is op-
tional, and the maximal number of lounges is one.
This fact is expressed by the first cardinality rule of
Figure 6. Since a lounge is optional the ”min” value
of the cardinality range is set to ”0”; the ”max”
value is set to ”1”. The second example cardinality
rule of Figure 6 deals with the customer toilet area.
Again, a customer toilet area is optional as the min-
imal number is ”0”. The maximal number, how-
ever, depends on the current number of lounges,
which can be ”0” or ”1”, as seen before. Thus, the
semantics of this rule can be stated by ”There can
be one customer toilet area. If there are more, their
number is at most the number of lounges”. This
rule already uses the concept of runtime dynamic
expressions (see section 4.2.7 below).

4.2.4. Inheritance and Aggregation

As presented in Figure 2, the knowledge ontology
follows an object-oriented classification. The se-
mantics of the described design rules are extended
by using inheritance between semantic objects. De-
sign rules, specified for a semantic object, are prop-
agated to all inheriting semantic objects of the
knowledge ontology hierarchy. This mechanism al-
lows to define common knowledge on a general level
and reduces the effort of knowledge specification.
Analogous to the object-oriented concepts, design
rules can also be redefined if necessary.

The analyses and structuring of inheritance for
knowledge specification is realized in the PRO-
GRES specification by special nodes and edges.
Complex graph transformations, operating on
these graph elements, ensure the consistency of

10

Knowledge Ontology

Toilet Surface Area

value = 10..15 sqm

Men’s Toilet Surface Area

value = 10..15 sqm

Handicapped’s
Toilet

Surface Area

value = 15..20 sqm

Design Rules with Inheritance

Defined

Derived

Redefined

Men’s
Toilet

Women’s
Toilet

Toilet

Sanitary Room

Handicapped’s
Toilet

Sanitary

Room

Surface Area

value = 10..15 sqm

Fig. 7. Inheritance and Redefinition of Design Rules

these object-oriented structures. The internal re-
alization, however, is hidden from the user.

The example in Figure 7 demonstrates the se-
mantics of inheritance. The attribute rule for Sani-

tary Room demands the ground area to be between
10 and 15 sqm (”Defined” in Figure 7). Regard-
ing the knowledge ontology cutout, one can see
that the Sanitary Room is specialized into a Toilet

which itself is specialized into particular types of
toilets. The above defined attribute rule is now in-
herited to all subclasses (”Derived”). The attribute
rule for Handicapped’s Toilet, however, is rede-
fined to guarantee a minimum turning circle for
wheelchairs. All semantic objects inheriting from
Handicapped’s Toilet must therefore fulfill the re-
defined rule.

A further valuable concept of the knowledge on-
tology definition is the aggregation of semantic ob-
jects. Using the aggregation relation, complex se-
mantic objects can be defined to be composed of a
collection of simple or complex semantic objects. In
contrast to the object-oriented classification mech-
anism, which describes a homogeneous set of se-
mantic objects with similar properties, aggregation

usually combines heterogeneous semantic objects.
Constraints are relevant for aggregations as well.
Therefore, the functionality is provided to define
the basic types of design rules, namely attribute,
relation, and cardinality rules, also for complex
semantic objects. The semantics of complex de-

sign rules is slightly different from that of previ-
ously introduced simple design rules. For integer
attribute and enumeration rules, we just demand
that the rule has to be valid with respect to the ag-
gregation concept (e.g. Customer Area). In case of
Boolean attribute rules, we further distinguish be-
tween a positive or a negative application set by the
Boolean value. If true, the expressed requirement
for a Boolean attribute (e.g. Sanitary Installation)
can be fulfilled by one of the semantic objects, en-
capsulated within the aggregation. Those Boolean
attribute rules that forbid a certain equipment to
exist, however apply to all encapsulated semantic
objects. Thus, none of them is allowed to have this

Knowledge Ontology

Customer Area SurfaceArea

value = 54-96 sqm

Design Rules for Complex Semantic Objects

Customer Area FireDrencher

value = true

Customer Area CompressedAir

value = false

Lounge

Contact

Exposition

Customer
Toilet Area

Customer Area

Garage AreaStaffAccess

trgMult = 1..*

. . .

Garage Area

Customer Area

Garage AreaCustomerAccess

trgMult = 0..0

Customer Area

Fig. 8. Design Rules with Aggregation

11

equipment installed.
Regarding the example of Figure 8, a cutout

of the knowledge ontology and three example at-
tribute rules for a complex semantic object are de-
picted. A Customer Area is composed of a Lounge,
a Contact room, an Exposition room, and a Cus-

tomer Toilet Area. To restrict the surface area of
this aggregation to be between 54 and 96 sqm, an
attribute rule for the ”Customer Area” is defined
(Figure 8, first design rule). Simple analyses ex-
amine in this case, whether the sum of the sur-
faces of the aggregated semantic objects does not
exceed the defined restriction. The second design
rule of Figure 8 demands at least one semantic ob-
ject of the aggregation to be equipped with a fire
drencher. The third design rule prohibits to have
compressed air supply in all semantic objects which
are inside the customer area.

The previously introduced relation rules have
also extended semantics if they are used for com-

plex semantic objects. Analogous to Boolean at-
tribute rules, the demand for a relation to exist be-
tween a complex semantic object and another can
be fulfilled by one semantic object of the aggrega-
tion. The prohibition of a relation (target cardi-
nality = 0..0) between complex semantic objects
means the prohibition of a relation between corre-
sponding component objects.

In Figure 8, two example complex relation rules

illustrate the extended semantics. The first rela-
tion rule demands, that Staff Access is needed be-
tween the Customer Area and the Garage Area.
This requirement is fulfilled if one of the semantic
objects encapsulated inside the Customer Area has
a staff access relation to one of the elements which
are encapsulated in the Garage Area. Finally, the
last relation rule in Figure 8 prohibits to sketch a
customer access relation between any semantic ob-
jects encapsulated in the Customer Area and the
Garage Area.

4.2.5. Context Rules

Up to now, design rules are valid for all specified
semantic objects in the whole building, indepen-
dent from their position. In practice, many restric-

tions concerning a conceptual design are related to
the context of a room or an area, i.e. the enclosing

semantic objects. To be able to formalize this con-
textual design knowledge, the concept of context

rules is provided. A context rule is an extension to
the previously introduced design rules, where the
context only restricts the range of validity. In a
conceptual design, the consistency analysis checks
these design rules only in the scope of the defined
context.

In Figure 9, some example context rules illus-
trate the expressive power. The sample knowledge
ontology consists of a Customer Area containing
a Customer Toilet Area which again contains a
Men’s Toilet and a Women’s Toilet. A second area,
the Garage Area is, among other things, composed
of a Men’s Toilet, Women’s Toilet, and a Hallway.
Obviously, different requirements and restrictions
are valid concerning toilets inside a garage area or
within a customer area. The first two context de-

ygolotnO egdelwonK

moW telioT s’ne ytilanidraC

1 = nim

* = xam

R htiw seluR ngiseD txetnoC detcirtse

motsuC re

aerA telioT

motsuC re rA ae

htdiW

av ul .1 = e 06 m * ..

aerA egaraG

aH ll way

M telioT s’ne

oW men’ oT s li te

aerA egaraG

ni

moW telioT s’ne aC dr ni la ti y

nim ac = (dr Men oT s’ eli t)

* = xamotsuC m re rA ae

ni

aerA egaraG

ni

otS r ga erA e atS sseccAffa

tr Mg .1 = tlu *.

aH ll way

aerA egaraG

ni

llaH yaw

. . .

Fig. 9. Design Rules with Context Restriction

12

sign rules consider this fact. The fist context cardi-
nality rule demands to have at least one women’s
toilet inside the garage area. The second design
rule expresses the need to have inside a customer
area at least the same number of women’s as men’s
toilets. The card-operator returns in this case the
number of men’s toilets that are already sketched
inside the customer area.

The third design rule in Figure 9 demands the
width of the hallway to be at least 1.60 m, again
restricted to those hallways that are inside the
garage area. Further hallways, e.g. inside the cus-
tomer area or in other parts of the building are not
affected. Finally, the relation rule depicted at the
bottom of Figure 9 expresses the need to have a
Staff Access relation between this hallway and a
storage area. Again, the scope is restricted to hall-
ways inside the garage area.

4.2.6. Complex Relation Rules

As an extension to relation rules the visual lan-
guage provides complex relation rules. They de-
termine mandatory or forbidden intermediate re-
lationships between two semantic objects. In con-
ceptual design, composed relations are needed to
express advanced concepts like transitive accessi-
bility or restricted reachability. To enable a knowl-
edge engineer to formalize such facts, this new type
of design rules is provided.

A complex relation rule is realized in form of
a concatenation of semantic objects and relations.
The semantic objects at the beginning and the end
of a complex relation definition restrict the appli-
cation to connecting semantic objects of the de-
termined class or its subclasses in the knowledge
ontology. The inner components of the complex re-
lation definition determine its internal structure.

An example of a complex relation rule is de-
picted in Figure 10. The definition of the complex
relation Indirect Access demands that the access
from one room to another contains an intermedi-
ate vestibule, e.g. to avoid noise pollution or bad
smell. Below the definition of the complex relation
in Figure 10 an application of this complex rela-
tion is given. To avoid a direct access between the
lounge and a sanitary room, two design rules are
defined. The first one, using the previously defined

Indirect Access

trgMult = min .. max

Room Access Vestibule Access Room

Indirect Access

trgMult = 1..*

Lounge Sanitary
Room

Definition

Application

Access

trgMult = 0..0

Lounge Sanitary
Room

Fig. 10. Complex Relation Rules: Definition and Applica-

tion

complex relation rule, demands an Indirect Access

between the Lounge and the Sanitary Room. Ad-
ditionally, the second rule, a simple relation rule,
forbids the direct access between theses two seman-
tic objects. Thus, all kind of toilets (see knowledge
ontology) are only allowed to be accessible through
an intermediate vestibule.

4.2.7. Runtime Dynamic Expressions

We previously introduced a cutout of the graph
schema as the internal realization of design rules
(Figure 3). We also briefly motivated the need for
runtime dynamic expressions. They offer a pow-
erful possibility, namely to define complex integer
and Boolean expressions. Dynamic expressions are
evaluated at runtime in connection to an actual
building design. They do not introduce a new kind
of design rule, but extend the expressive power of
the visual language. The concept of runtime dy-
namic expressions is fundamental, because it is ap-
plied to the definition of attribute values and rela-
tion multiplicities as well as to cardinality ranges.

At the top of Figure 11 the graph schema

for runtime dynamic integer expressions is de-
picted. The root class MAX TERM is used to define
the upper bound of an integer range. An up-
per bound can be either an INTEGER TERM or a
”STAR” (unlimited). Lower bounds can only be
integer terms, as the star symbol is not allowed
to be used. An INTEGER TERM is specialized to a
CONSTANT INTEGER to represent an integer literal,
and a composite INTEGER EXPRESSION.

13

Washing
Room

Surface Area

INT_OP_EXPR

STARmax

min

op = *

INT_OP_EXPR

op = *

INT_ATTR_EXPR

NumWashBasins

rightleft

rightleft

Design Rules with Expressions

Graph schema

INTEGER

_TERM

INTEGER

_EXPRESSION

CONSTANT
_INTEGER

value : integer

INTEGER
_OP_EXPR

op : {*,+,/,-}

INTEGER
_ATTR_EXPR

CARDINALITY

_OPERATOR

SEMANTIC

_OBJECT

ATTRIBUTE

to attr

to_right

STAR

to semo

MAX_TERM

to_left

Surface Area

min = 700*700*NumWashBasins [sqmm]
max = *

Washing
Room

Graph-based realization

User-friendly representation

CONST_INT

value = 700

CONST_INT

value = 700

Fig. 11. Runtime Dynamic Expressions, Graph Schema and

Example Rule

Three different specialized integer expressions
are distinguished:
– Integer operator expression (INTEGER-

OP EXPR) represents an arithmetic expression,
e.g. the multiplication of two integers. It consists
of an arithmetic operator (*, +, /, -), and a left
and a right operand of type INTEGER TERM. The
inductive definition allows arbitrarily nested
operator expressions.

– Integer attribute expression (INTEGER-
ATTR EXPR) refers to an actual attribute value
of a semantic object in the conceptual design.

– Cardinality operator (CARDINALITY OPER-

ATOR) computes the actual number of semantic
objects of one class in the conceptual design (see
Figure 6 for an example). In the graph schema

the operator references a semantic object.
An example application of a runtime dynamic

expression is shown in the lower part of Figure 11.
The German law for working places (ArbStättV
§35 (3)) demands a minimum surface area for wash-
ing rooms depending on the number of wash basins
in the room. For each wash basin there must be a
minimum ground area of 0.7 m times 0.7 m. Fig-
ure 11 illustrates how this regulation is expressed.

Instead of defining a simple attribute rule for
Washing Room with static integer values, now
the attribute Surface Area references two integer
expressions for the lower and upper bound. As
there is no need to restrict the size of a wash-
ing room, the upper bound of the attribute rule
is determined by a ”STAR” (unlimited). The
lower bound is composed of runtime dynamic

integer expressions. The INTEGER OP EXPR is cal-
culated by the multiplication (”op = *”) of the
left term, again an "INTEGER OP EXPR, and the
right term, an INTEGER ATTR EXPR. The value of
the left term is again computed by the product
of two CONST INTEGER with value 700 mm. The
integer attribute expression gets the number of
wash basins which is represented by the value of
the attribute NumWashBasins for the actual wash-
ing room. Using this information, the size of the
washing room can dynamically be calculated.

The discussed representation shows the internal
data structure to store the expression as a graph.
The representation below is more readable and
thus more user friendly. It matches the user inter-
faces representation.

5. Visual Tools for Supporting Conceptual

Design

To prove the feasibility of the ConDes approach,
prototype versions of different tools were imple-
mented that support the definition of knowledge,
the creation of conceptual designs, and analyze
whether the specified rules are fulfilled. First, the
construction process of these tools is described.
Then, their usage is sketched.

14

5.1. Tool Construction Process

All implemented tools follow a similar tool con-
struction process. As already mentioned, ConDes
tools are based on the graph rewriting system
PROGRES [2] and the UPGRADE framework [3].
Both tools have been developed at Department of
Computer Science 3 of RWTH Aachen University
in other projects. As PROGRES and UPGRADE
are domain unspecific, many research projects
from different domains (e.g. re-engineering of
legacy telecommunication systems [55], data inte-
gration [50], project management [56]) are using

this tool construction infrastructure for solving
ambitious problems.

In PROGRES, the program logic and all stored
data are given and processed in form of the gen-
eral data structure graph. PROGRES is a high
level specification language [57], all graph defini-
tions and transformations can be defined in a visual

and declarative way. Finally, PROGRES provides
an interpreter, that allows to execute a specifica-
tion and a generator for C-code.

The UPGRADE framework allows to create a
basic visual prototype using the C-code that is ex-
ported by PROGRES. This prototype already pro-
vides some generic base functionality. Also, the
representation of the graph nodes and edges is ini-
tially generic.

To provide a tool that is customized for knowl-
edge specification and conceptual design, several
extensions had to be made. First, different views
were defined so that information can be repre-
sented in tables or trees, in addition to the graph
representation. The graph view is provided with
certain filters, that for each tool only a certain
part of the entire graph is displayed. For graph
nodes that appear in such a cutout of the graph,
adequate node representations were defined, so
that the user of the tool gets an easy and intuitive
visualization. Additionally, layout algorithms are
offered for positioning the graph nodes automati-
cally to obtain clarity. The transformations speci-
fied in the PROGRES specification are not called
directly by the user. Instead, all the functionality
provided by the transformations is encapsulated
within user-friendly dialogs.

PROGRES
Specification

UPGRADE
Prototype

Generate C-Code

C
o
m

p
ile

 V
is

u
a

l T
o

o
l

UPGRADE
 Framework

Extend for
Domain

Fig. 12. Simplified Tool Construction Process with PRO-

GRES and UPGRADE

Figure 12 illustrates the tool construction pro-

cess with PROGRES and the UPGRADE frame-
work. First, a formal PROGRES specification is
elaborated. In the next step, PROGRES generates
efficient C-Code. This code is then compiled and
embedded in the UPGRADE framework, to obtain
a graph-based visual application. Finally, this ap-
plication is extended to the needs of a certain ap-
plication domain.

This tool construction process is applied to all
tools of section 3 following the top-down part of
ConDes. Specifically, it is used for the ontology
definition tool, the rule definition tool, the design
ontology tool, the conceptual design tool, as well
as for the checks to be performed.

5.2. Knowledge Formalization Functionality

First, lets take a look at the functionality of
the knowledge formalization part. As introduced,
knowledge formalization is done in two steps. It
begins with the development of a domain ontology
as basis for the definition of design rules.

The screenshot in Figure 13 depicts the Domain

Ontology Editor used by a knowledge engineer. In
this tool, semantic objects (e.g. rooms), relations
(e.g. access), and attributes (e.g. width) can be
defined. These ontology elements can be related
to each other by inheritance and aggregation rela-
tions. In the screenshot, the semantic object view

is shown in the upper half and the aggregation view

in the lower half of the editor window.
The ontology defined in the example of Figure 13

is related to the previously introduced example
ontology. The ontology is again specific for car
garages. In the screenshot one can identify e.g.

15

the definition of the concepts Customer Room,
Sanitary Room and further concepts derived from
them. The definition of other semantic objects, e.g.
areas and sections as well as the definition of rela-
tions and attributes is done similarly. Looking on
the aggregation view in the lower part of the screen-
shot, one can see that the Customer Toilet Area is
composed of four semantic room objects, the Hand-

icapped Toilet, the Men’s Toilet, the Women’s Toi-

let, and a Vestibule.
By choosing one of the tabs at the top or bot-

tom of the semantic object view, the knowledge en-
gineer can change to the corresponding view win-

dows to other semantic objects (e.g. area, section),
relations, and attributes.

The next screenshot of Figure 14 contains the
Domain Knowledge Editor, which is again used by
a knowledge engineer, now to define design rules.
This tool also supports the engineer to navigate
through the domain knowledge by providing a vi-
sual, compact, and concise representation for the
formalization of conceptual design knowledge. The
design rules specified herein will be checked against
an actual building design later.

The Domain Knowledge Editor consists of two

main parts. At the left side, some tree views show
the previously defined ontology elements as sup-
port for the knowledge engineer. In the main part
of the Domain Knowledge Editor, the design rules

are shown in a visual representation. The screen-
shot in Figure 14 already comprises some of the

Fig. 13. Screenshot of Domain Ontology Editor

design rules that were introduced in section 4.2.
The first rule introduced in Figure 4 restricted

the surface area of a sanitary room to be between
10 and 15 sqm. The attribute rule is represented
in the Domain Knowledge Editor by showing the
attribute Surface Area inside the node represent-
ing the Sanitary Room, together with the specified
bounds of 10 and 15 sqm. The arrow, next to the
attribute which is pointing to the right, indicates
that this attribute rule is newly defined for san-
itary rooms and is not inherited. Corresponding
to the Domain Knowledge Ontology, the attribute
rule is inherited by the concept Toilet and its sub-
classes. In the editor, an inherited attribute rule is
represented by an arrow pointing to the top.

The relation rule introduced in Figure 5 de-
manded a view relation between the Lounge and
the Repair place. Furthermore, the Customer Ac-

cess from the Lounge and the Repair place was
prohibited by a second relation rule. This rela-
tion rules are represented by edges in the Domain
Knowledge Editor with the name of the relation
in the middle of the line. The edge with a simple
arrow at its end shows that e.g. a view relation is
demanded between a lounge and a car repair room.
The multiplicities for this relation (1..*) are also
shown at the end of the edge. The relation rule is
directed, therefore the arrow is only at one end of
the edge. The second edge with a circle at its end
indicates that it is forbidden to sketch a customer
access between the lounge and a car repair room.
This relation rule is undirected, it forbids the cus-
tomer access in both directions. In the Domain
Knowledge Editor, undirected relation rules are
represented by edges with arrows or circles, re-
spectively at both ends. Internally, an undirected
relation rule is always realized by two directed

relation rules. Because the multiplicities are in
case of forbidden relation rules always the same
(0..0), they are not shown within the editor. The
dialog window in the lower part of the screenshot
illustrates how a relation rule can be inserted. The
knowledge engineer can use five tabs to exactly
define and comment the inserted design rule.

The third type of design rule type, the cardinality

rule was explained when discussing Figure 6. This
design rule demanded that there may be a lounge,
but maximally one of them. In the Domain Knowl-

16

Fig. 14. Screenshot of Domain Knowledge Editor with Basic Design Rule Types

edge Editor, this cardinality range is depicted in-
side the node representing the Lounge on the right
hand side in the title row.

Up to now, basic design rules and some extended

concepts like inheritance of attribute rules were
demonstrated. The second screenshot of the Do-
main Knowledge Editor, depicted in Figure 15 now
demonstrates some of the advanced concepts.

To help the knowledge engineer reviewing the in-

Fig. 15. Screenshot of Domain Knowledge Editor, with

visualized Reference Rules

serted design rules, the tools provide the possibility
to temporarily display all currently effective design
rules. In the first screenshot in Figure 14, the direct
Access between the Lounge and the general con-
cept Sanitary Room was forbidden. In Figure 15,
all inherited relation rules, i.e. between the Lounge

and all concepts derived from the Sanitary Room

are displayed. For a better readability, these inher-
ited relation rules are usually hidden. The inherited
attribute and cardinality rules however are always
visible, they are displayed in a condensed form in-
side the corresponding semantic object nodes.

Looking at the screenshot of Figure 15 again,
one can identify the application of a context car-

dinality rule. As demanded before in Figure 9, the
number of needed Women’s Toilets is depending on
their position in the building. Inside the Sanitary

Area there have to be at least three and at most
five Women’s Toilets. The number of Women’s Toi-

lets inside the Garage Area is however lower, here
only one or two Women’s Toilets have to be avail-
able. To display the context in a visual representa-
tion, several sections were inserted to the semantic
object nodes. Each section then contains the at-
tribute and cardinality rules which are effective in
the corresponding context.

17

Fig. 16. Screenshot of Design Graph Editor, CAD tool for Conceptual Design

After finishing the knowledge formalization pro-
cess, the knowledge engineer can store the domain
knowledge in GXL [58], a standardized data format
for storing arbitrary graphs. Furthermore, the lay-
out of the knowledge graph can be stored, to help
the knowledge engineer understanding the current
state of the knowledge base when he continues to
formalize design rules. Finally, a documentation of
the formalized conceptual design knowledge can be
generated, a documentation generator transforms
all design rules and the inserted comments into a
HTML page.

5.3. Conceptual Design Functionality

The tool for creating conceptual building de-
signs, the Design Graph Editor is depicted in Fig-
ure 16. This tool is used by an architect in the con-
ceptual design phase of a specific building design
process. Using this tool, conceptual elements for
the building elements and the relations between
these elements can be defined. The representation
is related to so-called bubble diagrams [48] that
are extensively used by architects during the early
phase of architectural design. Semantic objects in
the Design Graph Editor are represented as rect-

angles and not as circles, trivially the level of ab-
straction is the same.

In the example depicted in Figure 16, a first
simple sketch of a car garage is shown within the
screenshot of the Design Graph Editor. The archi-
tect defined a lounge with a surface area of 32 sqm,
shown in the middle of the graph view. Three toi-
lets –a man’s, a woman’s, and a handicapped’s
toilet– are accessible from this lounge by crossing
a vestibule. In addition to the definition of the sur-
face area of these rooms, some of the needed equip-
ment, e.g. sanitary installation, is already planned.
The accessibility of the toilet area is restricted to
customers.

The garage area is depicted in the right hand
side of the conceptual sketch. Three different car
repair places are accessible from the staff. Also,
a men’s toilet inside the garage area is accessible
from the garage staff. The surrounding areas, the
Sanitary Area, the Customer Area, and the Garage

Area area are depicted at top of the screenshot. All
included semantic objects are pointing to them to
indicate their relationship.

On the right side of Figure 17, an alternative
representation, the so called boxed layout is shown.
Here, all rooms are layouted and positioned inside

18

Consistency

Analysis

Fig. 17. Screenshot of the Knowledge Editor (left) and the Conceptual Design Tool (right)

the surrounding areas. This representation is sim-
ilar to bubble diagrams. The conceptual sketch of
a car garage helps the architect to get a first idea
about the building components and their relation-
ships.

5.4. Design Checks

The conceptual design tools provide the func-
tionality to check a conceptual building sketch.
This means that the sketch developed by an archi-
tect is checked against the design rules specified
by a knowledge engineer.

The example sketch described in the previous
section contains some rule violations. First, the
handicapped’s toilet has a surface area of 8 sqm,
which is too small. In the knowledge definition a
rule exists that demands a surface area between
15 and 20 sqm for handicapped’s toilets. Second,
in the conceptual design, customer access is al-
lowed between the lounge and one of the car re-
pair room’s. According to the defined rules, no cus-
tomer access is allowed between a customer room
and the car repair room. As the lounge is a cus-
tomer room, this rule is also violated. A further
design rule demands to have at least one womans’s
toilet inside the garage area. In the conceptual de-
sign, there is only a men’s toilet inside the garage
area, the women’s toilet is missing. Finally, there
is no fire drencher installed in any room contained

in the customer area.
The rule violations are visualized in the concep-

tual design editor by boxes containing an exclama-
tion mark. A meaningful and more informative er-
ror message can be displayed optionally. The error
messages are automatically positioned next to the
element that caused the restriction violation.

The rule violations visualized are advices to the
architect to review the conceptual design at the
highlighted parts. It is not mandatory for the ar-
chitect to eliminate all notifications and warnings
in the design, as we do not intend to constrain the
creativity and personal responsibility of architects.
These notifications are rather to be understood as
hints to problems that might arise later when the
designed building is actually to be built and the re-
strictions from legal, economical, and many other
domains are not met.

6. Summary and Future Plans

In this paper we introduced an expressive visual
knowledge specification language for conceptual
design in civil engineering. Based on graph technol-
ogy, we described a dynamic knowledge model and
a possibility to define design rules. We further pre-
sented the expressive power of the visual language
by means of examples. The expressiveness of the
three basic design rule types (attribute, relation

19

and cardinality rules) is extended by the concepts
of inheritance and aggregation as well as by run-
time dynamic expression and complex relations.

The defined knowledge in form of design rules
serves on the one hand as reference work for archi-
tects and civil engineers. A more powerful usage
results from the graph-based consistency analysis
checking a conceptual sketch. The internal realiza-
tion of the consistency analysis, not presented in
this paper, is specified in the form of graph trans-
formation using the graph rewriting system PRO-
GRES. The developed tool support provides a use-
ful representation for knowledge engineers and ar-
chitects and demonstrates the feasibility of the ap-
proach.

There are two main extensions to the current
state of our project. The first extension is the en-
hancement of the expressiveness of design rules.
Design rules are atomic at the moment and it is not
possible to combine them to complex constructs.
When a conceptual design is checked against these
design rules, each of them has to be fulfilled. Rules
with practical relevance, for example lawful regu-
lations, are often complex in that they are com-
posed of alternative, conditional, or negated rules.
To represent complex rules in our system, the
atomic design rules will be extended to complex
design rules which are composed of other design
rules using Boolean operators as connectors. By
Boolean operators the knowledge engineer has in-
tuitive means to represent and build-up complex
design rules using our tool.

The second extension concerns the modulariza-

tion of knowledge and the integration of knowledge
modules. It is unrealistic to assume that the com-
plete knowledge represented by the design rules is
acquired and formalized by one single knowledge
engineer and at once. So, it is our goal to open
up the opportunity to store knowledge in different
modules. Therefore, the domain ontology as well
as the design rules will be modularized, reasonably
subdivided according to knowledge sub-domains.
Modules will be layered, so it will be possible to de-
fine some base knowledge about industrial build-
ings on the topmost layer and to define specialized
knowledge, like knowledge for car-garages, on some
lower layer. As a result of the modularization, the
modules themselves keep small and clear.

The ConDes project aims at elaborating domain
specific tool functionality. Currently, the approach
is restricted to the domain of architecture. The
visual language, as the basis for the explicit knowl-
edge formalization, has been developed according
to the restrictions and requirements existing for
architectural design. To develop a support for
other application domains, like mechanical or civil
structural engineering, the knowledge formaliza-
tion part of the project has to be fundamentally
changed. Nevertheless, the system architecture (cf.
Figure 1), the tool construction method, and the
experiences gathered in the domain of architecture
can be adopted.

7. Acknowledgements

The authors gratefully acknowledge the support
of this project by the German Research Foundation
(DFG) within the scope of the priority program
”Network-based Co-operative Planning Processes
in Structural Engineering” [59]. Furthermore, the
authors would like to thank the Nussbaum GmbH,
especially Gerd Schneider, for fruitful discussions
and preparing a collection of design rules. Finally,
we thank A. Borkowski (IPPT PAN Warsaw) and
A. Schürr (TU Darmstadt) for their valuable con-
tributions to the CoDes-project within a joint re-
search cooperation.

References

[1] M. Nagl, Ed., Building Tightly Integrated Software
Development Environments: The IPSEN Approach,

ser. LNCS. Springer, 1996, vol. 1170.

[2] A. Schürr, “Operationales Spezifizieren mit program-
mierten Graphersetzungssystemen,” Dissertation,
RWTH Aachen, Wiesbaden, 1991.

[3] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel,
“UPGRADE: A Framework for Building Graph-Based
Interactive Tools,” ser. LNCS, A. Corradini, H. Ehrig,
H.-J. Kreowski, and G. Rozenberg, Eds., vol. 2505.
Barcelona, Spain: Springer, 2002, pp. 270–285.

[4] B. Kraft and N. Wilhelms, “Visual Knowledge
Specification for Conceptual Design,” in Proc. of the
2005 Intl. Conf. on Computing in Civil Engineering
(ICCC 2005), L. Soibelman and F. Pena-Mora, Eds.
ASCE (CD-ROM), 2005, pp. 1–14.

20

[5] B. Kraft and G. Schneider, “Semantic Roomobjects
for Conceptual Design Support: A Knowledge-Based
Approach,” in Proc. of the 11th Intl. Conf. on

Computer Aided Architectural Design Futures (CAAD
Futures ’05), B. Martens and A. Brown, Eds.
Heidelberg: Springer, 2005, pp. 207–216.

[6] Graphisoft, “ArchiCAD 8.1,” www.graphisoft.com/

(05. 09. 2006), March 2005.

[7] B. Kraft and M. Nagl, “Parameterized Specification
of Conceptual Design Tools in Civil Engineering,”
in Proc. of the 2nd Intl. Workshop on Applications
of Graph Transformation with Industrial Relevance
(AGTIVE 2003), ser. LNCS, J. Pfalz, M. Nagl, and
B. Böhlen, Eds., vol. 3062. Heidelberg: Springer, 2004,
pp. 90–105.

[8] B. Kraft and D. Retkowitz, “Graph Transformations
for Dynamic Knowledge Processing,” in Proc. of the
2006 Intl. Conf. on System Sciences (HICSS 2006),

E. Robichaud, Ed. IEEE Press, 2006, pp. 1–10.

[9] B. Kraft and M. Nagl, “Semantic Tool Support for
Conceptual Design,” in Proc. of the 4th Intl. Symp. on

Information Technology in Civil Engineering (ICCC
2003), I. Flood, Ed. ASCE, 2003, pp. 1–12, (CD-
ROM).

[10] B. Kraft and N. Wilhelms, “Interactive distributed

Knowledge Support for Conceptual Building Design,”
in Proc. of the 10th Intl. Conf. on Computing in Civil
and Building Engineering (ICCCBE-X), K. Beucke,
B. Firmenich, D. Donath, R. Fruchter, and K. Roddis,
Eds. Bauhaus-Universität Weimar, 2004, pp. 1–14.

[11] Object Management Group, Inc., The Common
Object Request Broker: Architecture and Specification,
Revision 2.6.1, 2002, http://www.omg.org (14.6.2002).

[12] C. Alexander, S. Ishikawa, and M. Silverstein, A
Pattern Language: Towns, Buildings, Construction.
Oxford: Oxford University Press, 1977.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[14] J. Joedicke, Entwerfen und Gestalten. Karl Krämer

Verlag, 1993.

[15] F. Steinmann, “Modellbildung und computergestütz-
tes Modellieren in frühen Phasen des architektonischen
Entwurfs,” Dissertation, Universität Weimar, Weimar,
1997.

[16] G. Carrara and Y. E. Kalay, Eds., Knowledge-Based
Computer-Aided Architectural Design. Cambridge,

USA: Elsevier, 1994.

[17] R. D. Sriram, “Artificial intelligence in engineering:
Personal reflections,” Advanced Engineering
Informatics, vol. 20, pp. 3–5, 2006.

[18] T. Maver, “A number is worth a thousand pictures,”
Automation in Construction, vol. 9, pp. 333–336, 2000.

[19] R. D. Coyne, M. A. Rosenman, A. D. Radford,
M. Balachandran, and J. S. Gero, Knowledge-Based
Design Systems. Boston: Addison Wesley, 1990.

[20] K. Meniru, C. Bédard, and H. Rivard, “Early Building

Design using Computers,” in Proc. of the Conf. on
Distributing Knowledge in Building (CIB w78 2002),
P. Christianson, Ed. Dänemark: Aarhaus School of
Architecture, Juni 2002.

[21] R. Mora, C. Bedard, and H. Rivard, “A Framework

for Computer-Aided Conceptual Design of Building
Structures,” in Proc. of the 10th Intl. Conf.
on Computing in Civil and Building Engineering
(ICCCBE-X), K. Beucke, B. Firmenich, D. Donath,
R. Fruchter, and K. Roddis, Eds. Bauhaus-Universität
Weimar, 2004, pp. 1–12.

[22] M. J. Sulaiman, N. K. Weng, C. D. Theng,
and Z. Berdu, “Intelligent CAD Checker For
Building Plan Approval,” in Proc. of the Conf. on
Distributing Knowledge in Building (CIB w78 2002),
P. Christianson, Ed. Dänemark: Aarhaus School of
Architecture, Juni 2002.

[23] M. Eisfeld and R. Scherer, “Assisting Conceptual De-
sign of Building Structures by an Interactive Descrip-
tion Logic-Based Planner,” Advanced Engineering
Informatics, vol. 17, pp. 41–57, 2003.

[24] D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-

Schneider, The Description Logic Handbook, 2nd ed.,
F. Baader, Ed. Cambridge: Cambridge Univeristy
Press, 2003.

[25] M. Eisfeld, “Assistance in Conceptual Design of

Concrete Structures by a Description Logic Planner,”
Dissertation, TU Dresden, Kassel, 2005.

[26] U. Flemming, Case-Based Design in the SEED System.
Cambridge, USA: Elsevier, 1994, pp. 69–91.

[27] U. Flemming and S.-F. Chien, “Schematic Layout
Design in SEED Environment,” ASCE Journal of
Architectural Engineering, vol. 1, no. 4, pp. 162–169,
1995.

[28] J. Szuba, A. Schürr, and A. Borkowski, “GraCAD –
Graph-Based Tool for Conceptual Design,” in Proc. of
the 1st Intl. Conf. on Graph Transformation (ICGT
2002), ser. LNCS, A. Corradini, H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, Eds., no. 2505. Springer,
2002, pp. 363–377.

[29] E. Grabska and W. Palacz, “Floor Layout Design with

the Use of Graph Rewriting System PROGRES,” in
Proc. of the 9th Intl. Workshop of the European Group
for Intelligent Computing in Engineering (EG-ICE),
M. Schellenbach-Held and H. Denk, Eds. Düsseldorf:
VDI Verlag, 2002, pp. 149–157.

[30] J. Szuba and A. Borkowski, “Graph Transformations
in Architectural Design,” Computer Assisted

21

Mechanics and Engineering Science, vol. 10, no. 1, pp.
93–109, 2003.

[31] J. Szuba, “Graphs and Graph Transformations in
Design in Engineering,” Dissertation, Darmstadt

University of Technology, 2005.

[32] G. Stiny and J. Gips, “Shape Grammars and the
Generative Specification of Painting and Sculpture,”
Information Processing, vol. 71, pp. 1460–1465, 1972.

[33] U. Flemming, “More than the Sum of Parts: The
Grammar of Queen Anne Houses,” Environment and
Planning: B, vol. 14, no. 3, pp. 323–350, 1987.

[34] R. Davis, H. Shrobe, and P. Szolovits, “What is a
Knowledge Representation?” AI Magazine, vol. 14,

no. 1, pp. 17–33, 1993.

[35] R. Fruchter and P. Demian, “Knowledge Management
for Reuse,” in Proc. of the Conf. on
Distributing Knowledge in Building (CIB w78 2002),

P. Christianson, Ed. Dänemark: Aarhaus School of
Architecture, Juni 2002.

[36] S. J. Fenves and J. H. G. Jr., “Knowledge based
standards processing.” AI in Engineering, vol. 1, no. 1,

pp. 3–14, 1986.

[37] G. Schmitt, Architectura et Machina – Computer
Aided Architecural Design und Virtuelle Architektur.
Wiesbaden: Vieweg, 1993.

[38] T. Berners-Lee, J. Hendler, and O. Lassila, “The

Semantic Web,” Scientific American, vol. 284, no. 5,
pp. 34–43, 2001.

[39] S. Powers, Practical RDF. Sebastopol, CA, USA:
O’Reilly, 2003.

[40] G. Stumme, “Formal Concept Analysis on its

Way from Mathematics to Computer Science,” in
Proceedings of the 10th Intl. Conference on Conceptual
Structures, ser. LNCS, vol. 2393. Springer, 2002.

[41] J. F. Sowa, Conceptual Structures: Information

Processing in Mind and Machine. Boston, MA, USA:
Addison-Wesley, 1984.

[42] W. Kollewe, M. Skorsky, F. Vogt, and R. Wille,
“TOSCANA – Ein Werkzeug zur begrifflichen Analyse
und Erkundung von Daten.”

[43] J. T. Nosek and I. Roth, “A Comparison
of Formal Knowledge Representation Schemes as
Communication Tools,” Intl. Journal of Man-Machine

Studies, vol. 33, no. 2, pp. 227–239, 1990.

[44] J. Sowa, Priciples of Semantic Networks. San Mateo:
Morgan Kaufmann, 1991.

[45] E. Y.-L. Do and M. Gross, “Thinking with Diagrams
in Architectural Design,” in Artificial Intelligence

Review, ser. 15, no. 1/2. Kluwer Academic Publishers,
2001, pp. 135–149.

[46] At Last Software, “SketchUp,” de.sketchup.com
(30. 08. 2006), August 2006.

[47] KollabNet Corporation, “KollabNet,” www.kollab-
net.com (30. 08. 2006), August 2006.

[48] E. Neufert and P. Neufert, Architects’ Data, 3rd ed.

Oxford, Great Britain: Blackwell Science, 2000.

[49] M. Lefering, “Integrationswerkzeuge in einer Software-
entwicklungs-Umgebung,” Dissertation, RWTH
Aachen, Aachen, 1994.

[50] S. M. Becker, T. Haase, and B. Westfechtel, “Model-

based a-posteriori integration of engineering tools
for incremental development processes,” Journal of
Software and Systems Modeling, vol. 4, no. 2, pp. 123–
140, 2005.

[51] B. Kraft and D. Retkowitz, “Operationale Semantik-
definition für konzeptuelles Regelwissen,” in Proc.

Forum Bauinformatik 2005, L. Weber and F. Schley,
Eds. Lehrstuhl Bauinformatik BTU Cottbus, 2005,
pp. 173–182.

[52] G. Stumme and R. Wille, Eds., Begriffliche
Wissensverarbeitung. Springer, 2000.

[53] M. Fowler, UML konzentriert. Addison-Wesley, 2004.

[54] M. Erwig, “Abstract Syntax and Semantics of
Visual Languages,” Journal of Visual Languages and

Computing, vol. 9, no. 5, pp. 461–483, 1998.

[55] A. Marburger and B. Westfechtel, “Behavioural
Analysis of Telecommunications Systems by Graph
Transformations,” in Proc. of the 2nd Intl. Workshop
on Applications of Graph Transformation with
Industrial Relevance (AGTIVE 2003), ser. LNCS,
J. Pfalz, M. Nagl, and B. Böhlen, Eds., vol. 3062.
Heidelberg: Springer, 2004, pp. 202–219.

[56] A. Schleicher, “Roundtrip Process Evolution Support

in a Wide Spectrum Process Management System,”
Dissertation, RWTH Aachen, Wiesbaden, 2002.

[57] A. J. Winter, “Visuelles Programmieren mit Graph-

ersetzungssystemen,” Dissertation, RWTH Aachen,
Mainz, 2000.

[58] A. Winter, “Exchanging Graphs with GXL,” in Graph

Drawing – 9th Intl. Symp., GD 2001, ser. LNCS,
P. Mutzel, M. Jünger, and S. Leipert, Eds., vol. 2265.
Vienna, Austria: Springer, 2001, pp. 485–500.

[59] U. F. Meißner and U. Rüppel, “Homepage SPP 1103,”
http://www.spp1103.de/ (01. 01. 2006), 2006.

22

	Text1: Advanced Engineering Informaticseds. J.C. Kunz, I.F.C. Smith and T. Tomiyama, Elsevier, Seite 1-22, angenommen, erscheint.

