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Abstract. This paper presents a numerical procedure for reliability analysis of thin plates and 
shells with respect to plastic collapse. The procedure involves a deterministic limit analysis 
for each probabilistic iteration, which is based on the upper bound approach and the use of the 
exact Ilyushin yield surface. Probabilistic limit analysis deals with uncertainties of the loads, 
material strength and thickness of the shell. Based on a direct definition of the limit state 
function, the calculation of the failure probability may be efficiently solved by using the First 
and Second Order Reliability Methods (FORM and SORM). The problem of reliability of 
structural systems (series systems) will be handled by the application of a special technique 
which permits to find all the design points corresponding to all the failure modes. Studies 
show, in this case, that it improves considerably the FORM and SORM results. 

 
 
1 INTRODUCTION 

The reliability analysis of plates and shells with respect to plastic collapse or to 
inadaptation was formulated on the basis of limit and shakedown theorems [1]. The technique 
was based upon an upper bound approach using a re-parameterized exact Ilyushin yield 
surface and nonlinear optimization procedures. Based on a direct definition of the limit state 
function, the non-linear problems may be efficiently solved by using the First and Second 
Order Reliability Methods (FORM and SORM). In order to get the design point, a non-linear 
optimization was implemented. FORM and SORM match particularly well with direct 
plasticity methods because they render the problem time invariant and they calculate 
sensitivities effectively from quantities already obtained by the minimization of the upper 
bound. 

The non-linear optimization algorithm developed in [1] is guaranteed to converge to a 
minimum-distance point on the limit state surface, provided that the limit state function is 
continuous and differentiable. However, as with any non-convex optimization problem, it is 
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not guaranteed that the solution point will be the global minimum-distance point when the 
system has more than one failure mode. This paper aims at extending the method developed 
in [1] for the probabilistic shakedown analysis of multimode-failure of plate and shell 
structures. A method to successively finding the multiple design points of a component 
reliability problem, when they exist on the limit state surface, is presented. Each design point 
corresponds with an individual failure mode or mechanism. FORM and SORM 
approximations are applied at each design point followed by a series system reliability 
analysis to lead to improved estimates of the system probability of failure. 

2 PROBABILISTIC SHAKEDOWN ANALYSIS OF SHELLS 

Let ( )1 2, ,..., nX X X=X  be an n-dimensional random variable vector characterizing 

uncertainties in loads, material strength and shell thickness, and ( )1 2, ,..., nx x x=x  be 
realizations of X . The deterministic safety margin is based on the comparison of a structural 
resistance (threshold) R  and loading S . With ,R S  are functions of X , the structure fails for 
any realization with non-positive failure function or limit state function, i.e. 

0        for failure,
( ) ( ) ( ) 0        for limit state,

0        for safe structure.
g R S

<
= − =
>

X X X  (1) 

The limit state function ( ) 0g =x , defines the limit state hyper-surface F∂  which separates 
the failure region { }( ) 0F g= <x x  from the safe region. The failure probability fP  is the 

probability that ( )g X  is non-positive, i.e. 

( )( ) 0 ( ) ,f
F

P P g f d= ≤ = ∫ XX x x  (2) 

where ( )fX x  is the n-dimensional joint probability-density function. In general, evaluation of 
the integral in (2) for an arbitrary failure region may not be possible. Therefore, 
approximation methods are obviously needed. In this study, the First- and Second-Order 
Reliability Methods (FORM and SORM) are used to evaluate the failure probability. FORM 
and SORM are the most effective methods if gradient information is available [2].  

2.1 Definition of the limit state function 
As mentioned above, the limit state function contains the parameters of structural 

resistance and loading. By normalization with the actual load P , the limit state function can 
be expressed by the form [1, 3] 

lim 1,g α= −  (3) 

in which limα  is the shakedown load factor calculated from an optimization problem. Details 
of a numerical algorithm for shakedown analysis of thin shells can be found in [4]. The limit 
state function is the function of the yield stress variable 1nX − , thickness variable nX  and load 
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variables jX  ( 1,..., 2j n= − ). The actual load Q, in general, can be defined by its components 
as follows 

2
0

1
,

n

j j
j

Q x Q
−

=

=∑  (4) 

where jx  and 0
jQ  are the realization and constant reference load of the thj  basic load variable 

jX , respectively. By that way, the actual stress resultants σ  can also be decomposed as 

2
0

1
.

n

j j
j

x
−

=

=∑σ σ  (5) 

The Jacobian and the Hessian of the limit state function, /g∂ ∂x  and 2 2/g∂ ∂x , repectively 
are needed for the FORM and SORM as well as for finding the most likely failure points. 
They must be first calculated at each probabilistic iteration in the physical x-space. Then it is 
transferred into the standardized Gaussian u-space by using the chain rule 

( ) ( ) ( )u u x ug g g∇ = ∇ = ∇ ∇u x x x , (6) 

( ) ( )2 2 2( ) ( ) ( ) ( )T
u u x u u x u x ug g g g∇ = ∇ ∇ ∇ = ∇ ∇ ∇ +∇ ∇u x x x x x x x .  

The calculation of the Jacobian and the Hessian in the physical x-space is based on a 
sensitivity analysis. Details of the calculation can be found in [3]. 

2.2 First- and Second-Order Reliability Methods 
It is welknown that the most essential contributions to the failure probability come from 

the vicinity of the most likely failure point if the distance from the origin in the standardized 
Gaussian space to this point is suitably large [5]. The most likely failure point or the design 
point is the point on the limit state surface that has the shortest distance to the origin in the u -
space. FORM and SORM are analytical probability integration methods in which the limit 
state function are approximated by a linear or second-order surface at the design point in the u 
-space. If the limit state function is not strictly non-linear, the probability of failure fP  can be 
determined with good accuracy by FORM as 

20.5
,

1( ) ,
2

HL
z

f I HLP e dz
β

β
π

−
−

−∞

= Φ − = ∫  (7) 

where HLβ  is the distance from the origin in the u-space to the design point on the limit state 
surface and ( ).Φ  is the standard Gaussian distribution function. HLβ  is defined as the shortest 
distance from origin to the limit state surface F∂ , i.e. 

( ) 0
min T

HL g
β

=
=

u
u u . (8) 

A non-linear optimization algorithm which is based on the sequential quadratic 
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programming (SQP) is adopted to solve the optimization problem in (8). Details of the 
algorithm can be found in [1].  

As an attempt to improve the accuracy of FORM, the limit state surface is approximated by 
a quadratic hypersurface with the main curvatures jκ  ( 1,..., 1j n= − ) at the design point are 
equal to those of the limit state surface in SORM. The failure probability is then calculated as 
a three term approximation [6] 

, 1 2 3,f IIP S S S= + +  (9) 

with 

( )
1 1/2

1
1

( ) 1 ,
n

HL HL j
j

S β β κ
− −

=

= Φ − −∏   

[ ] ( ) ( )
1 11/2 1/2

2
1 1

( ) ( ) 1 1 ( 1) ,
n n

HL HL HL HL j HL j
j j

S β β φ β β κ β κ
− −− −

= =

 
= Φ − − − − − + 

 
∏ ∏   

[ ] ( ) ( )
1 11/2 1/2

3
1 1

( 1) ( ) ( ) 1 Re 1 ( )
n n

HL HL HL HL HL j HL j
j j

S iβ β β φ β β κ β κ
− −− −

= =

   = + Φ − − − − − +  
   
∏ ∏   

where 1i = − , [ ]Re .  represents the real part of the complex argument and (.)φ  is the 
standard Gaussian probability density function. 

3 MULTIMODE FAILURE  
Structural systems can generally be characterized as series or parallel systems or some 

combination of the two [7]. In series system, the formation of any individual failure mode or 
mechanism is defined as system failure. For example, in statically determinate or rigid-plastic 
structures, formation of a collapse mechanism will result in failure of the total system and 
therefore they can be modelled as series system with each element of the series being a failure 
mechanism. In parallel system, failure in a single element will not result in failure of the 
system, because the remaining elements may be able to sustain the external loads by 
redistributing of the loads. A typical example of a parallel system is a statically indeterminate 
structure. Failure of such structures will always require that more than one element fails 
before the structure loses integrity and fails. 

System-reliability analysis concerns the calculation of the failure probability when the 
structure has more than one failure mode (multimode failure). Mathematically we encounter 
system reliability analysis if the limit state surface is composed by more pieces that generally 
intersect pairwise in sets of singular points. Each of these pieces corresponds with an 
individual failure mode or mechanism. This section aims at presenting a method to 
successively find all the design points of a system-reliability problem, if they exist on the 
limit state surface. FORM and SORM approximations are applied at each design point 
followed by a series system reliability analysis to lead to improved estimates of the system 
failure probability. 
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3.1 Bounds for the system probability of failure 

If there are q  failure mechanisms and the limit state surface is respectively described by q  
equations 

1( ) ( ,..., ) 0,    1,...,i i ng g X X i q= = =X  (10) 

and if we denote the failure due to the thi  mode as the random event { } ( ) 0i iE g= ≤x X , then 

the probability that the system fails is the probability that any failure mechanism occurs. It 
means that 

( )1 2
1

... .
q

f q i
i

P P E E E P E
=

 
= =  

 
  



 (11) 

If the joint probability density function of the failure events ( )Ef e  is known, then the 
system probability of failure can be calculated by the q -dimensional integral 

0 0

1 1
1

... ( ,..., ) ... .
q

f i E q q
i

P P E f e e de de
= −∞ −∞

 
= = 

 
∫ ∫

 (12) 

Generally, evaluation of the system probability of failure through direct integration of (12) 
may not be feasible, even if an expression exists for the joint density function of failure modes 
and all failure modes have been identified. In this case, bounds relieve the necessity of 
evaluating the q -dimensional integral either analytically, numerically or through Monte Carlo 
simulation with some variance reduction [8], [9]. Several first-order bounds exist (e.g. [10]) 
which only require knowledge of the individual probabilities of failure resulting directly from 
the axioms of the probability theory. Unfortunately, these bounds may be quite wide for 
structural reliability application [11]. Closer or second-order bounds can be given in terms of 
the individual failure probabilities and the joint failure probabilities between any two modes. 
If we denote the individual failure probabilities as 

[ ]( ) 0 ,   1,...,i iP P g i q= ≤ =X , (13) 

then the bounds of the system probability of failure for a series system are [12] 

( )
1

1
2 1 1 2

max ,  0 max
q q qi

i ij f i ijj ii j i i
P P P P P P

−

<
= = = =

 
+ − ≤ ≤ − 

 
∑ ∑ ∑ ∑ , (14) 

where the notation ijP  has been used for the joint failure probability 

( ) 0,  ( ) 0 .ij i jP P g g = ≤ ≤ X X  (15) 

Since not all couples of the random events iE  are taken into account in equation (14) the 
ordering of the modes will have an effect on the bounds. Practical experience suggested that 
ordering the failure modes according to decreasing values iP  may correspond to the better 
bounds. In structural reliability, these bounds are frequently used and are considered 
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sufficiently accurate for most structural systems [11]. 

3.2 First-order system reliability analysis 
In a first-order system reliability analysis, the failure set is approximated by the polyhedral 

set bounded by the tangent hyper-planes at the design points. Each design point corresponds 
to a failure mode and they are the points on the limit state surface that have smallest distances 
to the origin in the u-space. We denote the design points in the u-space as *,  1,2,...,i i q=u  
and associated with each design point, we define the distance *

HLi iβ = u , which is the 

corresponding reliability index. The individual probabilities of failure iP  are determined as 

( ).i HLiP β= Φ −  (16) 

The first-order approximation to ijP  is obtained by approximating the joint failure set by 
the set bounded by the tangent hyper-planes at the design points for the two failure modes. 
The joint failure probability ijP  is thus calculated as 

( ) ( ), ; , ; ,
HLjHLi

ij HLi HLj ij ijP x y dxdy
ββ

β β ρ ϕ ρ
−−

−∞ −∞

= Φ − − = ∫ ∫  (17) 

where the correlation coefficients between two failure modes ijρ  are 

( )* *

cos ,
T

i j
ij ij

HLi HLj

ρ ν
β β

= =
u u

 (18) 

and ( ), ;x yϕ ρ ,  

( )
2 2

22

1 1 2, ; exp
2 12 1

x y xyx y ρϕ ρ
ρπ ρ

 + −
= − −−  

, (19) 

is the probability density function for a bivariate normal vector with zero mean values, unit 
variances and correlation coefficient ρ . Substituting the density function in (17) by the 
corresponding cumulative distribution function ( ), ;x y ρΦ , which gives 

( ) ( )

( ) ( ) ( )
0

0

, ;
, ;0

   , ; .

ij

ij

HLi HLj
ij HLi HLj

HLi HLj HLi HLj

z
P dz

z dz

ρ

ρ

β β
β β

ρ

β β ϕ β β

∂Φ − −
= Φ − − +

∂

= Φ − Φ − + − −

∫

∫
 

(20) 

Numerical techniques are available for evaluating the joint failure probability in equation 
(20), e.g. Newton-Codes method. Simple bounds on the joint failure probability, which is 
based on geometrical illustration of a multimode failure system, can also be given, thus 
avoiding any numerical integration [7]. It should be noted that the bounds (14) still estimate a 
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solution of the generally unknown region which respect to the exact value of the probability 
of failure. If we do not know where the values of the probabilities are placed with respect to 
the exact values, we cannot confirm that the bounds given above estimate the probability of 
failure. They bound some approximation and we can only more-or-less reasonably expect that 
the approximation is close to the exact result and the bounds remain meaningful. 

3.3 Calculation of the multiple design points 
A real structure may have several failure modes or failure mechanisms and the existence of 

multiple failure modes (or multiple design points) may cause the following problems in 
FORM and SORM. That is, the optimization algorithm which was developed in [1] may 
converge to a local design point. In that case, the FORM/SORM solution will miss the region 
of dominant contribution to the failure probability integral and, thus, has large error. Even if 
the global design point is found, the neighborhoods of the local design points may also have a 
significant contribution to the failure probability integral. Approximating the limit state 
surface only at the global design point will lose these contributions. 

In this section, a simple method is presented for finding the multiple design points of a 
system reliability analysis problem, when they exist on the limit state surface. The method 
was developed by Der Kiureghian and Dakessian [13]. The basic idea of the method is to 
construct “barriers” around previously found solutions, thus forcing the algorithm to seek a 
new solution. Once all the design points are known, the failure probability of series system is 
calculated by using first-order system reliability method and second-order bounds as 
presented above. 

Suppose that the first design point *
1u  is already found by the non-linear optimization 

algorithm developed in [1]. A “barrier” for this point is then constructed by adding a ‘bulge’ 
to the limit state surface. Thus, the limit state function for the deformed surface is 

( ) ( ) ( )1 1 ,g g B= +u u u  (21) 

where ( )1B u  defines the bulge fitted at *
1u . Solving the optimization problem with the new 

limit state function ( )1g u  leads to a second design point *
2u . In order to seek the third solution 

point *
3u , a bulge ( )2B u  is now added at *

2u  resulting in the new limit state function 

( ) ( ) ( )2 1 2g g B= +u u u . The process is repeated until all design points are found. The limit 

state function for finding the thq design point thus, is 

( ) ( ) ( )
1

1
1

q

q i
i

g g B
−

−
=

= +∑u u u . (22) 

Details of the definition of the bulges ( )iB u can be found in [13]. As is shown in Fig. 1, it 
is possible for the optimization algorithm to converge to the points located at the feet of the 
bulge, which are actually the spurious minimum-distance points. However, practical 
experience showed that this occurs only when there is no other genuine design point. Thus, 
convergence to a spurious point usually means that no other genuine design point exists [13]. 
This nature can be used as the stopping criterion of the algorithm. 
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Figure 1: Definition of a bulge at design point *

iu  

4 NUMERICAL EXAMPLE  
A numerical example is presented in this section to assess the performance of the proposed 

method. In this example, a well-known problem with several failure modes is investigated. 
Consider the frame formed of three plates in Fig. 2 (left) which is generated by extruding a 
plane frame in the third direction. It is subjected to a constant uniform horizontal and a 
constant vertical load H and V. The loading and geometrical data were selected to match those 
of the plane frame included in the book of Madsen et al. [7]. Loads and limit plastic bending 
moment (material strength) are random variables which are assumed mutually independent 
and log-normally distributed. There are three basic variables and their mean values and 
standard deviations are given in table 1. 

The thickness of the shell is supposed to be constant =0.4 mh . The plastic moment 
capacity pM  at each section is then a random variable with mean value and standard 

deviation 
2

2

134.9 kNm,
4

13.49 kNm.
4

p y

p y

M

M

bh

bh

σ

σ

µ µ

σ σ

= =

= =

 

(23) 

Hinge lines are thought to form at the end of elements (beam and columns) or at lines of 
load application. As in the original plane frame, three failure modes caused by plastic hinge 
mechanisms are expected to occur. Those are sway mode, frame mode and beam mode (Fig. 
3). 

 

βHLiiu*

γβ
H

Li

u1

2u



Thanh Ngọc Trần and M. Staat. 

 9 

Table 1: Mean values and standard deviations of basic variables - Folding shell 

 Horizontal load H 
(kN/m) 

Vertical load V 
(kN/m) 

Yield stress yσ  
(kN/m2) 

Mean value µ  50 40 3372.5 

Standard deviation σ  15 12 337.25 
 

 
 

Figure 2: Geometrical dimensions and FE-mesh of the frame 

Numerical computation is carried out by using 300 quadrangular flat 4-node shell elements 
as shown in Fig. 2 (right). The ‘barriers’ technique developed by Der Kiureghian and 
Dakessian is performed with 0.4γ = , 0.3δ =  in order to find all the three design points as 
expected. γ  and δ  are two parameters used to define the bulges (see [13]). Our numerical 
results of design points are presented in table 2. The global design point 

[ ]*
1 3.083 0.944   0.024   0.329 T= −u  with 1 3.083HLβ =  was found firstly in the u-space. 

Three components of u  are the sensitivities of the three basic variables: H, V and yield stress 
yσ , respectively. This design point corresponds to the sway mode since the sensitivieties 

show that the effect of the horizontal load H  is dominant. After adding a bulge 1( )B u  at *
1u , 

the algorithm converges to the second design point [ ]*
2 3.24 0.776   0.47   0.422 T= −u  with 

2 3.240HLβ = . This design point corresponds clearly to the frame mode because both of the 
loads have similar sensitivities and so both have large contributions to the failure probability 
of the structure. We continuously added a bulge 2( )B u  at *

2u  and found the third design point 

[ ]*
3 3.461 0.457   0.783   0.421 T= −u  with 3 3.461HLβ =  which corresponds to the beam 

mode. Now we suppose to proceed further and place a bulge 3( )B u  at *
3u . Our search 

V
H

b=1 m

l=5 ml=5 m

l=
5 

m
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algorithm now converges to [ ]*
4 3.307 0.925   0.325   0.194 T= − −u  with 4 3.307HLβ = . The 

distance * *
4 1 1.218− =u u  between the two design points is less than but close to the radius 

1 0.4 3.083 1.233r = × =  of the bulge, thus confirming that *
4u  is a spurious design point. If we 

further place a bulge 4( )B u  at *
4u  and continue the algorithm, the point 

[ ]*
5 4.07 0.667   0.59   0.454 T= −u  with 5 4.070HLβ =  is found. Obviously it is also a spurious 

design point since the distances * *
5 3 1.24− =u u  between the two design points *

3u , *
5u  and 

* *
5 2 1.028− =u u  between the two design points *

2u , *
5u  are less than the radius 

3 0.4 3.461 1.384r = × =  and 2 0.4 3.24 1.296r = × =  of the bulges. Thus, at this stage, we stop 
to search and assume that there are only three design points for this problem. It should be 
noted here that, the SQP algorithm worked well in this case to seek all the optimal points.  

 

 
Figure 3: Three failure modes of the frame 

Table 2: Multiple design points and search steps - Folding shell ( /i ia u= u ) 

Step 1a  2a  3a  HLβ  Design point Mode 

1 0.944 0.024 – 0.329 3.083 global Sway mode 

2 0.776 0.470 – 0.422 3.240 local Frame mode 

3 0.457 0.783 – 0.421 3.461 local Beam mode 

4 0.925 – 0.325 – 0.194 3.307 spurious - 

5 0.667 0.590 – 0.454 4.070 spurious - 
 

H V H
V

H V

Frame mode Sway mode

Beam mode
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Table 3: Failure mode correlations and joint failure mode probabilities - Folding shell (first order) 

 Failure mode correlations ijρ  Joint failure probabilities 210ijP ×  

 1 2 3 1 2 3 
1 1.0 0.883 0.589 0.1023 0.0301 0.0037 
2 0.883 1.0 0.899 0.0301 0.0598 0.0155 
3 0.589 0.899 1.0 0.0037 0.0155 0.0269 

 

Table 4: Failure probability of the folding shell ( 210fP × ) 

Method 
*
1u  alone (sway) *

2u  alone (frame) *
3u  alone (beam) *

1u , *
2u  and *

3u  

FORM SORM FORM SORM FORM SORM FORM 
Present 0.1023 0.1026 0.0598 0.110 0.0269 0.0166 0.140-0.143 

Madsen et al. [9] 0.336 0.322 0.199 0.267 0.0291 0.0283 0.467 
 

Table 5: Reliability indices of the folding shell HLβ  

Method 
*
1u  alone (sway) *

2u  alone (frame) *
3u  alone (beam) *

1u , *
2u  and *

3u  

FORM SORM FORM SORM FORM SORM FORM 
Present 3.083 3.082 3.240 3.062 3.461 3.589 2.982-2.989 

Madsen et al. [9] 2.710 2.725 2.880 2.786 3.440 3.447 2.600 
 

The linear approximation of the failure set is now constructed by the tangent hyper-planes 
at the three design points. The corresponding approximations of failure mode correlations and 
joint failure mode probabilities are listed in table 3. The single and system failure probabilities 
and reliability indices are presented in table 4 and in table 5, respectively, compared with 
those of the original plane frame obtained by Madsen et al. [7]. It is shown that our two first 
failure probabilities of sway and frame modes are smaller than those of plane frame while the 
last one compares well with the solution of Madsen et al. leading to a smaller failure 
probability of the system. It is understandable since the stress state is now three-dimensional, 
not only the bending moment but also the compression force contribute to the failure of the 
structure. 
 

The shell problem of a pipe T-junction with the two failure modes burst of the large pipe 
and fully plastic bending of the small pipe is discussed with generalization to failure by 
inadaptation in [14] and shows FORM solutions which are close to the analytical failure 
probabilities. For space limitations, the full detail of probabilistic limit and shakedown 
analysis with FORM/SORM for general structures could not be presented here but it is given 
in [15] for a single failure mode.  
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5 CONCLUSIONS  
The present work provides a direct plastic analysis method for the integrity assessment of 

shell structures with multimode failure. Practical experience showed that the existence of 
multiple design points in component reliability analysis could give rise to large errors in 
FORM and SORM approximations of the failure probability. In this work, a technique has 
been applied with a SQP algorithm to successively find the multiple design points of a system 
reliability problem, if they exist on the limit state surface. This technique is based upon a 
‘barrier’ method by constructing a bulge around previously found design points, thus forcing 
the algorithm to seek a new one. Second-order bounds of the reliability of series system are 
then calculated based on the first-order system reliability analysis. The application of the 
method is demonstrated with a simple numerical example. 
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