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Abstract

Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important
to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a
hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series
of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been
selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It
is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear
and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.

1. Introduction

Structural design of passive structures in the appa-
ratus engineering are based on the analysis of plastic
limit states. The new European Standard for pres-
sure vessel and boiler design contains the proposal of
the European Pressure Equipment Research Council
(EPERC) for Design-by-Analysis (DBA) to exclude
ratchetting and therefore the limitation of progressive
plastic deformation(Taylor et al., 1999). The more
traditional DBA routes in the major codes and stan-
dards in the pressure equipment field (including the
ASME Pressure Vessel and Boiler Code) try to esti-
mate the plastic behavior from an extrapolation of an
elastic stress analysis. This way runs into the stress
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classification problem which lacks a rational solution
(Taylor et al., 1999).

In the future FEM-based shakedown analyses will
be needed for DBA, which can guarantee a uniform
safety assessment for complex structures. For perfectly
plastic materials and simple load cases shakedown
analyses are performed for different pressure ves-
sel problems(Taylor et al., 1999). In the European
project LISA general limit and shakedown analyses
for kinematic hardening material are developed and
implemented in the general purpose FEM code PER-
MAS (Staat and Heitzer, 2001). For the validation of
the shakedown theory for hardening material there is
a shortage of tests involving cyclic, mechanical and
thermal loads at the limit between shakedown and
ratchetting, but a lot of experiments to test different
hardening laws (e.g.Portier et al., 2000; Bari, 2001).
Two-bar and multi-bar tests(Ponter, 1983; Lang et al.,
2001), like the Bree problem, enable representation
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of simple mechanical models of pipes and vessels
subjected to internal pressure and a temperature gra-
dient across the wall thickness. The tests presented
here are aimed at determining the elastic shakedown
limit, below which failure due to ratchetting has not
to be assumed.

Structural ratchetting or shakedown are different
responses to the cyclic loading which depend on
the development of inhomogeneous residual stress
fields. In torsion experiments the stress is the more
homogeneous the thinner the tube wall is. For homo-
geneous stress fields the ratchetting is caused by the
material behavior alone(Hübel, 1996). Ratchetting
experiments with uniaxial and biaxial stress cycles
have been used to improve constitutive modeling for
cyclic plasticity. In these experiments the Melan and
Prager linear kinematic hardening law is found to be
inadequate to simulate material ratchetting, because
it always stabilizes to shakedown of homogeneous
stress fields after some initial over-prediction of ratch-
etting (Bari, 2001). The tension–torsion experiment
is situated between material and structural ratchetting
and may therefore give some hints on the reliability
of shakedown analyses if ratchetting is not controlled
by stress inhomogeneity.

In Heitzer and Staat (1999)a technique was ap-
plied which calculates the collapse and shakedown
load of ductile structures directly on the basis of
FEM discretization, without stress classification. This
technique could be extended inHeitzer et al. (2000)
to bounded kinematic hardening material. This paper

Table 1
Chemical composition of 20 MnMoNi 5 5 (wt.%)

C Si Mn P S Cr Mo Ni V

0.24 0.24 1.38 0.002 0.002 0.09 0.51 0.80 <0.01

Fig. 1. Geometry and sizes of the test specimens.

describes a test carried out using this technique, and
draws a comparison with the results of the shake-
down analysis and the experimental results. Some
material ratchetting analyses are used to assess the
effects of nonlinear kinematic hardening models
on the shakedown behavior of structures with little
redundancy.

2. Test specimen and experimental results

2.1. Geometry and material

The material chosen for this study is the ferritic
steel 20 MnMoNi 5 5, often used as material for
the pressure boundary of nuclear power plants. The
chemical composition of the material is given in
Table 1. Tensile specimens for uniaxial load tests
were machined from a 500 mm× 1000 mm block.
The geometry of the specimens is given inFig. 1.
In order to characterize the mechanical behavior of
the material, mainly the stress–strain behavior under
uniaxial loading, two uniaxial tests were performed
on an INSTRON 1343 servohydraulic test machine.
The same test equipment operating in biaxial strain
or in biaxial stress was controlled with load cell of
type LEBOW. An INSTRON extensometer was used
to monitor axial strains (Fig. 2). A PC 486 computer
equipped with CASYLAB 5.0 software controlled the
acquisition operations and command signal genera-
tion. In addition the torsion angle was recorded.
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Fig. 2. Experimental equipment.

Table 2
Definition of the material properties obtained by tensile testing

σy (N/mm2) σu (N/mm2) E (N/mm2) ν

485 631 2.07× 105 0.3

2.2. Description of the loadings and experimental
results

First, the strain hardening of the material under
monotonic loading was characterized.Fig. 3 shows
the corresponding stress–strain curves. The tested ma-
terial properties, lower yield stressσy, ultimate stress
σu, Young’s modulusE and Poisson’s ratioν are sum-
marized inTable 2.

Table 3
Loading, deformation and torsion angle of the experiments

Experiment

1 2 3 4 5 6 7 8a 9 10

Tension (kN) 17 15 16 10 18 21 17 20 18 5
Toment (N m) 7 21 14 28 17 4 24 14 3 32

Number of cycles 150 100 100 71 100 100 200 200 200 200
Angle (◦) 10.6 25.0 16.1 24.9 22.9 10.6 43.9 25.7 4.7 10.9
Axial strain 0.11 0.097 0.313 0.931 0.786 2.362 1.075 1.328 0.092 0.077

a Initial overload up to 22 kN.

Fig. 3. Stress–strain curve.

2.3. Experimental investigations of biaxial
tension–torsion loadings

The ratchetting behavior was studied with a
tension–torsion test under axial stress control. 10 ex-
periments were performed to verify the shakedown
domain for the tension–torsion loading regime calcu-
lated by the kinematic hardening approach presented
in Section 4.5. The load matrix of the experiments
is given in Table 3. The mean values of the tension
load are given in the table and for all experiments an
amplitude of±�σ = 1 kN is chosen. The remaining
enlargement and the torsion angle of the specimens
are given in addition inTable 3. The cyclic ‘creep’ is
shown inFig. 4, i.e. the torsion angle increases for
constant moment loading. In the case of unbounded
increase incremental collapse is reached, whereas the
torsion angle stabilizes for elastic shakedownFig. 5.

The specimens No. 1 and 3 are used again for the
experiments 9 and 10, respectively, due to the fact that
in the framework of the classical shakedown theory
(Melan, 1938)the results of the shakedown analysis
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Fig. 4. Loading and deformation of experiment 2.

are independent of the load history. Specimen No. 8
was loaded in the first step up to 22 kN. After a stabi-
lization period the specimen was loaded by the given
load history, such that the remaining deformation
after the loading has to be reduced to investigate the
real cyclic behavior. The initial overload was lower
than the limit load such that the ratchetting behavior
of the specimen is still predominant.

Fig. 5. Loading and deformation of experiment 4.

3. Theory and numerical results

3.1. Perfectly plastic shakedown formulation

Depending on the loading a structure shows differ-
ent structural responses. For time-variant loading the
structure can fail plastically in addition to the plastic
collapse at limit load by:
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• incremental collapse by accumulation of plastic
strains in successive load cycles (ratchetting, pro-
gressive plastification, cyclic ‘creep’)

• plastic fatigue by alternate plastification in few load
cycles (low cycle fatigue (LCF), plastic shakedown).

The structure does not fail plastically, if finally all
plastic strain rates vanish and the dissipated energy
remains finite. One says that the structure adapts to
the load or it shakes down elastically(König, 1987).
After few initially plastic cycles no difference to the
purely elastic behavior can be observed in structural
mechanics quantities. Shakedown analysis considers
only the asymptotic structural response. Infinite accu-
mulation of plastic deformation is called ratchetting.
If accumulation ends with finite values after some
transient ratchetting it is denoted shakedown (in the
sense of finite ratchetting).

The time history of a loadP (t) = (q(t), p(t)) with
body forcesq and surface loadsp is often not well
known. It can however usually be stated that the loads
(e.g. mechanical and thermal loads) vary only within a
certain convex load domainL. Typically,L is given by
amplitudes or admissible bounds. If NV is the number
of verticesP 1, . . . , P NV of L, then all loadsP (t) ∈ L
can be represented as convex combination

P (t) = λ1(t)P 1 + · · · + λNV(t)P NV,

NV∑
j=1

λj(t) = 1, 0 ≤ λj(t) ≤ 1.

The load-carrying capacity is exhausted by enlarge-
ment ofL with the factorα > 1 causing LCF, ratch-
etting or collapse. The shakedown theory analyzes
only the shakedown state, i.e. it answers the question,
whether a structure from ductile material is plastically
safe or not. With a static criterion, a structure under
a load rangeL shakes down, if for each load inL an
admissible stress field can be found which is in equi-
librium with this load. A stress field is admissible if
it fulfills the yield condition with the yield function
F . For perfectly plastic material this corresponds to
F [σ j] ≤ σ2

y with the yield stressσy, where the square

of the von Mises yield functionF [σ ] = 3/2σD : σD

with the deviatoric stressσD is used. It is sufficient to
satisfy the shakedown conditions only in the NV ver-
ticesP 1, . . . , P NV of L if L is a convex set, because

the shakedown theorems lead to convex optimization
problems.

3.1.1. Static shakedown theorem
A structureV shakes down under a convex load

domainαL, if for any basis loadαPj an admissible
stress fieldσj can be found, which is in equilibrium
with αPj. In formulae:

F [σj] ≤ σ2
y in V, j = 1, . . . , NV

−div σj = αqj in V, j = 1, . . . , NV

σjn = αpj on∂Vσ, j = 1, . . . , NV.

(1)

For kinematic hardening material the stresses still have
to be in equilibrium with the applied forces, but the
formulation of the yield condition is more complicated
than for perfectly plastic material law. The static the-
orem leads to a save lower bound, whereas the upper
bound is obtained by a kinematic approach(Staat and
Heitzer, 2001).

3.2. Kinematic hardening formulation

The linear kinematic hardening corresponds to the
translation of the loading surface in the multiaxial
loading space:

F [σ − π ] = σ2
y . (2)

The interior of the loading surface{σ |F [σ − π ] <

σ2
y } is the elastic domain which is described by the

functionF and the yield stressσy.
For realistic materials the stressσ is bounded by

the ultimate stressσu. Therefore, the displacement of
the initial yield surface is bounded. The hardening
is bounded, if the displacement of the initial yield
surface is bounded within a bounding surface in the
stress space. Within a simple formulation the bounding
surface is described by the same von Mises function:

F [σ ] ≤ σ2
u. (3)

The limit stressσu is set toRm if the hardening effect
is regarded totally. The elastic domain remains always
in the limit surface and any stressσ in it may be
reached if and only if (Fig. 6)

F [π ] ≤ (σu − σy)2. (4)

In the literature more advanced hardening models exist
with much more details, but they may not be needed



                                                Shakedown and ratchetting under tension–torsion loadings:

analysis and experiments                                        6

Fig. 6. Two-surface model of bounded kinematic hardening, uni- and multiaxial below saturation.

for the decision if a structure shakes down or not. In
the Besseling overlay material model the shakedown
behavior is described only byσu andσy (Stein et al.,
1993). Pycko and Maier (1995)and De Saxce et al.
(2000)extended the shakedown theory to the advanced
Armstrong and Frederick hardening law.

3.3. Shakedown formulation for kinematic hardening
material

The extended static theorem of shakedown for a
bounded kinematic hardening material can be formu-
lated as follows(Stein et al., 1993; Heitzer et al.,
2000):

If there exist a time-independent backstress fieldπ

satisfying

F [π ] ≤ (σu − σy)2, in V (5)

a factorα > 1 and a time-independent residual stress
field ρ such that

F [ασE(t) + ρ − π ] ≤ σ2
y , in V (6)

holds for all possible loadsP (t) ∈ L and for all
material points, then the structure will shake down
elastically under the given convex load domainL.

The greatest valueαsd for which the theorem
holds is called shakedown-factor. This lower bound
approach leads to the convex optimization problem:

maxα (7)

s.t.

F [ασE
j + ρ − π ] ≤ σ2

y , in V, j = 1, . . . , NV (8)

F [π ] ≤ (σu − σy)2, in V (9)

div ρ = 0, in V (10)

ρn = 0, on∂Vσ (11)

with infinitely many constraints, which can be reduced
to a finite problem by FEM discretization. If the load
regimeL shrinks to a single load point, limit analysis
is obtained as a special case. For the perfectly plastic
behavior (σu = σy), the backstressesπ are identical
zero due to inequality (9). Melan’s original theorem
(Melan, 1938)for unbounded kinematic hardening can
also be deduced from the previous formulation ifσu →
∞. Then inequality (9) is not relevant anymore and
the backstressesπ are free variables.

3.4. Discretization and optimization

The shakedown theorems formulated for the con-
tinuum can be discretized by the FEM or they can be
deduced directly for a discretized structure. For the
FEM the structureV is decomposed in NE finite el-
ements with the NG Gaussian points. The constraints
of the optimization problem are satisfied only in the
Gaussian points.

The number of Gaussian points becomes huge for
industrial structures and no effective solution algo-
rithms for the nonlinear optimization problem are
available. A method for handling such large-scale op-
timization problems called basis reduction technique,
was used inStein et al. (1993), Heitzer et al. (2000)
and Staat and Heitzer (2003). This basis reduction
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technique generalizes the line search technique, well
known in optimization theory(Fletcher, 1987). In-
stead of searching the whole feasible region for the
optimum a search direction (a subspace with a small
dimension) is chosen and one searches for the best
value in this direction. The basis of the subspaces
are generated by the general purpose Finite Ele-
ment Code PERMAS(Heitzer and Staat, 1999; Intes,
1988). The basis reduction and the subspace itera-
tion technique described(Stein et al., 1993; Staat
and Heitzer, 2003)for perfectly plastic material can-
not be directly applied to the shakedown problem
for bounded kinematic hardening model. Therefore,
Heitzer et al. (2000)proposed a method applicable
with arbitrary three-dimensional finite elements for
bounded kinematic hardening material law.

4. Analytical and numerical structural
shakedown analysis

The experiment comprised a hollow tension speci-
men which was subjected to alternating axial tension
with nonzero mean stress and constant moments. An
analytical solution is given for the hollow part of the
specimen, i.e. a pipe with inner radiusRi and outer
radiusRa is investigated. For simplicity of presenta-
tion the unbounded Melan and Prager linear kinematic
hardening model is used. The comparison with the ex-
periments is made against more realistic shakedown
analyses with the FEM using a bounded Melan and
Prager model.

4.1. Elastic analysis

For pure torsion and axial symmetry the normal
stresses vanishes and only shear stressesτ(r) = σθz

occur. The elastic stresses for constant momentMz at
the radiusr are

σM(r) = (0, 0, 0, τ(r))T with τ(r) = 2Mz

π(R4
a − R4

i )
r.

(12)

The elastic shear stresses reach the maximum at the
outer radiusRa = 4 mm, with the inner radiusRi =
2.4 mm:

τmax = τ(Ra) = 2MzRa

π(R4
a − R4

i )
= Mz

87.5 mm3
(13)

with the equivalent von Mises stress
√

3τmax. In the
FEM-based shakedown analysis the pipe is discretized
with n elements. The model uses 16 elements on the
periphery, such that the yielding of the pipe starts for
σy = 485 N/mm2 at

Me
z = 23.20 N m, (14)

which is sufficiently close to the analytical valueMe
z =

24.5 N m. In the case of an additional tension load the
von Mises yield functionF has the following form:

F [σ ] = σ2
r + σ2

θ + σ2
z − σrσθ − σrσz

− σθσz + 3τ2, (15)

with the stressesσ = (σr, σθ, σz, τ)T. The overall con-
stant elastic stressesσN are in equilibrium with the
tensionN,

σN = (0, 0, σN, 0)T and σN = N

π(R2
a − R2

i )
.

(16)

For the stressesσN andσM equilibrating the tension
Ny = αN and the constant momentMz it holds:

F [ασN + σM] = (ασN)2 + 3τ2. (17)

The maximal equivalent stress is obtained at the outer
radiusRa, such that the yielding starts for the constant
momentMz at the tensionNy with:

Ny = αyN and αy =
√

σ2
y − 3τ(Ra)2

σN
. (18)

The stress components ofσN andσM are independent,
such that the elastic domain is a 1/4 circle for a nor-
malization byMe

z = 23.25 N m andNe = 15.60 kN.

4.2. Limit analysis

The maximal allowable momentMlim and the
maximal allowable tensionNlim for perfectly plastic
material with the yield stressσy = 485 N/mm2 are
given with the plastic limit factorηpl (Betten, 1985):

M
pp
lim = ηplM

e
z = 4

3

1 − (Ri/Ra)3

1 − (Ri/Ra)4
Me

z

= 1.20Me
z = 27.98 N m, (19)
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N
pp
lim = π(R2

a − R2
i )σy = 15.62 kN, (20)

which fit exactly with the numerical values. For kine-
matic hardening material with the ultimate stressσu =
631 N/mm2 with σu/σy = 1.3 it is

Mkin
lim = σu/σyM

pp
lim = 1.3M

pp
lim = 36.37 N m, (21)

Nkin
lim = σu/σyN

pp
lim = 1.3N

pp
lim = 20.30 kN. (22)

The limit load domain for kinematic hardening ma-
terial is a proportional enlargement of the perfectly
plastic limit load domain by the factorσu/σy = 1.3.

4.3. Shakedown analysis for constant moment

The shakedown analysis for constant moment
Mz (dead load) and variable tensionN ∈ [0 Nmax]
with mean value 1/2Nmax for unbounded kinematic
hardening material with the free variablesy = ρ−π =
(yr, yθ, yz, yrz)

T is given by

maxα

s.t. F [ασN + σM + y] ≤ σ2
y in all points

F [σM + y] ≤ σ2
y in all points

(23)

σM and σN are with (12) and (16) in equilibrium
with the loadsMz and Ny, respectively. For every
discretization withn Gaussian points the stresses in
the pointsxj are given by:

σ
j
M = (0, 0, 0, τj)T, (24)

σ
j
N = (0, 0, σN, 0)T, (25)

yj = (yj
r , y

j

θ, yj
z, yj

rz)
T, (26)

the Lagrangian of the optimization problem is given
by (Fletcher, 1987):

L = −α −
n∑

i=1

λ2i−1{σ2
y − F [ασ i

N + σ i
M + yi]}

−
n∑

i=1

λ2i{σ2
y − F [σ i

M + yi]} (27)

with the Lagrange parametersλl, l = 1, . . . , 2n. In the
maximum the complementarity conditions hold for all
i = 1, . . . , n:

0 = λ2i−1{σ2
y − F [ασ i

N + σ i
M + yi]} (28)

0 = λ2i{σ2
y − F [σ i

M + yi]}. (29)

With ∇L(α, y1, . . . , yn) = 0 it holds:

∂L

∂α
= 0 = −1 +

n∑
i=1

λ2i−1{2(ασi
N + yi

z)σ
i
N

− σi
Nyi

r − σi
Nyi

θ}. (30)

and for alli = 1, . . . , n:

0 = [λ2i−1 + λ2i][2yi
r − yi

θ − yi
z] − λ2i−1ασi

N (31)

0 = [λ2i−1 + λ2i][2yi
θ − yi

r − yi
z] − λ2i−1ασi

N (32)

0 = [λ2i−1 + λ2i][2yi
z − yi

r − yi
θ] + 2λ2i−1ασi

N (33)

0 = (6λ2i−1 + 6λ2i)(y
i
rz + τi). (34)

Without loss of generality we assume that in the max-
imum at least one Gaussian pointxj exists, such that
eitherλ2j−1 > 0 orλ2j > 0 holds (otherwise no point
reaches the yield limit), such that from the conditions
(31) and (32) followsyj

r = y
j

θ . The following cases
have to be considered:

(i) λ2j−1 = 0, λ2j > 0: With (31) and (33) follows

y
j
r = y

j
z . With condition (34) it holdsyj

rz = −τj

and conditions (29) gives a contradiction.
(ii) λ2j−1 > 0, λ2j = 0: With (33) follows ασ

j
N +

y
j
z = y

j
r . With condition (34) it holdsyj

rz = −τj

and conditions (28) gives a contradiction.
(iii) λ2j−1 > 0, λ2j > 0: With (34) follows y

j
rz =

−τj. The complementarity conditions (28) and
(29) andα, σ

j
N > 0 give

α = y
j
r + y

j

θ − 2y
j
z

σ
j
N

. (35)

Inserting this in condition (33) it yields [λ2j−1 −
λ2j][yi

z − yi
r] = 0 andλ2j−1 = λ2j (otherwise a

contradiction is obtained fromyi
z − yi

r = 0 and

condition (31)). FromEq. (31) follows 2(y
j
r −

y
j
z) = ασ

j
N. Inserting this in condition (29) the

shakedown factorα is obtained by:

α = 2
σy

σ
j
N

. (36)

For constant moment and cyclic tension the radius
of the shakedown domain for unbounded kinematic
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hardening material is two times the radius of the elas-
tic domain. This domain is larger than the limit load
which is obtained in numerical shakedown analysis
with FEM discretization using a bounded kinematic
hardening model.

4.4. Shakedown analysis for constant tension

On the other hand the shakedown analysis for
variable momentMz ∈ [0, Mmax] with mean torque
1/2Mmax and constant tensionN (dead load) for un-
bounded kinematic hardening material with the free
variablesy = ρ − π = (yr, yθ, yz, yrz)

T is given by

maxα

s.t. F [ασM + σN + y] ≤ σy in all points

F [σN + y] ≤ σ2
y in all points

(37)

with the same stressesσM and σN. For this load
domain the following equation holds with (15):

F [ασM + σN + y] = y2
r + y2

θ + (σN + yz)
2 − yryθ

− (yr + yθ)(σN + yz)

+ 3(ατ + yrz)
2 = F [σN + y]

+ 3ατ(2yrz + ατ). (38)

The Lagrangian of the optimization problem is given
by (Fletcher, 1987):

L = −α −
n∑

i=1

λ2i−1{σ2
y − F [ασ i

M + σ i
N + yi]}

−
n∑

i=1

λ2i{σ2
y − F [σ i

N + yi]} (39)

L = −α −
n∑

i=1

(λ2i−1 + λ2i){σ2
y − F [σ i

N + yi]}

+
n∑

i=1

λ2i−13ατi(2yi
rz + ατi) (40)

with the Lagrange parametersλl, l = 1, . . . , 2n. With
∇L(α, y1, . . . , yn) = 0 it holds:

∂L

∂α
= 0 = −1 +

n∑
i=1

6λ2i−1(ατi + yi
rz)τ

i (41)

and for alli = 1, . . . , n:

0 = [λ2i−1 + λ2i][2yi
r − yi

θ − (σN + yi
z)] (42)

0 = [λ2i−1 + λ2i][2yi
θ − yi

r − (σN + yi
z)] (43)

0 = [λ2i−1 + λ2i][2(σN + yi
z) − yi

r − yi
θ] (44)

0 = 6λ2i−1(ατi + yi
rz) + λ2i6yi

rz. (45)

Without loss of generality we assume that in the max-
imum at least one Gaussian pointsxj exists, such that
eitherλ2j−1 > 0 orλ2j > 0 holds (otherwise no point
reaches the yield limit), such that from the conditions
(42) and (43) followsyj

r = y
j

θ and from (44) follows

y
j
r = σN + y

j
z . The complementarity conditions in the

maximum are thus given by:

0 = λ2j−1{σ2
y − 3(ατj + yj

rz)
2} (46)

0 = λ2i{σ2
y − 3(yj

rz)
2}. (47)

The following cases have to be considered:

(i) λ2j−1 = 0, λ2j > 0: With (45) followsy
j
rz = 0

and (47) gives a contradiction.
(ii) λ2j−1 > 0, λ2j = 0: With (45) follows ατj +

y
j
rz = 0 and (46) gives a contradiction.

(iii) λ2j−1 > 0,λ2j > 0: From condition (46) and (47)
followsα = 0 in contradiction to the assumptions.

For constant tension and cyclic moment with nonzero
mean torque no elastic shakedown boundary can be
defined for unbounded kinematic hardening. This
situation can be resolved by introducing a bounding
surface in the material model.

4.5. Shakedown interaction diagram

The shakedown domain for the FEM model (Fig. 7)
was computed by the basis-reduction method for the
experimental conditions of constant torque and cyclic
tension with nonzero mean stress. The interaction di-
agram (Fig. 8) is normalized by the pure shakedown
tensionNz0 = 15.62 kN and by the pure shakedown
momentMz0 = 27.98 N m for perfectly plastic mate-
rial with σy = 485 N/mm2. In the geometrically linear
FEM shakedown analysis with the two-surface model
of bounded linear kinematic hardening the shakedown
domain and the limit load domain are the same. As a
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Fig. 7. Finite element model.

consequence no clear distinction between incremental
and instantaneous collapse may be observed.

The interaction diagram shows a significant safety
benefit for the kinematic hardening law in compari-
son to the perfectly plastic shakedown domain. Other
examples for this effect (including thermally loaded
structures) are given inHeitzer et al. (2000).

4.6. Evaluation of the experiments

In the case of LCF and ratchetting the plastic strain
increments do not vanish during the load history. This
means that for elastic shakedown the plastic strainsεp

become stationary for the given load history, i.e. for

Fig. 8. Shakedown interaction diagram and experimental data, normalized by the shakedown tensionNz0 and shakedown momentMz0 for
perfectly plastic material.

t → ∞ it holds

lim
t→∞ε̇p(x, t) = 0, for all x ∈ V. (48)

To avoid the possibility of plastic failure the max-
imum possible plastic energy dissipation must be
bounded above for all points of the structure. With an
incremental computation it needs a lot of cycles to
decide whether shakedown occurs or not. Therefore,
a simple shakedown criterion(Wolters et al., 1996)
can be derived, which can be used for the evaluation
of the experiments. Letn be the number of the load-
ing cycles andε̇p(n) the plastic strain increment at
the end of the loading cyclen in the weakest point of
the structure. If the structure shakes down elastically
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Table 4
Results of the simple extrapolation analysis

Test no.

1 2 3 4 5 6 7 8a 9 10

Slope,s −3.98 −0.82 −1.42 −2.19 −1.10 −1.41 −1.21 −0.65 −1.71 −1.12

a Initial or intermediate overload, such that the strains for the interpolation have to be reduced.

the accumulation of all plastic strain increments must
be bounded in this point,

∞∑
n=1

|ε̇p(n)| < c. (49)

With the axial strainεp and the shear angleγp = 2ε
p
θz

the effective plastic strain increments are

ε̇p| :=
√

2
3 ε̇p : ε̇p =

√
(ε̇p)2 + 4

3(γ̇p)2. (50)

The shear angleγ is calculated from the torsion angle
ϑ on the lengthL by

γ(r) = r
ϑ

L
. (51)

With a decomposition of the elastic and plastic strains
(i.e. ε = εe + εp), corresponding to the geometrical
linear plasticity theory, the plastic strain increment
γ̇p are calculated by the differences at the same load.
The simplest condition of the convergence of this
sum as generalized harmonic series is the condition
|ε̇p(n)| ≤ ans with s < −1. This means in a double
logarithmical diagram of the loading cycles and the
plastic strain increments, that the slope must exceed
s = −1 in the case of LCF or ratchetting. The results
of the least square fit of the logarithmical data for the
derived plastic strain increments of the measured data
are shown inTable 4.

From a first impression we expect fromFig. 4
ratchetting for experiment No. 2 and fromFig. 5
shakedown for experiment No. 4. From the values of
s the convergence of (49) can be deduced. the load
levels 1, 3, 4, 6, 9 and with reservation 5 and 10
(probably an oversized torsion angle is obtained in
the pre-test of experiment No. 10) are in the shake-
down domain, because the plastic strains are bounded.
For experiments No. 2 and 8 ratchetting has to be
expected, because the plastic strains are unbounded.

With respect to the experimental uncertainties this
corresponds to the interaction diagram (Fig. 8).

5. Material ratchetting

5.1. Linear and nonlinear kinematic hardening
models

Structural shakedown analysis is designed to
exclude structural ratchetting which is produced
by inhomogeneous stress fields(Hübel, 1996). The
tension–torsion experiment is situated between struc-
tural and material ratchetting, because the stress is
the more homogeneous the thinner the tube wall is.
Homogeneous fields are controlled by the behavior of
a representative material point. The analysis of uniax-
ial and biaxial stress cycles shows that the kinematic
hardening is the primary reason for material ratchet-
ting. Therefore, it is essential to develop and verify
hardening rules which perform well under various
cyclic loadings.

The Melan (1938)and Prager (1956)linear kine-
matic hardening law is known to be inadequate
to simulate biaxial material ratchetting. The most
well-known nonlinear kinematic hardening model has
been proposed by Armstrong and Frederick (1966).
Conceptually, it is considered a leap in representing
cyclic plasticity response of materials but not robust
enough to predict the ratchetting response of materi-
als (Bari, 2001). Later, cyclic plasticity models have
been suggested, which needed uniaxial and multiax-
ial cyclic tests for material characterization. Then the
best could predict the amount of ratchetting in exper-
iments which are close to the tests used for parameter
determination. But all known models fail on one or
more material ratchetting experiments. The large class
of so-called coupled models fail conceptually to repre-
sent biaxial ratchetting if the material parameters are
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matched to the uniaxial tests and vice versa, because
the uniaxial hardening modulus cannot be chosen in-
dependently of the kinematic hardening(Bari, 2001).
More flexibility is offered by theDafalias and Popov
(1975) two-surface model. Common to all modern
models is that they need many parameters, which
have to be determined in several cyclic tests. Param-
eter determination is vague for some models. Other
models need uniaxial or biaxial ratchetting tests or try
to formulate the anisotropic deformation of the yield
surface. Such effort is prohibitive for most industrial
applications.

No comparative study of the multiaxial shake-
down behavior of different cyclic plasticity models is
known. Shakedown analysis of cyclic structural plas-
ticity needs only few characteristic material parameter
and only the bounds of the load history. A similar
benefit may be assumed for the analysis of cyclic
material response. Below the two-surface model for
bounded kinematic hardening with a piecewise linear
Melan and Prager law is compared with the nonlin-
ear kinematic Armstrong and Frederick evanescence
memory model which has been extended to multiple
back stresses by Chaboche(Lemaitre and Chaboche,
1990).

The original Melan and Prager model is character-
ized by unbounded linear kinematic hardening

F [σ − π ] ≤ σ2
y , (52)

π̇ = 2

3
Cε̇p = 2

3
λ̇C

∂
√

F

∂σ
, (53)

with the associated plastic flow

ε̇p = λ̇
∂
√

F

∂σ
. (54)

The movement of the yield surfaceF [σ ] ≤ σ2
y by the

backstress evolutioṅπ and the plastic floẇεp are both
parallel and normal to the yield surface in this model.
Backstressπ and plastic strainεp are both deviators
if F is the von Mises function. The uniaxial hardening
modulus isH = C. The linear kinematic hardening
always stabilizes to shakedown of homogeneous stress
fields after some initial overprediction of ratchetting
(Bari, 2001). A more realistic model is obtained by
restricting the movement of the yield surface such that
it always stays inside a bounding surface which does

not translate in stress space. This is achieved by the
additional constraint

F [σ ] ≤ σ2
u, (55)

which together with (52) implies

F [π ] ≤ (σu − σy)2. (56)

From a monotonic tension testσy and σu may be
identified by Rp0.2 and Rm, respectively. But for
cyclic experiments material parameters from a stable
hysteresis curve may be more appropriate if such data
is available.

The Armstrong and Frederick model introduces a
recall term−ζπ |ε̇p| for the fading memory

π̇ = 2
3Cε̇p − ζπ |ε̇p|, (57)

with the non-associated plastic flow

ε̇p = λ̇
∂f

∂σ
, (58)

with

f =
√

F [σ − π ] + 3

4

π : π

πu
≤ σu. (59)

The uniaxial hardening modulus isH = C − ζπ

sign(σ −π). Thenπu = C/ζ denotes the ultimate shift
of the center of the initial yield surfaceF [σ ] = σ2

y in
a uniaxial tension test, such thatσu = σy + πu and
F [π ] ≤ π2

u. This is again a two-surface model. The
same bounding surface (55) is not postulated but it
is assumed asymptotically by the kinematic evolution
rule (57) with π̇ no more proportional to the plastic
flow ε̇p.

Let n be the outward normal to the yield surface at
the current stress pointσ . Letσ L be the stress state on
the bounding surface with the same outward normal
n. Then it holds

n = σD
L

σu
= σD − π

σy
. (60)

The model turns out to be a particular two-surface
Mróz kinematic hardening model with a shift of the
yield surface by

π̇ = ζ(σD
L − σD)|ε̇p| (61)

in deviatoric stress space.
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5.2. Material shakedown analysis

In torsion experiments the stress is the more ho-
mogeneous the thinner the tube wall is. Any material
point is representative for homogeneous stress fields.
Therefore, ratchetting or shakedown are caused by the
material behavior due to the nonproportional loading
and may be analyzed by consideration of the move-
ment and deformation of the yield surface. Shakedown
analysis is a simplified method which only considers
the stabilized state and avoids the detailed analysis of
the whole deformation process.

Consider a constant tension withσN followed by a
cyclic torsion with shear stressτ. Plastic flowε̇p =
(ε̇p, 1/

√
3γ̇p) starts if the stress pointσ = (σN,

√
3τ)

lies on the yield surface. Cyclic ‘creep’ of the ax-
ial componentε̇p stops if the yield surface touches
the bounding surface in stress pointσL. This elastic
shakedown situation is constructed for the bounded
Melan and Prager model and the Armstrong and Fred-
erick model inFigs. 9 and 10. The stress points at
shakedown are denotedσmp and σaf for the Melan
and Prager and the Armstrong and Frederick model,
respectively. The figures also show the backstresses
πmp andπaf for both models at shakedown. For a con-
stant torsionτN followed by a cyclic tension the same
figures can be used to derive the material shakedown

Fig. 9. Constant tension and cyclic torsion with nonzero mean
shear stress.

Fig. 10. Constant tension and fully reversed torsion with zero
mean shear stress.

equations if the names of the axes are exchanged and
the stress pointσ = (σ,

√
3τN) is considered.

This type of material ratchetting is covered by
all kinematic hardening models(Hübel, 1996). But
the originally unbounded Melan and Prager model
(σu → ∞) is quite unrealistic. For a cyclic loading
with nonzero mean value no finite shakedown load
and no finite limit load is found. In contrast to this,
the material always shakes down for fully reversed
cycles with a load amplitude at yield stress once
the backstress has achieved the constant stress (σN
or τN). For larger cycles damage is caused by LCF.
Such strange behavior has already been observed for
structural shakedown inSections 4.2 and 4.3. Obvi-
ously the bounding surfaceF [σ ] ≤ σ2

u is the key to a
realistic modeling of the shakedown behavior.

(i) For the tension–torsion shakedown experiment
with constant tensionσN and nonzero mean tor-
sion, Fig. 9 shows that both hardening models
lead to the same material shakedown limit of the
maximum shear stressτmax < τL,

τL = 1√
3

√
σ2

u − σ2
N. (62)

The solution is valid for any cyclic torsion with
a minimum shear stressτmin > τL(σu − 2σy)/σu.
For comparison with the structural shakedown
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this condition is depicted in the load space in the
interaction diagram (Fig. 8). The structural effect
is most effective on the pure torsion axis. There is
no difference between structural shakedown and
material shakedown for the homogeneous stress
state in pure tension. As observed for structural
shakedown also the material shakedown stress
coincides with the stress at instantaneous plastic
collapse at limit load, because the pointsσmp and
σaf coincide withσL on the bounding surface.

For an experiment with constant torsionτN and
nonzero mean tension the shakedown limit of the
maximum tensionσmax < σL is

σL =
√

σ2
u − 3τ2

N (63)

for both material models. The solution is valid
for any cyclic tension with a minimum stress
σmin > σL(σu − 2σy)/σu and it is identical to the
limit load in the interaction diagram (Fig. 10).

(ii) A difference between the linear and the nonlinear
kinematic hardening model may be observed in
an experiment with fully reversed torsion cycles
with zero mean shear stress (τmin = −τmax). For
constant tensionσN the material shakedown con-
dition for the bounded Melan and Prager model
in Fig. 10is

τmp=




1√
3

σy for 0 ≤ σN ≤ σu − σy,

1√
3

√
σ2

y−(σN+σy−σu)2 for σu − σy < σN ≤ σu.

(64)

For constant torsionτN and fully reversed tension
with zero mean stress (σmin = −σmax) the mate-
rial shakedown condition for the bounded Melan
and Prager model is

σmp=



σy for 0 ≤ √
3τN ≤ σu − σy,

√
σ2

y−(
√

3τN+σy−σu)2 for σu − σy <
√

3τN≤σu.

(65)

For the Armstrong and Frederick model a result
of Lemaitre and Chaboche (1990)is obtained for
constant tensionσN and fully reversed torsion
(τm = 0) in Fig. 10

τaf = 1√
3

σy

σu

√
σ2

u − σ2
N = σy

σu
τL . (66)

It is derived from structural shakedown analysis
in De Saxce et al. (2000). The material shake-
down load is below limit load for both models
except for pure tension. For pure shear no mate-
rial shakedown may be achieved with amplitudes
beyond 1/

√
3σy for both models.

For constant torsionτN and fully reversed
tension (σm = 0) the result is

σaf = σy

σu

√
σ2

u − 3τ2
N = σy

σu
σL . (67)

The material shakedown stress is below limit load
for both models except for pure shear. For pure
tension no material shakedown may be achieved
with amplitudes beyondσy for both models. This
shakedown stress is presented in the interaction
diagram (Fig. 11).

On a material level elasticity is any history in the
interior of the initial yield surface. The boundary of
the purely elastic rangeF [σ ] < σ2

y can be read as

the equation
√

3τ + σ = σy of the dotted circle in
Figs. 9 and 10. The only difference between elastic-
ity and elastic material shakedown is that the latter is
any history in the interior of the shifted yield surface
(loading surface). Therefore, a distinction can only be
made if the nature of the surface is known. For this
the backstress needs to be known with kinematic hard-
ening models. But the backstress is not an observ-
able quantity. Therefore, no difference between elastic
shakedown and elasticity can be made in a continuum
theory if the existence of a yield surface is accepted.
On a continuum level the yield surface is most evident
in metal plasticity in the discontinuous temperature
evolution in a tension test(Gabryszewski and Sródka,
1986).

Material limit load is assumed ifF [σ ] = σ2
u. It is

the solution of the equation
√

3τ + σ = σu of the
outer circle inFigs. 9 and 10. Both hardening mod-
els predict material shakedown for cyclic stress with
nonzero mean value up to material limit load. Both
(62) and (63) make no distinction between unlim-
ited ratchetting and plastic collapse for this biaxial
loading. In contrast to it another behavior shows up
with fully reversed stress cycles. For both models
separated stress regimes exist with distinct material
behavior: elastic, shakedown, ratchetting, and col-
lapse. Similarly to structural shakedown analysis no
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Fig. 11. Material shakedown interaction diagram for fully reversed tension loading, normalized by the shakedown tensionNe and shakedown
momentMe

z for perfectly plastic material.

details of the load history are needed and material
characterization is simplified for the Armstrong and
Frederick model. In tension–torsion loading there is
no or only little difference in the shakedown behavior
between a bounded linear and a nonlinear kinematic
hardening material model. But the shakedown limits
change noticeably with the load domains. This is also
typically observed in structural shakedown analyses
(see, e.g. the interaction diagram of a pipe junction in
Staat and Heitzer, 2001).

6. Summary

Limit and shakedown analyses are simplified but
exact methods of plasticity, which do not contain
any restrictive prerequisites apart from sufficient
ductility. The simplifications concern the details of
material behavior and of the load history. A simple
tension–torsion experiment was performed compris-
ing a hollow tension specimen which was subjected to

alternating axial forces, superimposed with constant
moments. The bounded linear kinematic hardening
material model was applied to the shakedown anal-
ysis using the PERMAS program. It is shown that
this shakedown analysis gives reasonable agreement
between the experimental data, a simple estimation
algorithm and the numerical results. With the kine-
matic hardening models a significant safety benefit
is demonstrated in comparison to the perfectly plas-
tic formulation. Further experimental validation with
cyclic stabilized material data is needed before best
use can be made of this safety potential. Addition-
ally, the shakedown theory could be extended to
more advanced hardening formulations. However,
simple two-surface plasticity models produce realistic
shakedown ranges. The linear and nonlinear kine-
matic hardening versions exhibit distinct ratchetting
behavior but they predict same or quite similar shake-
down ranges. In contrast to this, the shakedown limits
change noticeably with the load domains. Also the
structural influence of a nonhomogeneous stress field



                                                Shakedown and ratchetting under tension–torsion loadings:

analysis and experiments                                       16

may have a larger influence than the differences in
the considered two-surface plasticity models.
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