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Abstract
Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this
end it is important to make a clear distinction between the shakedown range and the ratchetting range. In
cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain
evolution observed in ratchetting experiments. The hardening models used in shakedown analysis are
comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admis-
sible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear
kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both
give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may
have a more pronounced effect than the hardening model.
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1 Introduction

Structural shakedown analysis is designed to exclude structural ratchetting which is produced by in-
homogeneous stress fields [7]. Homogeneous fields are controlled by the behaviour of a representative
material point. The analysis of uniaxial and biaxial stress cycles shows that the kinematic hardening is
the primary reason for material ratchetting. Therefore, it is essential to develop and verify hardening
rules which perform well under various cyclic loadings.

Classical shakedown analysis is based on the Melan-Prager linear kinematic hardening law [10], [11]
which is known to be inadequate to simulate biaxial material ratchetting. The most well-known non-
linear kinematic hardening model has been proposed by Armstrong & Frederick [1]. Conceptually it is
considered a leap in representing cyclic plasticity response of materials but not robust enough to pre-
dict the ratchetting response of materials [2]. Later, cyclic plasticity models have been suggested, which
needed uniaxial and multiaxial cyclic tests for material characterization. Then the best could predict the
amount of ratchetting in experiments which are close to the tests used for parameter identification. But all
known models fail on one or more material ratchetting experiments. The large class of so-called coupled
models fail conceptually to represent biaxial ratchetting if the material parameters are matched to the
uniaxial tests and vice versa, because the uniaxial hardening modulus cannot be chosen independently
of the kinematic hardening [2]. More flexibility is offered by the Dafalias & Popov two-surface model.
Common to all modern models is that they need many parameters, which have to be determined in several
cyclic tests. Parameter determination is vague for some models. Other models need uniaxial or biaxial
ratcheting tests or try to formulate the anisotropic deformation of the yield surface [2]. Such effort is
prohibitive for most industrial applications.

Shakedown analysis of cyclic structural plasticity needs only few characteristic material parameter and
only the bounds of the load history. But it is regularly suggested that the simple constitutive models
in shakedown analysis cannot represent the complexity which is observed in cyclic plasticity. In a first
step numerical shakedown analysis has been extended to a simple two-surface plasticity model with fixed
bounding surface by [5], [17] [18]. Shakedown theorems for the Armstrong & Frederick model have been
proposed in [13], [3]. Fig. 1 suggests that these modern shakedown theorems are still not adequate for a
ratchetting check. The paper considers examples for material and structural shakedown to demonstrate
the amount of uncertainty that has to be expected with existing shakedown theorems.

2 Kinematic hardening models

2.1 The Melan-Prager linear kinematic hardening model

The original Melan-Prager model is characterized by unbounded translation of the loading surface in the
multiaxial stress space [10], [11]:

F [σ − π] ≤ σ2

y, (1)

π̇ =
2

3
Cε̇p =

2

3
λ̇C

∂
√

F

∂σ
, (2)

with the associated plastic flow

ε̇p = λ̇
∂
√

F

∂σ
. (3)
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Figure 1: Capability of hardening models to describe strain evolution in uniaxial ratchetting (qualitatively
after [14], [15]); experiments are typically close to the Ohno & Wang, Jiang curve.

The interior of the loading surface
{

σ | F [σ − π] < σ2
y

}

is the elastic domain which is described by the
function F and the yield stress σy. The von Mises function F [σ] = 3/2 σD : σD with the deviatoric
stress σD is used. The movement of the yield surface F [σ] ≤ σ2

y by the backstress evolution π̇ and the
plastic flow ε̇p are both parallel and normal to the yield surface in this model. Backstress π and plastic
strain εp are both deviators if F is the von Mises function. The uniaxial hardening modulus is H = C .
The linear kinematic hardening always stabilizes to shakedown of homogeneous stress fields after some
initial overprediction of ratchetting [2] (see Fig. 1).

2.2 The bounded linear kinematic hardening model

For realistic materials the stress σ is bounded by the ultimate stress σu. This is achieved by restricting
the translation of the yield surface such that it always stays inside a bounding surface. In a simple two-
surface model the bounding surface is described by the same von Mises function and it does not translate
or deform in stress space. This is characterized by the additional constraint

F [σ] ≤ σ2

u. (4)

The elastic domain remains always in the limit surface and any stress σ in it may be reached if and only
iff

F [π] ≤ (σu − σy)
2. (5)

In a monotonic tension test σy and σu may be identified by Rp0.2 and Rm, respectively. But for cyclic
experiments material parameters from a stable hysteresis curve may be more appropriate.

2.3 The Armstrong & Frederick nonlinear kinematic hardening model

The Armstrong & Frederick model introduces a recall term −ζπ|ε̇p| for the fading memory

π̇ =
2

3
Cε̇p − ζπ|ε̇p|, (6)

with the non-associated plastic flow

ε̇p = λ̇
∂f

∂σ
and |ε̇p| :=

√

2

3
ε̇p : ε̇p (7)
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with

f =
√

F [σ − π] +
3

4

π : π

πu

≤ σu. (8)

The uniaxial hardening modulus is H = C − ζπsign(σ − π). Then πu = C/ζ denotes the ultimate shift
of the center of the initial yield surface F [σ] = σ2

y in a uniaxial tension test, such that σu = σy +πu and
F [π] ≤ π2

u. This is again a two-surface model. The same bounding surface (4) is assumed asymptotically
by the kinematic evolution rule (6) with π̇ no more proportional to the plastic flow ε̇p.

Let n be the outward normal to the yield surface at the current stress point σ. Let σL be the stress state
on the bounding surface with the same outward normal n. Then it holds

n =
σD

L

σu

=
σD

L − π

σy

(9)

The model turns out to be a particular two-surface Mróz kinematic hardening model with a shift of the
yield surface by

π̇ = ζ(σD
L − σD)|ε̇p| (10)

in deviatoric stress space. The shakedown theory has been extended to the Armstrong & Frederick hard-
ening law in [13], [3].

3 Material shakedown analysis

Cyclic plasticity models are checked against the behaviour of homogeneous stress states, which can be
represented by any material point. So called material ratchetting is caused by the material behaviour due
to the nonproportional loading and may be analyzed by consideration of the movement and deforma-
tion of the yield surface. We suggest material shakedown analysis as a simplified method which only
considers the stabilized state and avoids the detailed analysis of the whole deformation process.

Consider a constant tension with σN followed by a cyclic torsion with shear stress τ . Plastic flow ε̇p =

(ε̇p, 1√
3
γ̇p) starts if the stress point σ = (σN ,

√
3τ) lies on the yield surface. The originally unbounded

Melan-Prager model (σu → ∞) is quite unrealistic. For a cyclic loading with nonzero mean value no
finite shakedown load and no finite limit load is found. In contrast to this, the material always shakes
down for fully reversed cycles with a load amplitude at yield stress once the backstress has achieved the
constant stress (σN or τN ). Damage is caused by LCF for larger cycles.

Obviously the bounding surface F [σ] ≤ σ2
u is the key to a realistic modeling of the shakedown behaviour.

Ratchetting of the axial component ε̇p stops if the yield surface touches the bounding surface in stress
point σL. This elastic shakedown situation is constructed for the bounded Melan-Prager model and the
Armstrong & Frederick model in Fig. 2(a) and Fig. 2(b). The stress points at shakedown are denoted σmp

and σaf for the bounded Melan-Prager and the Armstrong & Frederick model, respectively. The figures
also show the backstresses πmp and πaf for both models at shakedown.

1. For the tension-torsion shakedown experiment with constant tension σN and nonzero mean torsion
Fig. 2(a) shows that both hardening models lead to the same material shakedown limit of the
maximum shear stress τmax < τL,

τL =
1√
3

√

σ2
u − σ2

N . (11)
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(a) Torsion with nonzero mean shear stress.
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(b) Fully reversed torsion with zero mean shear stress.

Figure 2: Constant tension and cyclic torsion.

The solution is valid for any cyclic torsion with a minimum shear stress τmin > τL(σu −2σy)/σu.
There is no difference between structural shakedown and material shakedown for the homogeneous
stress state in pure tension. As observed for structural shakedown also the material shakedown
stress coincides with the stress at instantaneous plastic collapse at limit load, because the points
σmp and σaf coincide with σL on the bounding surface.

2. A difference between the linear and the nonlinear kinematic hardening model may be observed in
an experiment with fully reversed torsion cycles with zero mean shear stress (τmin = −τmax). For
constant tension σN the material shakedown condition for the bounded Melan-Prager model with
σu < 2σy in Fig. 2(b) is

τmp =

{

1√
3
σy for 0 ≤ σN ≤ σu − σy,

1√
3

√

σ2
y − (σN + σy − σu)2 for σu − σy < σN ≤ σu.

(12)

The construction of Fig. 2(b) shows that the material shakes down like an unbounded hardening
material for σu ≥ 2σy .

For the Armstrong & Frederick model a result of Lemaı̂tre and Chaboche (1995) is obtained for
constant tension σN and fully reversed torsion (τm = 0) in Fig. 2(b)

τaf =
1√
3

σy

σu

√

σ2
u − σ2

N =
σy

σu

τL. (13)

It is derived from structural shakedown analysis in [3]. The material shakedown load is below
limit load for both models except for pure tension. For pure shear no material shakedown may be
achieved with amplitudes beyond 1/

√
3σy for both models.

On a material level elasticity is any history in the interior of the initial yield surface. The boundary of the
purely elastic range F [σ] < σ2

y can be read as the equation
√

3τ + σ = σy of the dotted circle in Fig.
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2(a) and Fig. 2(b). The only difference between elasticity and elastic material shakedown is that the latter
is any history in the interior of the shifted yield surface (loading surface) F [σ − π] < σ2

y . Therefore,
a distinction can only be made if the nature of the surface is known. For this the backstress needs to be
known with kinematic hardening models. But the backstress is not an observable quantity. Therefore, no
difference between elastic shakedown and elasticity can be made in a continuum theory if the existence
of a yield surface is accepted.

Material limit load is assumed if F [σ] = σ2
u. It is the solution of the equation

√
3τ +σ = σu of the outer

circle in Fig. 2(a) and Fig. 2(b). Both hardening models predict material shakedown for cyclic stress
with nonzero mean value up to material limit load. Eq. (11) makes no distinction between unlimited
ratchetting and plastic collapse for this biaxial loading. In contrast to it another behaviour shows up
with fully reversed stress cycles. For both models separated stress regimes exist with distinct material
behaviour: elastic, shakedown, ratchetting, and collapse. Similarly to structural shakedown analysis no
details of the load history are needed and material characterization is simplified to the knowledge of σy

and σu. In tension torsion loading there is no or only little difference in the shakedown behaviour between
a bounded linear and a nonlinear kinematic hardening material model. But the shakedown limits change
noticeably with the load domains. This is also typically observed in structural shakedown analyses (see
e.g. the interaction diagram of a pipe junction in [16].

4 Structural shakedown formulation

4.1 Shakedown theorem for bounded linear kinematic hardening material

Static shakedown theorems are formulated in terms of stress and define safe structural states giving
an optimization problem for safe load regimes. The maximum safe load regime is the shakedown load
regime avoiding ratchetting and low cycle fatigue. Any admissible solution of the static theorem is a true
lower bound to the safe load regime. A body shakes down elastically for the given history of loading
P(t) varying in load regime L if the plastic strains εp(t) become stationary, i.e.

lim
t→∞

ε̇p(x, t) = 0, ∀ x ∈ V. (14)

and the total plastic energy dissipation Wp in the structure for the whole load history is bounded,

Wp =

∞
∫

0

∫

V

σ(x, t) : ε̇p(x, t)dxdt < ∞. (15)

Therefore, a body shakes down if independent of the loading history the body approaches asymptotically
an elastic limit state. The extended static theorem of shakedown for a bounded kinematic hardening
material can be formulated as follows [5], [17]:

If there exist a time–independent backstress field π(x) satisfying

F [π(x)] ≤ (σu(x) − σy(x))2, (16)

a factor α > 1 and a time–independent residual stress field ρ(x) such that

F [ασE(x, t) + ρ(x) − π(x)] ≤ σ2

y(x)) (17)

holds for all possible loads P(t) ∈ L and for all material points x, then the structure will
shake down elastically under the given convex load domain L.
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The time history of a load P (t) = (q(t),p(t)) is often not well-known. It can however usually be stated
that the loads (e.g. mechanical and thermal loads) vary only within a certain convex load domain L.
Typically, L is given by amplitudes or admissible bounds. If NL is the number of corners P 1, . . . ,P NL

of L, then all loads P (t) ∈ L can be represented as convex combination with 0 ≤ λj(t)

P (t) = λ1(t)P 1 + . . . + λNL
(t)P NL

,

NL
∑

j=1

= λj(t) = 1.

The load-carrying capacity is exhausted by enlargement of L with the factor α > 1 causing LCF, ratch-
etting or collapse. The shakedown theory analyzes only the shakedown state. It is sufficient to satisfy
the shakedown conditions only in the NL corners P 1, . . . ,P NL

of L if L is a convex set, because the
shakedown theorems lead to convex optimization problems.

The greatest value αsd for which the theorem holds is called shakedown-factor. This lower bound ap-
proach leads to the convex optimization problem

max α (18)

s.t. F [ασE
j + ρ − π] ≤ σ2

y in V, j = 1, . . . , NL (19)

F [π] ≤ (σu − σy)
2 in V (20)

div ρ = 0 in V (21)

ρ n = 0 on ∂Vσ (22)

with infinitely many constraints, which can be reduced to a finite problem by FEM discretization. By use
of the Besseling overlay material model it can be shown that the theorem holds for any stress strain curve
[17]. Shakedown theorems for the Armstrong & Frederick model have been suggested in [13], [3].

Shakedown analysis gives the largest range in which the loads may safely vary with arbitrary load history.
If the load regime L shrinks to a single load point, limit analysis is obtained as a special case. For
the perfectly plastic behaviour (σu = σy), the backstresses π are identical to zero due to inequality
(20). Melan’s original theorem ([10]) for unbounded kinematic hardening can be also deduced from the
previous formulation if σu → ∞. Then inequality (20) is not relevant anymore and the backstresses π

are free variables.

4.2 Discretization and Optimization

The shakedown theorems formulated for the continuum can be discretized by the FEM or they can be
deduced directly for a discretized structure. For the FEM the structure V is decomposed in NE finite
elements with the NG Gaussian points. The constraints of the optimization problem are satisfied only in
the Gaussian points.

The number of Gaussian points becomes huge for industrial structures and no effective solution algo-
rithms for the nonlinear optimization problem are available. A method for handling such large–scale
optimization problems called basis reduction technique, was used in [17], [4], [5]. This basis reduction
technique generalizes the line search technique, well–known in optimization theory. Instead of searching
the whole feasible region for the optimum a search direction (a subspace with a small dimension) is cho-
sen and one searches for the best value in this direction. The basis of the subspaces are generated by the
general purpose Finite Element Code PERMAS [6], [8]. The basis reduction and the subspace iteration
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technique described [4], [17] for perfectly plastic material cannot be directly applied to the shakedown
problem for bounded kinematic hardening model. Therefore, in [5] a method for arbitrary 3–dimensional
finite elements has been proposed for a bounded kinematic hardening material law.

4.3 Shakedown analysis of a tension torsion experiment

The shakedown domain for the FEM-model with HEXE20 [8] elements (Fig. 3(a)) was computed by the
basis-reduction method for constant tension and cyclic torsion with zero mean stress. The geometry of
the specimen is taken from [12] with Ra = 12.7cm and Ri = 11.17cm. The interaction diagram (Fig.
3(b)) for kinematic hardening material with σu = 1.3σy is normalized by the pure shakedown tension
Nz0

and by the pure shakedown moment Mz0
for perfectly plastic material with yield stress σy . The

convex load domain L is generated by the constant load N and the load vertices M and −M , such that
the elastic stresses σE for every load in L are given by σE = σE

N + µ(σE
M ) + (1 − µ)(−σE

M ). The

(a) FEM mesh
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(b) Material shakedown interaction diagram

Figure 3: FEM mesh and material shakedown interaction diagram for fully reversed tension loading,
normalized by the shakedown tension N p and shakedown moment M p

z for perfectly plastic material.

interaction diagram shows a significant safety benefit for the kinematic hardening law in comparison
to the perfectly plastic shakedown domain. Other examples for this effect (including thermally loaded
structures) are given in [5].

4.4 Shakedown analysis of a rotating disc

A turbine disc with uniform thickness rotates around its axis at an angular velocity ω. A radial tem-
perature distribution T (r) = r2

R2 TR with outer radius R is applied. Twenty axisymmetrical ring el-
ements with quadrilateral cross section QUAX9 [8] are used for the discretization. Due to the sym-
metry of the problem only the upper half of the turbine is considered. The load factors corresponding
to the elastic, the perfectly plastic and the bounded kinematic hardening behavior were computed for
different ratios of ω and T R. The load domain L has four load vertices P(1) = (ω2, 0), P(2) =

(0, T R), P(3) = (ω2, T R), P(4) = (0, 0). The enlarged domain αL is completely determined by the
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load vertex
(

αω2, αT R
)

. The points
(

αω2, αT R
)

where α is the corresponding computed load factor,
are represented for different ratios of ω2 and T R. The obtained numerical results are shown in Fig. 4.
Fig. 4 shows that the same finite shakedown load as for unbounded hardening is assumed for σu ≥ 2σy .
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Figure 4: Structural shakedown diagram for a turbine disc

There is a range of ω where the LCF limit is independent on the hardening. The shakedown range is
twice the elastic range for local failure under proportional loading.

5 Summary

Limit and shakedown analyses are simplified but exact methods of plasticity, which do not contain any
restrictive prerequisites apart from sufficient ductility. The simplifications concern the details of material
behaviour and of the load history. Shakedown analysis could be extended for a two-surface plasticity
model of bounded linear kinematic hardening and to the Armstrong & Frederick nonlinear kinematic
hardening model. For cyclic loading the linear and nonlinear kinematic hardening models exhibit quite
distinct ratchetting behaviour but they predict the same or quite similar shakedown ranges.

In contrast to this, the shakedown limits change noticeably with the load domains. The shakedown range
is the minimum of the collapse limit and twice the elastic range, for local macroscopic plastic failure
under proportional loading. This result holds for perfectly plastic material as well as for unbounded
kinematic hardening. Also the structural influence of a nonhomogeneous stress field may have a larger
influence than the differences in the considered hardening models.
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[7] H. Hübel, 1996. Basic Conditions for Material and Structural Ratcheting, Nuclear Engineering
and Design, 162, (1996), 55–65.

[8] Intes, PERMAS User’s Reference Manuals, Intes Publications No. 202, 207, 208, 302, UM 404,
UM 405, Stuttgart, Germany (1988).

[9] J. Lemaitre, J.-L. Chaboche,Mechanics of Solid Materials, University Press, Cambridge (1990).
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