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Abstract

Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important
to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a
hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series
of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been
selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It
is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A lineal
and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.

1. Introduction classification problem which lacks a rational solution
(Taylor et al., 1999)

Structural design of passive structures in the appa- In the future FEM-based shakedown analyses will
ratus engineering are based on the analysis of plasticbe needed for DBA, which can guarantee a uniform
limit states. The new European Standard for pres- safety assessmentfor complex structures. For perfectly
sure vessel and boiler design contains the proposal ofplastic materials and simple load cases shakedown
the European Pressure Equipment Research Councilanalyses are performed for different pressure ves-
(EPERC) for Design-by-Analysis (DBA) to exclude sel problems(Taylor et al., 1999) In the European
ratchetting and therefore the limitation of progressive project LISA general limit and shakedown analyses
plastic deformation(Taylor et al., 1999) The more for kinematic hardening material are developed and
traditional DBA routes in the major codes and stan- implemented in the general purpose FEM code PER-
dards in the pressure equipment field (including the MAS (Staat and Heitzer, 2001for the validation of
ASME Pressure Vessel and Boiler Code) try to esti- the shakedown theory for hardening material there is
mate the plastic behavior from an extrapolation of an a shortage of tests involving cyclic, mechanical and
elastic stress analysis. This way runs into the stressthermal loads at the limit between shakedown and

ratchetting, but a lot of experiments to test different
"+ Corresponding author. Tekt49-2461-613437: hardening laws (g.g?ortier et al., 2000; Bari, 2001
fax: +49-2461-616656. Two-bar and multi-bar tes{®onter, 1983; Lang et al.,
E-mail address: m.heitzer@fz-juelich.de (M. Heitzer). 2001) like the Bree problem, enable representation
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of simple mechanical models of pipes and vessels describes a test carried out using this technique, and
subjected to internal pressure and a temperature gra-draws a comparison with the results of the shake-
dient across the wall thickness. The tests presenteddown analysis and the experimental results. Some
here are aimed at determining the elastic shakedownmaterial ratchetting analyses are used to assess the
limit, below which failure due to ratchetting has not effects of nonlinear kinematic hardening models
to be assumed. on the shakedown behavior of structures with little
Structural ratchetting or shakedown are different redundancy.
responses to the cyclic loading which depend on
the development of inhomogeneous residual stress
fields. In torsion experiments the stress is the more 2. Test specimen and experimental results
homogeneous the thinner the tube wall is. For homo-
geneous stress fields the ratchetting is caused by the2.1. Geometry and material
material behavior along¢Hubel, 1996) Ratchetting
experiments with uniaxial and biaxial stress cycles  The material chosen for this study is the ferritic
have been used to improve constitutive modeling for steel 20MnMoNi 5 5, often used as material for
cyclic plasticity. In these experiments the Melan and the pressure boundary of nuclear power plants. The
Prager linear kinematic hardening law is found to be chemical composition of the material is given in
inadequate to simulate material ratchetting, becauseTable 1 Tensile specimens for uniaxial load tests
it always stabilizes to shakedown of homogeneous were machined from a 500 mm 1000 mm block.
stress fields after some initial over-prediction of ratch- The geometry of the specimens is givenkig. 1
etting (Bari, 2001) The tension—-torsion experiment In order to characterize the mechanical behavior of
is situated between material and structural ratchetting the material, mainly the stress—strain behavior under
and may therefore give some hints on the reliability uniaxial loading, two uniaxial tests were performed
of shakedown analyses if ratchetting is not controlled on an INSTRON 1343 servohydraulic test machine.
by stress inhomogeneity. The same test equipment operating in biaxial strain
In Heitzer and Staat (1999 technique was ap- or in biaxial stress was controlled with load cell of
plied which calculates the collapse and shakedown type LEBOW. An INSTRON extensometer was used
load of ductile structures directly on the basis of to monitor axial strainsKig. 2). A PC 486 computer
FEM discretization, without stress classification. This equipped with CASYLAB 5.0 software controlled the
technique could be extended lfeitzer et al. (2000)  acquisition operations and command signal genera-
to bounded kinematic hardening material. This paper tion. In addition the torsion angle was recorded.

Table 1
Chemical composition of 20 MNMoN6 5 (wt.%)
C Si Mn P S Cr Mo Ni \
0.24 0.24 1.38 0.002 0.002 0.09 0.51 0.80 <0.01
125
26 14
55 1x45° 3
w| § l
<| o
S —~I—]E:5:5: s S
& |1

Fig. 1. Geometry and sizes of the test specimens.
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Fig. 2. Experimental equipment.

Table 2

Definition of the material properties obtained by tensile testing
oy (N/mn?) ou (N/mm?) E (N/mn?) v
485 631 207 x 10° 0.3

2.2. Description of the loadings and experimental
results

First, the strain hardening of the material under
monotonic loading was characterizdeig. 3 shows

R, =631 MPa
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Fig. 3. Stress—strain curve.

2.3. Experimental investigations of biaxial
tension—torsion loadings

The ratchetting behavior was studied with a
tension—torsion test under axial stress control. 10 ex-
periments were performed to verify the shakedown
domain for the tension—torsion loading regime calcu-
lated by the kinematic hardening approach presented
in Section 4.5 The load matrix of the experiments
is given inTable 3 The mean values of the tension
load are given in the table and for all experiments an
amplitude of+Ao = 1kN is chosen. The remaining
enlargement and the torsion angle of the specimens
are given in addition irTable 3 The cyclic ‘creep’ is
shown inFig. 4, i.e. the torsion angle increases for
constant moment loading. In the case of unbounded
increase incremental collapse is reached, whereas the
torsion angle stabilizes for elastic shakeddwig. 5.

the corresponding stress—strain curves. The tested ma- The specimens No. 1 and 3 are used again for the

terial properties, lower yield stresg, ultimate stress
ou, Young's modulust and Poisson’s ratio are sum-
marized inTable 2

experiments 9 and 10, respectively, due to the fact that
in the framework of the classical shakedown theory
(Melan, 1938)the results of the shakedown analysis

Table 3
Loading, deformation and torsion angle of the experiments

Experiment

1 2 3 4 5 6 7 8 9 10

Tension (kN) 17 15 16 10 18 21 17 20 18 5
Toment (N m) 7 21 14 28 17 4 24 14 3 32
Number of cycles 150 100 100 71 100 100 200 200 200 200
Angle () 10.6 25.0 16.1 24.9 22.9 10.6 43.9 25.7 4.7 10.9
Axial strain 0.11 0.097 0.313 0.931 0.786 2.362 1.075 1.328 0.092 0.077

2 Initial overload up to 22 kN.
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Fig. 4. Loading and deformation of experiment 2.

are independent of the load history. Specimen No. 8 3. Theory and numerical results

was loaded in the first step up to 22 kN. After a stabi-

lization period the specimen was loaded by the given 3.1. Perfectly plastic shakedown formulation

load history, such that the remaining deformation

after the loading has to be reduced to investigate the Depending on the loading a structure shows differ-
real cyclic behavior. The initial overload was lower ent structural responses. For time-variant loading the
than the limit load such that the ratchetting behavior structure can fail plastically in addition to the plastic

of the specimen is still predominant. collapse at limit load by:
30 angle [°]
25 moment [Nm]
E 20
£
Z 15
z tension load [kN]
=1
= 10
5
J strain (axial) [%]
0 T T - -
0 100 200 300 400 500 600 700 800
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Fig. 5. Loading and deformation of experiment 4.
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e incremental collapse by accumulation of plastic the shakedown theorems lead to convex optimization
strains in successive load cycles (ratchetting, pro- problems.
gressive plastification, cyclic ‘creep’)

e plastic fatigue by alternate plastification in few load 3.1.1. Satic shakedown theorem
cycles (low cycle fatigue (LCF), plastic shakedown). A structure V shakes down under a convex load

. . e domainaL, if for any basis loadxP; an admissible
The structure does not fail plastically, if finally all o oog fields; can be found, which is in equilibrium
plastic strain rates vanish and the dissipated energy, i P;.

In formulae
remains finite. One says that the structure adapts to
the load or it shakes down elasticall{onig, 1987) Floj] < Gy inV,j=1,...,NV
After few initially plastic cycles no difference to the  _dive; = agp NV, j=1... NV (1)
purely elastic behavior can be observed in structural ojn = ap, onav,, j=1,...,NV.

mechanics quantities. Shakedown analysis considers
only the asymptotic structural response. Infinite accu- For kinematic hardening material the stresses still have
mulation of plastic deformation is called ratchetting. to be in equilibrium with the applied forces, but the
If accumulation ends with finite values after some formulation of the yield condition is more complicated
transient ratchetting it is denoted shakedown (in the than for perfectly plastic material law. The static the-
sense of finite ratchetting). orem leads to a save lower bound, whereas the upper

The time history of a load (r) = (¢ (¥), p(r)) with
body forcesq and surface loadg is often not well

known. It can however usually be stated that the loads

(e.g. mechanical and thermal loads) vary only within a
certain convex load domaif. Typically, £ is given by
amplitudes or admissible bounds. If NV is the number
of verticesP1, ..., Pny of £, then all loadsP () € £
can be represented as convex combination

P(H)=r@P1+---

NV
> o0 =1,
j=1

+ ANV (D PNy,

O<ijm=1l

The load-carrying capacity is exhausted by enlarge-

ment of £ with the factore > 1 causing LCF, ratch-

bound is obtained by a kinematic approd&ttaat and
Heitzer, 2001)

3.2. Kinematic hardening formulation

The linear kinematic hardening corresponds to the
translation of the loading surface in the multiaxial
loading space:

Flo —n] = 03. (2

The interior of the loading surfacgr |Flo — n] <
03} is the elastic domain which is described by the
function F and the yield stressy.

For realistic materials the stressis bounded by
the ultimate stressy. Therefore, the displacement of
the initial yield surface is bounded. The hardening

etting or collapse. The shakedown theory analyzes is bounded, if the displacement of the initial yield
only the shakedown state, i.e. it answers the question, surface is bounded within a bounding surface in the

whether a structure from ductile material is plastically
safe or not. With a static criterion, a structure under
a load rangeC shakes down, if for each load i an
admissible stress field can be found which is in equi-
librium with this load. A stress field is admissible if
it fulfills the yield condition with the yield function
F. For perfectly plastic material this corresponds to
Floj] < 03 with the yield stressy, where the square
of the von Mises vyield functioF[o] = 3/2¢C : ¢P
with the deviatoric stressP is used. It is sufficient to
satisfy the shakedown conditions only in the NV ver-
ticesPy, ..., Pny of Lif £ is a convex set, because

stress space. Within a simple formulation the bounding
surface is described by the same von Mises function:

Flo] < 03. (3

The limit stressy is set toRyy, if the hardening effect
is regarded totally. The elastic domain remains always
in the limit surface and any stress in it may be

reached if and only iffig. 6)

(4)

In the literature more advanced hardening models exist
with much more details, but they may not be needed



Shakedown and ratchetting under tension—torsion loadings: analysis and experiments

oA

Fig. 6. Two-surface model of bounded kinematic hardening, uni- and multiaxial below saturation.

for the decision if a structure shakes down or not. In p[x] < (o, — o)% inv 9)
the Besseling overlay material model the shakedown .

behavior is described only by, andoy (Steinetal,  dive =0, inV (10)
1993) Pycko and Maier (1995and De Saxce et al. n=0, onav, (11)

(2000)extended the shakedown theory to the advanced

Armstrong and Frederick hardening law.

3.3. Shakedown formulation for kinematic hardening
material

The extended static theorem of shakedown for a
bounded kinematic hardening material can be formu-
lated as follows(Stein et al., 1993; Heitzer et al.,
2000)

If there exist a time-independent backstress field
satisfying

Flx] < (oy —oy)?, inV (5)

a factora > 1 and a time-independent residual stress
field p such that

Flao®(t)+p—n] <of, inV (6)

holds for all possible load®(r) € £ and for all
material points, then the structure will shake down
elastically under the given convex load dom4in

The greatest valuexsg for which the theorem
holds is called shakedown-factor. This lower bound
approach leads to the convex optimization problem:

maxo (7)
s.t.
Flac5+p—n]<of, inV,j=1....NV (8)

with infinitely many constraints, which can be reduced
to a finite problem by FEM discretization. If the load
regimeL shrinks to a single load point, limit analysis
is obtained as a special case. For the perfectly plastic
behavior 6, = oy), the backstresses are identical
zero due to inequality (9). Melan’s original theorem
(Melan, 1938¥or unbounded kinematic hardening can
also be deduced from the previous formulatiosif—>

oo. Then inequality (9) is not relevant anymore and
the backstresses are free variables.

3.4. Discretization and optimization

The shakedown theorems formulated for the con-
tinuum can be discretized by the FEM or they can be
deduced directly for a discretized structure. For the
FEM the structureV is decomposed in NE finite el-
ements with the NG Gaussian points. The constraints
of the optimization problem are satisfied only in the
Gaussian points.

The number of Gaussian points becomes huge for
industrial structures and no effective solution algo-
rithms for the nonlinear optimization problem are
available. A method for handling such large-scale op-
timization problems called basis reduction technique,
was used irStein et al. (1993)Heitzer et al. (2000)
and Staat and Heitzer (2003)rhis basis reduction
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technique generalizes the line search technique, well with the equivalent von Mises stres&3tmax In the
known in optimization theoryFletcher, 1987) In- FEM-based shakedown analysis the pipe is discretized
stead of searching the whole feasible region for the \ith , elements. The model uses 16 elements on the

optimum a search direction (a subspace with a small periphery, such that the yielding of the pipe starts for
dimension) is chosen and one searches for the bestgy — 485 N/mn? at

value in this direction. The basis of the subspaces
are generated by the general purpose Finite Ele- M; =2320Nm (14)
ment Code PERMASHeitzer and Staat, 1999; Intes,
1988) The basis reduction and the subspace itera-
tion technique describedStein et al., 1993; Staat
and Heitzer, 2003jor perfectly plastic material can-
not be directly applied to the shakedown problem
for bounded kinematic hardening model. Therefore,
Heitzer et al. (2000)proposed a method applicable — o0 + 377, (15)
with arbitrary three-dimensional finite elements for
bounded kinematic hardening material law.

which is sufficiently close to the analytical vali =
245N m. In the case of an additional tension load the
von Mises yield functionF has the following form:

Flo] = crrz + 092 + 0'12 — 0,09 — 0,07

with the stresses = (o, 09, 0., 7). The overall con-
stant elastic stressegy are in equilibrium with the

tensionn,
4. Analytical and_numerical structural . N
shakedown analysis on=(0,0,0n,0) and oy = W_R?).
The experiment comprised a hollow tension speci- (16)

men which was subjected to alternating axial tension B ) ]
with nonzero mean stress and constant moments. AnFor the stressesy andow equilibrating the tension
analytical solution is given for the hollow part of the Ny = @V and the constant moment_ it holds:
specimen, i.e. a pipe with inner radi® and outer
radius R, is investigated. For simplicity of presenta-
tion the unbounded Melan and Prager linear kinematic The maximal equivalent stress is obtained at the outer
hardening model is used. The comparison with the ex- radiusR,, such that the yielding starts for the constant
periments is made against more realistic shakedown momenta/, at the tensionvy with:
analyses with the FEM using a bounded Melan and
Prager model. /9% — 3t(Ra)?

Ny=ayN and ay = ————. (18)
4.1. Elagtic analysis ON

The stress components®f; ando ) are independent,

For pure tf’rs"’” and axial symmetry the normal such that the elastic domain is a 1/4 circle for a nor-
stresses vamsht_as and only shear stresggs= oy, malization byM® = 2325 Nm andN® = 1560 kN.
occur. The elastic stresses for constant moni&nat

the radius are

Flaon + om] = (eon)? + 37°. a7

4.2. Limit analysis
2M,
(R4 — Ri4) " The maximal allowable momend),, and the
(12) maximal allowable tensiowvjy, for perfectly plastic
material with the yield stressy = 485N/mnf are
The elastic shear stresses reach the maximum at thegiven with the plastic limit factonp (Betten, 1985)
outer radiusR; = 4 mm, with the inner radiu®; =
2.4mm:

am() = (0,0,0,7(r)" with =(r) =

41— (Ri/Ra)°
MPP = ME = = Me
lim = MplM; 31— (Ri/Ra)* °
— 1.20M® = 27.98Nm (19)
Z

2M, R, M,
Tmax T( a) JT(Rg _ RI4) 875 mm? ( )
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NEP = (R2 — R?)oy = 15.62kN, (20)

which fit exactly with the numerical values. For kine-

matic hardening material with the ultimate stregs=

631 N/mn? with oy/oy = 1.3 it is
MM = oy /oy MEE = 1.3MP =3637Nm  (21)

NEN — o /oy NEP = 1.3NEP = 20.30kN. (22)

The limit load domain for kinematic hardening ma-
terial is a proportional enlargement of the perfectly

plastic limit load domain by the facter,/oy = 1.3.

4.3. Shakedown analysis for constant moment

The shakedown analysis for constant moment

M, (dead load) and variable tensidvi € [0 Nmax

with mean value 12Nnax for unbounded kinematic

hardening material with the free variablgs= p—n =

(Vr+ ¥9: Y22 yr2)| i given by
maxa
st. Flaon + 0w+ y] <of inallpoints
Flom +y] < of in all points
(23)

om and oy are with (12) and (16) in equilibrium
with the loadsM, and Ny, respectively. For every
discretization withn Gaussian points the stresses in

the pointsx ; are given by:

o, =(0,0,0,7)7, (24)
o, =(0,0,0n,0), (25)
= Ly vl T, (26)

the Lagrangian of the optimization problem is given

by (Fletcher, 1987)

n
L=—ua— Z)LZi—l{a)%_ F[Ol(TIN +0'§\/| +yi]}
i=1

n
=Y haifog — Floy + y'1} (27)
i=1
with the Lagrange parametexs/ =1, ..., 2n. Inthe

maximum the complementarity conditions hold for all

i=1...,n

0=1z1{oy — Flaoy +oiy + ¥} (28)

0= Aaifog — Flojy + ¥']}. (29)
With VL(a, y1, ..., y") = 0 it holds:
‘3—5 -1+ ng, {2(aok + y)of,

— UNy, — oNyg}. (30)
andforalli=1,...,n
0= [Aai—1 + A2ill2y. — yp — ¥1] — Azicacoyy (31)
0= [Aai—1 + A2ill2yh — ¥ — ¥] — Azicaaoyy  (32)

0 = [Agi_1 + A2i][2y) — ¥i —

= (BAgi—1 + BA2) (vl + 7).

yé] + 2)\2i,1ocof\l (33)
(34)

Without loss of generality we assume that in the max-
imum at least one Gaussian point exists, such that
eitherip;_1 > 0 orip; > 0 holds (otherwise no point
reaches the yield limit), such that from the conditions
(31) and (32) followsy/ = yy- The following cases
have to be considered:

0] Azj 1 =0, Ap; > 0: With (31) and (33) follows

(ii)

(iii)

V) = yZ With condition (34) it holdsyrZ =1/
and conditions (29) gives a contradiction.

)\'ZJ 1> 0, A2j = 0: With (33) fO||0WSOé(TN +

y! = y{. With condition (34) it holdsyl, = —t/
and conditions (28) gives a contradiction.

h2j1 > 0, hz; > 0: With (34) follows y/; =
—t/. The complementarity conditions (28) and
(29) ande, o,{, > 0 give

4y -2yl

J
oN

(35)

Inserting this in condition (33) it yieldsip;_1 —
A2;1[yE — yi] = 0 andizj_1 = A, (otherwise a
contradiction is obtained from! — y. = 0 and
condition (31)). FromEq. (31) follows 2(y] —
v = ao,{,. Inserting this in condition (29) the
shakedown facto is obtained by:
9y
o = 2—

J
ON

(36)

For constant moment and cyclic tension the radius
of the shakedown domain for unbounded kinematic
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hardening material is two times the radius of the elas-

tic domain. This domain is larger than the limit load
which is obtained in numerical shakedown analysis
with FEM discretization using a bounded kinematic
hardening model.

4.4. Shakedown analysis for constant tension

On the other hand the shakedown analysis for
variable momentV, € [0, Mmay with mean torque
1/2Mmax and constant tensioN (dead load) for un-
bounded kinematic hardening material with the free
variablesy = p — = (y,, yg, ¥=, Yr2) " iS given by

maxo

St Flaom +on + y] <oy inallpoints (37)

Flon+y] <oy in all points

with the same stressasy and opn. For this load
domain the following equation holds with (15):

Flaom +on + y] = y,2 + yg + (on + yz)2 — YrYe
— (r + yo)(oN + ¥2)
+ 3(at + yr2)? = Flon + y]
+ 3ut(2yrz + a1). (38)

The Lagrangian of the optimization problem is given
by (Fletcher, 1987)

n

=—a—Y Jaiaoy — Flaoy +oy+ ']}
i=1

L

n
— > aidof — Floy +y'1}
i=1

(39)

n
L=—a-— Z(/\zi—l + )»21‘){03 — Floy +y'1}
i=1
n
+ Z A2i—130t' (2y;, + at')
i=1

(40)

with the Lagrange parametexg [ = 1, ..., 2n. With
VL(a, yt, ..., y") = 0it holds:

oL

n
= 0=-1+ Z 6rzi_1(at + yi)T

i=1

(41)

and foralli=1,...,n:

0= [A2i—1 + A2i][2y. — ¥ — (on + ¥))] (42)
0 = [Az2i—1 + 22il[2y}) — ¥ — (on + Y1)] (43)
0=[A2i—1+ A2i][2(on + ¥) — ¥ — ¥l (44)
0 = Brgi_1(at’ + yi,) + A2i6yl,. (45)

Without loss of generality we assume that in the max-
imum at least one Gaussian pointsexists, such that
eitheriy;_1 > 0 orip; > 0 holds (otherwise no point
reaches the yield limit), such that from the conditions
(42) and (43) followsy; = y; and from (44) follows

y} = on + y.. The complementarity conditions in the
maximum are thus given by:

0= Jpj_1{of — 3(at/ + yi)?} (46)

0= 2ai{oy — 33} (47)

The following cases have to be considered:

(i) A2j_1 =0, iz; > 0: With (45) follows y/; = 0
and (47) gives a contradiction.
(i) A2j—1 > 0, Ap; = 0: With (45) follows az/ +
yiz = 0 and (46) gives a contradiction.
(iii) Azj_1 > 0,12; > 0: From condition (46) and (47)
follows o = 0 in contradiction to the assumptions.

For constant tension and cyclic moment with nonzero

mean torque no elastic shakedown boundary can be
defined for unbounded kinematic hardening. This

situation can be resolved by introducing a bounding

surface in the material model.

4.5. Shakedown interaction diagram

The shakedown domain for the FEM modEeid. 7)
was computed by the basis-reduction method for the
experimental conditions of constant torque and cyclic
tension with nonzero mean stress. The interaction di-
agram Fig. 8) is normalized by the pure shakedown
tensionN,, = 15.62kN and by the pure shakedown
momentM,, = 27.98 N m for perfectly plastic mate-
rial with oy = 485 N/mn?. In the geometrically linear
FEM shakedown analysis with the two-surface model
of bounded linear kinematic hardening the shakedown
domain and the limit load domain are the same. As a
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Fig. 7. Finite element model.

consequence no clear distinction between incremental: — oo it holds
and instantaneous collapse may be observed. lim éP(x.n) = 0. forallx eV (48)
The interaction diagram shows a significant safety r—oo™ ’ '

benefit for the kinematic hardening law in compari- To avoid the possibility of plastic failure the max-

son to the perfectly plastic shakedown domain. Other jmum possible plastic energy dissipation must be

examples for this effect (including thermally loaded hounded above for all points of the structure. With an

structures) are given iHeitzer et al. (2000) incremental computation it needs a lot of cycles to
decide whether shakedown occurs or not. Therefore

4.6. Evaluation of the experiments a simple shakedown criteriofWolters et al., 1996)

can be derived, which can be used for the evaluation
In the case of LCF and ratchetting the plastic strain of the experiments. Lei be the number of the load-
increments do not vanish during the load history. This ing cycles andéP(n) the plastic strain increment at
means that for elastic shakedown the plastic strafins  the end of the loading cycle in the weakest point of
become stationary for the given load history, i.e. for the structure. If the structure shakes down elastically

N/N,, E experiments with +AG =1 kN
— — clastic domain
14 T 6 - - = shakedown (perfectly plastic)
8 —— shakedown (kin. hardening)

0 : | : |

'
'
1
'
] '
1
T
1

0 0.2 0.4 0.6 0.8

T
12 14 M,/M,

Fig. 8. Shakedown interaction diagram and experimental data, normalized by the shakedownNgnsind shakedown momemt_, for
perfectly plastic material.
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Table 4
Results of the simple extrapolation analysis

Test no.

1 2 3 4 5 6 7 8 9 10
Slope, s —3.98 -0.82 —1.42 —-2.19 —-1.10 -1.41 -1.21 —0.65 -1.71 -1.12

2 |nitial or intermediate overload, such that the strains for the interpolation have to be reduced.

the accumulation of all plastic strain increments must With respect to the experimental uncertainties this

be bounded in this point, corresponds to the interaction diagraRig(. 8).

o

D 1P| < c. (49)

1 5. Material ratchetting

With the axial straine® and the shear angle® = ZSSZ 5.1. Linear and nonlinear kinematic hardening

the effective plastic strain increments are models

&P = \/éép (P = \/(ép)z + 3(P)2. (50) Structural shakedown analysis is designed to

exclude structural ratchetting which is produced
The shear anglg is calculated from the torsion angle by inhomogeneous stress fiel@diibel, 1996) The

¥ on the lengthL by tension—torsion experiment is situated between struc-
9 tural and material ratchetting, because the stress is
y(r) = r- (51) the more homogeneous the thinner the tube wall is.

Homogeneous fields are controlled by the behavior of
With a decomposition of the elastic and plastic strains a representative material point. The analysis of uniax-
(i.e. e = €® + €P), corresponding to the geometrical ial and biaxial stress cycles shows that the kinematic
linear plasticity theory, the plastic strain increment hardening is the primary reason for material ratchet-
yP are calculated by the differences at the same load. ting. Therefore, it is essential to develop and verify
The simplest condition of the convergence of this hardening rules which perform well under various
sum as generalized harmonic series is the condition cyclic loadings.
|éP(n)| < an® with s < —1. This means in a double The Melan (1938)and Prager (1956)inear kine-
logarithmical diagram of the loading cycles and the matic hardening law is known to be inadequate
plastic strain increments, that the slope must exceedto simulate biaxial material ratchetting. The most
s = —1 in the case of LCF or ratchetting. The results well-known nonlinear kinematic hardening model has
of the least square fit of the logarithmical data for the been proposed by Armstrong and Frederick (1966).
derived plastic strain increments of the measured data Conceptually, it is considered a leap in representing

are shown iriTable 4 cyclic plasticity response of materials but not robust
From a first impression we expect froffig. 4 enough to predict the ratchetting response of materi-
ratchetting for experiment No. 2 and froffig. 5 als (Bari, 2001) Later, cyclic plasticity models have

shakedown for experiment No. 4. From the values of been suggested, which needed uniaxial and multiax-
s the convergence of (49) can be deduced. the loadial cyclic tests for material characterization. Then the
levels 1, 3, 4, 6, 9 and with reservation 5 and 10 best could predict the amount of ratchetting in exper-
(probably an oversized torsion angle is obtained in iments which are close to the tests used for parameter
the pre-test of experiment No. 10) are in the shake- determination. But all known models fail on one or
down domain, because the plastic strains are bounded.more material ratchetting experiments. The large class
For experiments No. 2 and 8 ratchetting has to be of so-called coupled models fail conceptually to repre-
expected, because the plastic strains are unboundedsent biaxial ratchetting if the material parameters are
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matched to the uniaxial tests and vice versa, becausenot translate in stress space. This is achieved by the

the uniaxial hardening modulus cannot be chosen in-
dependently of the kinematic hardeni(®gri, 2001)
More flexibility is offered by theDafalias and Popov
(1975) two-surface model. Common to all modern
models is that they need many parameters, which

have to be determined in several cyclic tests. Param-

eter determination is vague for some models. Other
models need uniaxial or biaxial ratchetting tests or try
to formulate the anisotropic deformation of the yield
surface. Such effort is prohibitive for most industrial
applications.

No comparative study of the multiaxial shake-
down behavior of different cyclic plasticity models is
known. Shakedown analysis of cyclic structural plas-
ticity needs only few characteristic material parameter
and only the bounds of the load history. A similar
benefit may be assumed for the analysis of cyclic
material response. Below the two-surface model for
bounded kinematic hardening with a piecewise linear
Melan and Prager law is compared with the nonlin-

additional constraint

Flo] < o2, (55)
which together with (52) implies
Flx] < (ou — oy)*. (56)

From a monotonic tension test, and oy may be
identified by Rpo> and Rm, respectively. But for
cyclic experiments material parameters from a stable
hysteresis curve may be more appropriate if such data
is available.

The Armstrong and Frederick model introduces a
recall term—¢x|&P| for the fading memory

ear kinematic Armstrong and Frederick evanescence th

memory model which has been extended to multiple
back stresses by Chaboctieemaitre and Chaboche,
1990)

The original Melan and Prager model is character-
ized by unbounded linear kinematic hardening

Flo —x] < 03, (52)
2 2. 0JF
T ==-CéP = -1C——i| 53
T3 T e ®3)
with the associated plastic flow
.0 F
P =i——. (54)
do

The movement of the yield surfaggo] < o7 by the
backstress evolutiom and the plastic flowe” are both
parallel and normal to the yield surface in this model.
Backstressr and plastic strairzP are both deviators
if F is the von Mises function. The uniaxial hardening
modulus isH = C. The linear kinematic hardening

always stabilizes to shakedown of homogeneous stress”.
g yield surface by

fields after some initial overprediction of ratchettin
(Bari, 2001) A more realistic model is obtained by

restricting the movement of the yield surface such that
it always stays inside a bounding surface which does

= 5CeP — ¢m|éP), (57)
with the non-associated plastic flow
. 0
P (58)
a0

CE A 4

f=+Flo —n]+ - <oy (59)
4 Tty

The uniaxial hardening modulus iH# = C — ¢

sign(o — ). Thenmy = C/¢ denotes the ultimate shift
of the center of the initial yield surfacB[o] = crf in

a uniaxial tension test, such tha§ = oy + m, and
F[x] < nﬁ. This is again a two-surface model. The
same bounding surface (55) is not postulated but it
is assumed asymptotically by the kinematic evolution
rule (57) withz no more proportional to the plastic
flow &P.

Let n be the outward normal to the yield surface at
the current stress poinat Leto | be the stress state on
the bounding surface with the same outward normal
n. Then it holds

D D
L_o -z

n= (60)

Oy Uy

The model turns out to be a particular two-surface
Mréz kinematic hardening model with a shift of the

i =op — o)) (61)

in deviatoric stress space.
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5.2. Material shakedown analysis
c &P
In torsion experiments the stress is the more ho- Omp_ O, " @ Melan
mogeneous the thinner the tube wall is. Any material ——— Prager
point is representative for homogeneous stress fields. i RVANN
Therefore, ratchetting or shakedown are caused by the Ouf \ FArZ’(’iZ‘r’i‘;Eg
material behavior due to the nonproportional loading / ‘
and may be analyzed by consideration of the move- { 5 -6
ment and deformation of the yield surface. Shakedown ~
analysis is a simplified method which only considers ' _ Taf
the stabilized state and avoids the detailed analysis of e
the whole deformation process. y o
Consider a constant tension wity followed by a
cyclic torsion with shear stress Plastic flowéP =
(P, 1/4/3yP) starts if the stress point = (on, v/37)
lies on the yield surface. Cyclic ‘creep’ of the ax-
ial component:P stops if the yield surface touches
the bounding surface in stress point. This elastic Fig. 10. Constant tension and fully reversed torsion with zero
shakedown situation is constructed for the bounded Mea" shear stress.
Melan and Prager model and the Armstrong and Fred-
erick model inFigs. 9 and 10The stress points at
shakedown are denoteglhp and oy for the Melan
and Prager and the Armstrong and Frederick model,
respectively. The figures also show the backstresses
Tmp andraf for both models at shakedown. For a con-
stant torsiorry followed by a cyclic tension the same
figures can be used to derive the material shakedown

31

equations if the names of the axes are exchanged and
the stress poing = (o, +/3n) is considered.

This type of material ratchetting is covered by
all kinematic hardening model@iibel, 1996) But
the originally unbounded Melan and Prager model
(ou — ©00) is quite unrealistic. For a cyclic loading
with nonzero mean value no finite shakedown load
and no finite limit load is found. In contrast to this,
the material always shakes down for fully reversed
cycles with a load amplitude at yield stress once
the backstress has achieved the constant steggs (
or ty). For larger cycles damage is caused by LCF.
Such strange behavior has already been observed for
structural shakedown iBections 4.2 and 4.3bvi-
ously the bounding surfacg[o] < 05 is the key to a
realistic modeling of the shakedown behavior.

(i) For the tension—torsion shakedown experiment
with constant tensioay and nonzero mean tor-
sion, Fig. 9 shows that both hardening models
lead to the same material shakedown limit of the
maximum shear streSgax < 7,

1
= ﬁ,/og—aﬁ. (62)

The solution is valid for any cyclic torsion with

Fig. 9. Constant tension and cyclic torsion with nonzero mean a minimum ?hear S_tres%in > 1 (0u — 20y) /0.
shear stress. For comparison with the structural shakedown
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this condition is depicted in the load space in the
interaction diagramKig. 8). The structural effect
is most effective on the pure torsion axis. There is
no difference between structural shakedown and
material shakedown for the homogeneous stress
state in pure tension. As observed for structural
shakedown also the material shakedown stress
coincides with the stress at instantaneous plastic
collapse at limit load, because the pointg, and
oaf coincide witho on the bounding surface.

For an experiment with constant torsigg and
nonzero mean tension the shakedown limit of the
maximum tensiommax < oL IS

oL = /02 — 373

for both material models. The solution is valid
for any cyclic tension with a minimum stress
omin > oL (oy — 20y) /oy and it is identical to the
limit load in the interaction diagrant{g. 10).

(i) A difference between the linear and the nonlinear
kinematic hardening model may be observed in
an experiment with fully reversed torsion cycles
with zero mean shear streSsnf, = —tmax). For
constant tensioay the material shakedown con-
dition for the bounded Melan and Prager model
in Fig. 10is

(63)

1
ﬁay for0 < on < oy — oy,
Tmp: 1
ﬁ O'&—((TN-’-(Ty—O’U)Z foroy — oy < on < oy.
(64)
For constant torsiomy and fully reversed tension
with zero mean stressfin = —omax) the mate-

rial shakedown condition for the bounded Melan
and Prager model is

oy for0 < /3N < oy — oy,

‘/o}?—(«/érN—i-oy—Uu)z for oy — oy < +/3n=ou.

(65)

For the Armstrong and Frederick model a result
of Lemaitre and Chaboche (1998)obtained for
constant tensioroy and fully reversed torsion
(tm = 0) in Fig. 10

Gmp:

o
2 y

02 —of = —1L.
ou

Taf = 730—u (66)

It is derived from structural shakedown analysis
in De Saxce et al. (2000)The material shake-
down load is below limit load for both models
except for pure tension. For pure shear no mate-
rial shakedown may be achieved with amplitudes
beyond ¥+/3oy for both models.

For constant torsionry and fully reversed
tension ¢, = 0) the result is

1o o
Oaf = = o2 — 31"%‘ =Yo. (67)
Ou Ou

The material shakedown stress is below limit load
for both models except for pure shear. For pure
tension no material shakedown may be achieved
with amplitudes beyondy for both models. This
shakedown stress is presented in the interaction
diagram Fig. 11).

On a material level elasticity is any history in the
interior of the initial yield surface. The boundary of
the purely elastic rangé[o] < 05 can be read as

the equationv/3t + o = oy of the dotted circle in
Figs. 9 and 10The only difference between elastic-
ity and elastic material shakedown is that the latter is
any history in the interior of the shifted yield surface
(loading surface). Therefore, a distinction can only be
made if the nature of the surface is known. For this
the backstress needs to be known with kinematic hard-
ening models. But the backstress is not an observ-
able quantity. Therefore, no difference between elastic
shakedown and elasticity can be made in a continuum
theory if the existence of a yield surface is accepted.
On a continuum level the yield surface is most evident
in metal plasticity in the discontinuous temperature
evolution in a tension tegGabryszewski and Srddka,
1986)

Material limit load is assumed iF[o] = 2. It is
the solution of the equatior/3t + o oy of the
outer circle inFigs. 9 and 10Both hardening mod-
els predict material shakedown for cyclic stress with
nonzero mean value up to material limit load. Both
(62) and (63) make no distinction between unlim-
ited ratchetting and plastic collapse for this biaxial
loading. In contrast to it another behavior shows up
with fully reversed stress cycles. For both models
separated stress regimes exist with distinct material
behavior: elastic, shakedown, ratchetting, and col-
lapse. Similarly to structural shakedown analysis no
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M,ll‘z/lﬁ__ — = clastic domain
____________ - shakedown (Melan Prager)
P ., - —-— shakedown (Armstrong Frederick)
B limit domain

0 1 } } t
0 0.2 0.4 0.6 0.8

12 14 N/N°

Fig. 11. Material shakedown interaction diagram for fully reversed tension loading, normalized by the shakedownvtasidrshakedown
momentM? for perfectly plastic material.

details of the load history are needed and material alternating axial forces, superimposed with constant
characterization is simplified for the Armstrong and moments. The bounded linear kinematic hardening
Frederick model. In tension—torsion loading there is material model was applied to the shakedown anal-
no or only little difference in the shakedown behavior ysis using the PERMAS program. It is shown that
between a bounded linear and a nonlinear kinematic this shakedown analysis gives reasonable agreement
hardening material model. But the shakedown limits between the experimental data, a simple estimation
change noticeably with the load domains. This is also algorithm and the numerical results. With the kine-
typically observed in structural shakedown analyses matic hardening models a significant safety benefit
(see, e.g. the interaction diagram of a pipe junction in is demonstrated in comparison to the perfectly plas-
Staat and Heitzer, 2091 tic formulation. Further experimental validation with
cyclic stabilized material data is needed before best
use can be made of this safety potential. Addition-
6. Summary ally, the shakedown theory could be extended to
more advanced hardening formulations. However,
Limit and shakedown analyses are simplified but simple two-surface plasticity models produce realistic
exact methods of plasticity, which do not contain shakedown ranges. The linear and nonlinear kine-
any restrictive prerequisites apart from sufficient matic hardening versions exhibit distinct ratchetting
ductility. The simplifications concern the details of behavior but they predict same or quite similar shake-
material behavior and of the load history. A simple down ranges. In contrast to this, the shakedown limits
tension—torsion experiment was performed compris- change noticeably with the load domains. Also the
ing a hollow tension specimen which was subjected to structural influence of a nonhomogeneous stress field

15
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may have a larger influence than the differences in
the considered two-surface plasticity models.
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