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Abstract

In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis

that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic

deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown

analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and

thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive

plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.
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1. Introduction

In the new European standard for unfired pressure

vessels, EN 13445-3, [1], there are two approaches for a

Design-by-Analysis (DBA), that cover both the stress

categorization method (Annex C) and the direct route

method (Annex B). The stress categorization method is an

elastic route to the assessment of inelastic structural failure.

The total elastic stress is considered to be composed of three

different stress categories: primary sP; secondary sQ; and

peak sF : Admissibility is shown if the linearized stress

categories do not exceed the limits in the code rules (ASME

Pressure Vessel and Boiler Code [2] or EN 13445-3 [1]).

This stress categorization extrapolates limit and shakedown

analysis (LISA) for simple beam and thin shell structures

to complex geometries [3,4] which can hardly be

recommended.

The new direct route by elasto-plastic calculation in

prEN 13445-3 Annex B [1] seems to be the more promising

alternative. For the time being, it is restricted to sufficiently

ductile steels and steel castings below the creep range.

The paper generalizes the direct route in Ref. [4] by use of

advanced LISA. The examples in Ref. [5] and in this paper

show that the 3f (3Sm) criterion [1,2] does not generally

represent a conservative shakedown criterion. A new

criterion is theoretically justified.

2. Procedures for direct DBA

The direct route calculates the design resistance (limit

action) with respect to ultimate limit states of the structure.

Design checks are designated by failure modes. The

following ones are included in the first issue of EN

13445-3 Annex B [1,4]:

† Global Plastic Deformation (GPD), with excessive local

strains and ductile rupture.

† Progressive Plastic Deformation (PD), with incremental

collapse (incremental GPD, ratchetting, cyclic creep).

† Instability (I), with large displacements (buckling).

† Fatigue (F), with alternating plasticity (AP) and with

high cycle fatigue, i.e. fatigue with and without

macroscopic plastification.

† Static Equilibrium (SE), with possible overturning and

rigid body movement.
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Actions denote in Ref. [1] all thermo-mechanical

quantities imposed on the structure causing stress or strain.

Actions are classified by their variation in time: permanent

ðGÞ; variable ðQÞ; exceptional ðEÞ; and operating pressures

and temperatures ðp;TÞ: Partial safety factors g are used in

the GPD check for each action to obtain their design values

and to define their combined design effect Ed;

Ed ¼ EdðgGG; gpp; gT T ; gQQ;…Þ: ð1Þ

With the partial safety factor gR for the resistance R of

the structure, the design strength Rd; and the effects Ed are

compared in the design check

Ed # Rd ¼
RðG; p;T ;Q;…Þ

gR
; ð2Þ

which is performed directly in actions with LISA. The

notion of a design strength has been used in Refs. [1,4] but is

not used any more in the present [1].

2.1. Material models in DBA routes

In Refs. [1,4] perfectly plastic materials models are used

for LISA in DBA. However, a closer look at the code rules

shows that hardening is indirectly taken into account

through the dependence of the partial safety factor on the

ratio Rp0:2=t=Rm=20 in the GPD check. Hardening can provide

some additional safety margin, which could be estimated by

advanced LISA with kinematic hardening material models

[6]. Depending on the steel and on the analysis conditions

different design strengths f are used in the stress categor-

ization route such as

f ¼ min
Rp0:2=t

1:5
;

Rm=20

2:4

� �
ð3Þ

for, e.g. ferritic steels [1] with Rp0:2=t at design temperature t

and Rm=20 at 20 8C. Traditionally the GPD check has to be

performed with the more conservative Tresca yield surface

FT ðsÞ ¼ Rd; whereas the PD check uses the more realistic

von Mises yield surface FMðsÞ ¼ Rd: The numerical

difficulties in FEA with the non-smooth Tresca yield

surface are avoided in Refs. [1,4] by reducing the von

Mises limit conservatively by
ffiffi
3

p
=2:

3. Lower bound LISA

Checks against failure modes GPD and PD may be

directly performed by LISA based on Melan’s static or

lower bound theorem. Conservatively the code [1] requires

the use of a perfectly plastic material model and the side-

condition that the maximum absolute value of the principal

strains does not exceed 5%. It could be asked if the simple

perfectly plastic model allows a conservative estimation of

the plastic strain accumulation during ratchetting, because

all known cyclic plasticity models fail on one or more

material ratchetting experiments [7]. However, it is easily

demonstrated that the difference in shakedown analyses for

some linear and nonlinear kinematic hardening models is

smaller than could be expected from cyclic analyses with

such models [6].

3.1. Check against global plastic deformation (GPD)

Static theorems are formulated in terms of stress. They

define safe structural states leading to an optimization

problem for safe monotonic and cyclic loads. The maximum

safe action is the limit load (avoiding GPD) and the elastic

shakedown load (avoiding PD and AP), respectively.

For the LISA approach inequality (2) is not well defined,

because the design effect is a collection of incompatible

design quantities: scalar temperatures Td; vector volume

forces qd in volume V, and vector surface traction pd on the

traction boundary ›Vs with unit normal vector n: Let us

assume that the most unfavourable actions have been

combined to a single design action vector Ad ¼ ðqd; pdÞ:

Then-in the sense of the GPD check—the action is

admissible if the yield condition

FT ðsÞ # Rd in V ð4Þ

is satisfied with the design resistance Rd (allowable stress)

and the Tresca yield function FT : Trivially the structure

must be in static equilibrium, i.e.

2divs ¼ asqd in V ; nTs ¼ aspd on ›Vs: ð5Þ

These conditions can be stated in words as the

Static limit load theorem: An elastic–plastic structure

will not collapse (GPD) under a monotonic effect asAd; if

it is in static equilibrium and if the yield function is

nowhere violated.

For each stress field s; which fulfills the conditions of the

static theorem, as is a safety factor, so that the load-carrying

capacity of the structure is not yet exhausted if as $ 1:

Then the design check of inequality (2) is replaced by the

condition as $ 1:

max as

s:t: FT ½as
Eðx; tÞ þ rðxÞ� # RdðxÞ in V ;

divrðxÞ ¼ 0 in V ;

nTrðxÞ ¼ 0 on ›Vs:

ð6Þ

This maximization problem is discretized by FEM and

solved for monotonic time history (i.e. sEðx; tÞ ¼ sEðxÞ in

(6)) effectively with optimization algorithms [8,9]. A large

as can be used to improve the design.

It should be clearly stated that, without restrictions, this

limit load is truly independent of load history, elastic data

and self-equilibrated stress (secondary stress). This state-

ment is slightly modified if the side-condition on the

maximum absolute value (5%) of the principal strains is
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considered. Five examples in Ref. [4] have been analysed

with the methods cited in Section 4, see Ref. [10]. The

reduction of the limit load by the strain limit was well within

the numerical differences between the FEM analyses in all

cases.

3.2. Check against progressive plastic deformation (PD)

Strictly, only one load case can be checked by limit

analysis. Design checks should be performed by shakedown

analysis, if actions are time-variant. The time history of an

action AðtÞ ¼ ðqðtÞ; pðtÞ;TðtÞÞ is often not well-known. It can

however usually be stated that the actions vary within given

amplitudes or admissible bounds. They define a convex load

range L: If NV is the number of independent actions

A1;…;Aj;…;ANV ; varying in the bounds j2j A0
j # Aj # jþj

A0
j with the reference load A0

j ; respectively, then all actions

AðtÞ [ L can be represented by convex combination of NV

vertices Aj of L; see Fig. 1,

AðtÞ ¼ l1ðtÞA1 þ … þ ljðtÞA1 þ … þ lNV ðtÞANV

with 0 # lj;
XNV

j¼1

lj ¼ 1:

The load-carrying capacity is exhausted by enlargement

of L with the factor a . 1 causing PD, AP or GPD. The

shakedown theory analyzes only the shakedown state. The

shakedown theorems answer the question, whether a

structure from ductile material is plastically safe or not.

Generally, a structure under a load range L shakes down, if

a time-invariant residual stress field rðxÞ can be found such

that the time-variant stress field sðx; tÞ ¼ sEðx; tÞ þ rðxÞ is

statically admissible and the yield condition is fulfilled for

all loads in L; in other words

Static shakedown theorem: An elastic–plastic structure

will not fail with macroscopic plasticity (PD, AP, and

GPD as special case) under time variant actions in asL if

a time-invariant residual stress field r can be found such

that the structure is in static equilibrium and the yield

function is nowhere and at no instance violated. Then the

plastic deformation rates tend to zero.

Strictly, an independent fatigue analysis must show that

the plastic dissipation is bounded. Again one is interested in

the largest factor as; for which the structure shakes down to

asymptotically elastic behaviour.

The same conditions as in the limit load theorems must

be satisfied simultaneously at all times. Their examination

in infinitely many instants is impossible and in addition,

unnecessary. One can show that it is sufficient to satisfy the

shakedown conditions only in the NV basis actions A1;…;

ANV of L since the shakedown theorems lead to convex

optimization problems:

max as

s:t: FMðass
E
j ðxÞ þ rðxÞÞ # R in V ; j ¼ 1;…;NV

divrðxÞ ¼ 0 in V ;

nTrðxÞ ¼ 0 on ›Vs:

ð7Þ

By sE ¼ sE
j the optimization problem of Eq. (6) is

obtained with the only change that now the constraints have

to be satisfied for all j ¼ 1;…;NV simultaneously. It is not

sufficient to examine the critical load cases independently,

because the shakedown analysis of L and the limit analysis

of the critical load cases (vertices of L) may give different

results. PD is considered less critical than GPD, because it

evolves over many cycles and can therefore be discovered

by in-service inspections. Therefore, the ASME code [2]

Fig. 1. Interaction diagram by FEA for a thin pipe and convex load domains L for pressure and temperature actions.
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and EN 13445-3 [1] do not use safety factors in the PD

check.

Different to limit analysis the shakedown theorems are

more complicated for hardening material. In DBA there is

currently no need for such complications, because the

present code requirements are restricted to perfectly plastic

material [1,4]. It should be pointed out that different to limit

analysis, shakedown analysis does not apply if the

elastically calculated stress field contains singularities.

The standard [1] (Annex B.3.9.3.2) states that the check

against PD can be performed for a stress-concentration-free

structure, such that sharp corners have to be removed

eventually from the FEM models.

3.3. Check against alternating plasticity (AP)

The optimization problem (7) (i.e. the PD check),

includes a check against AP, which is accepted in the

DBA manual ([4], p. 2.40), because it is conservative. The

proof of shakedown is easier to perform than cyclic plastic

analyses in a PD check. Shakedown analysis can distinguish

between AP and PD [11], by a well known application of the

shakedown theorem (see [12]). In the AP check, the yield

condition FM½ass
E
j ðxÞ þ rðxÞ� # R for the load domain L

with NV load vertices can be replaced by using the bounds

jþj ; j
2
j for the load vertices Aj where all combinations of the

signs ^ are to be accounted for (Eq. (4.39) on p. 51 of

Ref. [12]):

FM

1

2

XNV

j¼1

^ ðjþj 2 j2j Þass
E
j ðxÞ

2
4

3
5 # R: ð8Þ

4. Direct DBA by LISA

It is the objective of shakedown analysis to demonstrate

that the structure shakes down to stable elastic behaviour

after few initial plastic cycles and to compute the related

safety margins. The DBA Manual [4] uses two methods for

shakedown analysis that do not employ standard optimiz-

ation procedures: elastic compensation ([13,14]) and

deviatoric map [15]. We have implemented LISA into the

general purpose FEM program PERMAS [16] employing

sequential quadratic programming together with an iteration

in a subspace of the space of residual stresses. This method

can handle very large optimization problems [17] and has

been generalized to kinematic hardening materials in Ref.

[9]. FEM-based LISA may be used to compute interaction

diagrams for any complex component. Such diagrams show

the allowable load range for a structure and are used to

decide on the design load range. For demonstration it is

assumed that all partial safety factors are unity in the GPD

check, i.e. g ¼ 1: Inconsistent results are avoided by use of

the von Mises yield function also for limit analysis. The

analyses may be performed at computing costs of only 3–10

linear elastic finite element analyses (FEA). Thus design

variants may be compared and an optimum choice be made.

A comparison with Ref. [1] is discussed in Ref. [10] for two

problems with purely mechanical actions.

4.1. Thin pipe

A thin pipe with the ratio t=R1 ¼ 0:1 between inner radius

R1 and the thickness t is subjected to pressure and thermal

gradient. The pipe is discretized by an axisymmetric ring

element with quadrilateral cross section with 4 nodes. The

element is subjected to axisymmetric mechanical and

thermal actions by inner pressure p and by slowly varying

temperatures. The outer temperature Ta is assumed to be

zero such that the thermal difference Ti 2 Ta corresponds to

the inner temperature Ti: A linear temperature distribution

in the thin shell and temperature independent material data

are assumed. The following load cases L are considered

(see Fig. 1):

LC1: Pressure p and temperature difference T vary

simultaneously with a proportionality factor

(one-parameter action) with two load vertices

P1 ¼ ð0; 0Þ;P2 ¼ ðp; TÞ:

LC2: The pressure p and T vary independently (two-

parameter action) with four load vertices P1 ¼

ðp; 0Þ;P2 ¼ ðp;TÞ;P3 ¼ ð0;TÞ;P4 ¼ ð0; 0Þ:

GPD: The collapse pressure p is obtained under mono-

tonic action with only one load vertex P1 ¼ ðp; 0Þ:

Fig. 1 shows the calculated interaction diagrams of the

cases LC1 and LC2. The pressure and temperature actions

are normalised to the yield pressure and temperature,

respectively. In LC1 the shakedown factor is 2 until the

pressure reaches the collapse pressure. The temperature

action may have an influence on the limit load only through

a change of the resistance RðTÞ: It is not a load, because the

thermal stresses are residual stresses. In the case of pure

mechanical loads the analytical limit pressure Plimit ¼

0:11sy exceeds the yield pressure Pelast ¼ 0:10sy by 10%.

The load cases LC1 and LC2 and their interaction diagrams

differ from the classical Bree diagram (constant primary

load) of a thin pipe under constant pressure and cyclic

temperature.

4.2. Pipe with non-symmetric thermal gradient

The example consists of a pressurized closed pipe with

inner radius R1 and outer radius R2 with R2=R1 ¼ 1:2 which

is subjected to thermal gradients induced by a stratification

of the two-phase flow in the interior of the horizontal pipe.

For the shakedown analysis five load vertices are chosen

from the data set of given temperature distributions with the

highest temperature Tmax: The temperature actions Tj are

applied as temperature differences DTj ¼ Tj 2 50 8C. The

load domain L is spanned by five independent load vertices
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which makes an illustration impossible. A good fit for the

temperature dependent yield stress in the given temperature

range is

syðTÞ ¼ 198:0 2 0:2 8C21·T ½MPa�:

After the first shakedown analysis the maximum

temperature is estimated and the temperature dependent

material data are updated. The temperature independent

material data are taken at 300 8C, i.e. E ¼ 179 GPa,

n ¼ 0:3;aT ¼ 1:7 £ 1027 K21.

Fig. 2 illustrates the highest admissible temperature

differences DTmax ¼ 244 8C for the different constant

pressures. The calculated limit pressure 29.0 MPa is close

to the exact thick pipe solution 29.1 MPa. Following the

standard [1] the limit actions for PD become never effective

in all examples in Ref. [4], because the GPD limits are

typically much lower after reduction by division with

2gpgR=
ffiffi
3

p
for dominating mechanical actions. This indirect

safety margin is lost in shakedown checks under dominating

thermal actions, because the secondary stress sQ is not

limited in the GPD check.

5. Recommendations for the codes rules

With the design strength f, the 3f-criterion DsE # 3f ; see

Ref. [1] (3Sm in Ref. [2]), for elastically computed total

stress range DsE ¼ DðsP þ sQÞ combined with the limit

load criterion for the primary membrane stress sPm
and

primary stress sP can be derived (Eq. (3))

DðsP þ sQÞ # 3f ¼ 2Rp0:2; sPm
# f ¼

2

3
Rp0:2

and sP # 1:5f ¼ Rp0:2:

ð9Þ

This is equivalent to the statement that it is necessary for

the structure to shakedown elastically that the shakedown

range be twice as large as the elastic range but not larger

than the limit load range. It is surprising that the 3f-criterion

is offered for a general shakedown check, because it seems

to have its origin in a simplified argument for the shakedown

check against AP only. A hysteresis loop occurs for perfect

plasticity and kinematic hardening material if sE . Rp02:

One can state that AP occurs if the total strain exceeds twice

the elastic strain at first yielding. Comparison with the

interaction diagrams Figs. 1 and 2 however demonstrates

that the use of the 3f-criterion can hardly be recommended,

because the shakedown range is typically much smaller with

the exception of proportional actions in LC1. If the

shakedown analysis is restricted to an AP check then

twice the elastic yield is obtained as a limit also for two-

parameter actions in LC2 [11]. More precisely, we can

state the

Static shakedown criterion for local failure: An

elastic–plastic structure will not fail locally with

macroscopic alternating plasticity (AP) under time

variant actions with proportional change of all actions,

if the elastically computed equivalent stress range

nowhere exceeds twice the initial yield stress range.

This follows immediately from the classical alternating

plasticity criterion applied to proportional loading by setting

NV ¼ 1; jþ1 ¼ 1j1 in Eq. (8). On the other hand, if in the

structure the PD mode is decisive the proposed criterion is

invalid. In practice, it is not known in advance, which failure

mode will occur in a structure. From a mathematical point of

view, the AP criterion and the elastic shakedown criterion

for unbounded kinematic hardening material are identical in

the case of proportional loading, such that this material

model is not capable of modeling incremental collapse. In

Ref. [6] an example of a rotating disk under a radial

temperature distribution and an angular velocity v is given

where the disk fails under proportional volume loading due

Fig. 2. Interaction diagram by FEA for a pipe with cyclic thermal gradients from stratified two-phase flow over steady internal pressure and example

temperature distribution.

        Direct finite element route for design-by-analysis of pressure components                                                                  5



to PD for a perfectly plastic material. For purely mechanical

loading v the shakedown factor is lower than 2, such that

it is clear that this factor cannot be applied to proportional

loading in general.

Therefore, DsE ¼ DðsP þ sQ þ sFÞ in Eq. (9), such that

the AP check

DðsP þ sQ þ sFÞ # 2Rp0:2; sPm
#

2

3
Rp0:2

and sP # Rp0:2

ð10Þ

follows with peak stress sF : Heuristic arguments are given

by a figure in Ref. [3] or by the deviatoric map in Ref. [4].

The proof shows that there is no benefit from kinematic

hardening for the safety of a structure under the conditions

of the above criterion. Therefore, 3f has to be replaced

strictly by 2Rp0:2 in the criterion, i.e. there should be no

indirect contribution of Rm in Eq. (3) to the design strength.

The local character of the failure shows that the conditions

of the criterion should include also the nonsingular peak

stress sF : Moreover, the criterion cannot be applied if the

structure fails globally with PD, except for the case of

actions that cause purely secondary stresses sQ (purely

secondary action).

Static shakedown criterion for thermal loading: An

elastic–plastic structure will not fail with macroscopic

plasticity (PD or AP) under proportional time variant

thermal action with zero mechanical actions, if the

elastically computed equivalent stress range nowhere

exceeds twice the initial yield stress range.

Applying the static shakedown criterion for local failure

the shakedown load factor as can be at most 2. The elastic

stresses sE corresponding to proportional thermal loading

are self-equilibrated stresses, such that by choosing r ¼

2sE in problem (6) it is clear that 2 is also a lower bound

for as and thus follows as ¼ 2 independent of the failure

mode.

For purely secondary actions with proportional change a

simple PD check requires

DsQ # 2Rp0:2 and sP þ sF ¼ 0: ð11Þ

Reducing the real GPD limit actions by division with

2gpgR=
ffiffi
3

p
for the above examples, the interaction

diagrams demonstrate that failure by wrong application

of the 3f criterion may not necessarily lead to practical

problems, because the GPD check rules out most critical

actions.

6. Conclusions

The well known 3f criterion can be justified for a PD

check only under purely thermal actions. However, in

design practice no problems are expected if mechanical

actions dominate, because then the partial safety factors

and the Tresca yield function make the GDP check usually

more restrictive than the 3f criterion. As the new direct

route for DBA deals directly with the plastic failure modes,

the results give better insight for the analyst into the

structural behaviour under all possible mechanical or

thermal actions, the safety margins, and the possibilities

for design or operation improvement. LISA can be

performed directly by optimization procedures

implemented in an FEM code. In fact, the costs and

simplicity of LISA compare favourably with standard

elastic FEA. Therefore, there is little argument to retain the

stress classification route with the inherent problems of that

concept.
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