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ABSTRACT 
This paper presents the direct route to Design by Analysis 
(DBA) of the new European pressure vessel standard in the 
language of limit and shakedown analysis (LISA). This 
approach leads to an optimization problem. Its solution with 
Finite Element Analysis is demonstrated for some examples 
from the DBA–Manual. One observation from the examples 
is, that the optimisation approach gives reliable and close 
lower bound solutions leading to simple and optimised 
design decision. 

 
INTRODUCTION 
In the new European standard for unfired pressure vessels, 
EN 13445-3, [4], there are two approaches for a Design-by-
Analysis (DBA) for sufficiently ductile steels and steel 
castings below the creep range. They cover both the stress 
categorization method (Annex C) and the direct route method 
(Annex B). The stress categorization method is an elastic 
route to the assessment of inelastic structural failure. 
Conceptually this stress categorization originates from limit 
and shakedown analysis (LISA) for simple beam and thin 
shell structures. It can hardly be recommended for more 
complex geometries [3], [6]. 

The new direct route by elasto-plastic calculation in EN 
13445-3 Annex B [4] seems to be the more promising 
alternative. The paper relates the direct route in [3] with 
advanced limit and shakedown analysis (LISA). The work 
has been performed in the European research project LISA 
between January 1998 and May 2002. 

 

DESIGN CHECKS 
The direct route calculates the design resistance (limit action) 
with respect to ultimate limit states of the structure. Design 
checks are designated by failure modes. The following ones 
are included in the first issue of EN 13445-3 Annex B [4], [3] 
: 
• Gross Plastic Deformation (GPD), with excessive local 

strains and ductile rupture (collapse).  

• Progressive plastic Deformation (PD), with incremental 
collapse (incremental collapse, ratchetting). 

• Instability (I), with large displacements to a new stable 
geometry of the structure under compressive actions 
(buckling). 

• Fatigue (F), with alternating plasticity (AP) or with high 
cycle fatigue. 

• Static Equilibrium (SE), with possible overturning and 
rigid body movement. 

Actions denote in [4] all thermo-mechanical quantities 
imposed on the structure causing stress or strain. Actions are 
classified by their variation in time: permanent (G), variable 
(Q), exceptional (E), and operating pressures and tempera-
tures (p, T). 

 

LOWER BOUND ANALYSIS 
Traditionally the GDP check has to be performed with the 
more conservative Tresca yield surface ΦT(σ)=0, whereas the 
PD check uses the more realistic von Mises yield surface 
ΦM(σ)=0. The numerical difficulties in FEA with the non-
smooth Tresca yield surface are avoided in [3] by reducing 
the von Mises limit by √3/2. This strict use of the Tresca rule 
is very conservative for spherical shells. Therefore [3] does 
not strictly follow the code principle in EN 13445-3 B.8.2.1 
[4] for the GDP check for such shells. 

Check against failure modes GPD and PD may be 
directly performed by LISA based on Melan's static or lower 
bound theorem. Conservatively the code [4] requires the use 
of a perfectly plastic material model and the side-condition 
that the maximum absolute value of the principle strains does 
not exceed 5%. It could be asked if the simple perfectly 
plastic model allows a conservative estimation of the plastic 
strain accumulation during ratchetting, because all known 
cyclic plasticity models fail on one or more material 
ratchetting experiments [2]. However, it is easily demon-
strated that the difference in shakedown analyses for some 
linear and nonlinear kinematic hardening models is smaller 
than could be expected from cyclic analyses with such 
models [19]. 

mailto:m.staat@fh-aachen.de


The shakedown check includes a check against AP, 
which is not required in a PD check [4]. This is accepted in 
the DBA manual ([3], p. 2.40), because it is conservative and 
because the proof of shakedown is easier to perform than 
cyclic plastic analyses. Shakedown analysis can distinct 
between AP and PD [21]. 

 
CHECK AGAINST GLOBAL PLASTIC DEFORMA-
TION (GPD) 
Static theorems are formulated in terms of stress. They define 
safe structural states leading to an optimization problem for 
safe loads. The maximum safe action is respectively the limit 
load (avoiding GPD) and the elastic shakedown load 
(avoiding PD and AP). Let us assume that the most 
unfavourable actions have been combined to a single design 
action Ed = (qd , pd) with forces qd  in volume V, and vector 
surface traction pd  on the traction boundary ∂Vσ with unit 
normal vector n. Then - in the sense of the code - the action 
is plastically admissible if the yield condition 

ΦT(σ) ≤ Rd in V  
is satisfied with the design resistance Rd (allowable stress). 
Trivially the structure must be in equilibrium, i.e. 
 

-div σ = αS  qd      in V  
      nT σ = αS  pd      on ∂V 

 
These conditions can be stated in words as the 

 
Static limit load theorem: 
 
An elastic-plastic structure will not collapse (GPD check) 
under a monotone effect σ = αS pd Ed, if it is in static 
equilibrium and if the yield condition is nowhere violated. 

 
For each stress field σ, which fulfils the conditions of the 
static theorem, αS is a safety factor, so that the design check 
is the requirement  αS  ≥ 1. 

One is interested in the largest factor, for which the 
structure does not collapse. The stress σ can be decomposed 
in the elastically calculated stress σE and some time 
independent stress ρ  i.e. σ (x ,t) = σE (x, t) + ρ (x). Clearly, 
the stress field ρ(x) is self-equilibrated, because σ and σE  are 
in equilibrium with the same loading. In this notation the 
theorem leads to the infinite optimization problem 

 
max α 
such that   ΦT(σE (x, t) + ρ (x)) ≤ Rd(x)  in V  

           -div ρ =  0             in V  
              nT ρ = 0              on ∂V 

 
With the Tresca criterion ΦT(σ) this is a linear optimisation 
problem. In the LISA project only nonlinear optimisation 
problems are considered with the von Mises criterion ΦM(σ). 
The GPD check is performed by limit analysis with 
monotonously increasing action. This maximization problem 
is discretized by FEM and solved effectively with 

optimization algorithms [15], [18]. A large αS can be used to 
improve the design. Additionally, the structural strains shall 
be limited to 5%. GPD is connected with loss of structural 
stiffness. Therefore the effect of strain limits on the limit 
action is often smaller than the numerical errors in practice. 

It should be clearly stated that, without restrictions, the 
limit load is truly independent of load history, elastic data and 
self-equilibrated stress (secondary stress). This statement is 
slightly modified if the side-condition on the maximum 
absolute value (5%) of the principle strains is considered. 

CHECK AGAINST PROGRESSIVE PLASTIC DEFOR-
MATION (PD) 
Strictly, only one load case can be checked by limit analysis. 
Design check should be performed by shakedown analysis, if 
actions are not monotone. The time history of an action Aj (t) 
= (qj (t), pj (t), Tj (t)) is often not well-known. It can however 
usually be stated that the actions vary within given 
amplitudes or admissible bounds. They define a convex load 
range . L

 

 
 
Two-parameter action: 
NV=4 

 
One-parameter action with 
proportional loading: NV=2 

 
 
One-parameter action with 
dead load: NV=2 

 
Limit analysis, proportional 
loading: NV=1 

Tab. 1: Different loading cases. 
 

If NV is the number of independent actions A1,…,Aj ,…,ANV 
then all actions A (t) in  can be represented by a convex 
combination of NV vertices A

L
j  of  with λL j (t) ≥ 0,  and 

A (t)= λ1 (t) A1 +…+ λj(t) Aj  +…+ λNV (t) ANV , 
1

λ 1
NV

j
j=

=∑  

The load-carrying capacity is exhausted by enlargement of 
with the factor αL S > 1 causing PD, AP or GPD. The 

shakedown theory analyses only the shakedown state. The 



shakedown theorems answer the question, whether a 
structure from ductile material is plastically safe or not. 
Generally, a structure under a load range  shakes down, if 
for each load in  an admissible stress field can be found, 
which is in equilibrium with this load; in other words 

L
L

 
Static shakedown theorem: 
An elastic-plastic structure will not fail with macroscopic 
plasticity (PD, AP, and GPD as special case) under time 
variant actions in αS L  if it is in static equilibrium, if the 
yield function is nowhere and at no instance violated. Then 
the plastic deformation rates tend to zero. 
 
Strictly, an independent fatigue analysis must show that the 
plastic dissipation is bounded. Again one is interested in the 
largest factor αS, for which the structure shakes down to 
asymptotically elastic behaviour. 

The same conditions as in the limit load theorems must 
be satisfied simultaneously at all times. Their examination in 
infinitely many instants is impossible and in addition, 
unnecessary. One can show that it is sufficient to satisfy the 
shakedown conditions only in the NV basis actions 
A1,…,Aj,…,ANV  of  since the shakedown theorems lead to 
convex optimization problems. With the decomposition   
σ

L

j(x) = σE j (x) + ρ (x) we have: 
 

max α 
such that   ΦM(αS σ E j (x) + ρ (x) ) ≤ Rd(x)  in V, j=1,…,NV  

           -div ρ(x)  =  0             in V  
              nT ρ(x)  = 0              on ∂V 

 
The optimisation problem is obtained with the only change 
that now the constraints have to be satisfied for all j=1,…,NV 
simultaneously. It is not sufficient to examine the critical load 
cases independently, because the shakedown analysis of  
and the limit analysis of the critical load cases (vertices of 

) may give different results. The GPD check by limit 
analysis is included as the special load domain  with only 
one vertex, i.e. NV =1. 

L

L
L

It should be pointed out that different to limit analysis, 
shakedown analysis does not apply if the elastically 
calculated stress field contains singularities. Therefore the 
standard [4] (Annex B.3.9.3.2) states that the check against 
PD can be performed for a stress-concentration-free 
structure. Sharp corners have to be removed from the FEM 
models, if they lead to unphysical peak stress. 

 

DIRECT DESIGN CHECKS BY LISA 
The shakedown optimization problem has been discretized 
with the Finite Element Method (FEM) using the general 
purpose FE code PERMAS [10] (Intes GmbH, Germany). 
The yield condition is checked in all Gaussian points. The 
main technical problem is the number of unknowns and 
restrictions in the discretized optimization problem. This has 
been solved by a basis reduction method in the present 
PERMAS implementation [8], [18]. Some important 

extensions of the shakedown theory have been achieved in 
the LISA project [15], [22]: 
• LISA for bounded kinematic hardening, [7], [19], [15], 
• LISA including continuum damage, [5], 
• Limit analysis (GPD check) for crack containing 

structures, [20], 
• Koiter’s kinematic theorem for upper bound analysis, 

[21], 
• Plastic reliability analysis for uncertain data of materials 

and actions, [9], [22], 
• Distinction between AP check and PD check, [21], [22]. 
The last achievement is useful for DBA, because the AP 
check is not mandatory for the PD check in EN 13445-3, [4]. 

Different methods for large-scale optimization have 
been developed by the research groups contributing to the 
LISA project [15], [22]: 
• Basis reduction by plastic analyses and search for the 

maximum in a sequence of low dimensional subspace by 
Sequential Quadratic Programming (SQP). 

• Dual upper and lower bound analysis of the full size 
problem by large-scale nonlinear programming methods 
based on a sequence of linear elastic analyses. 

• Reformulation of the problem in the form of a Second 
Order Cone Programming problem (SOCP). 

• Zarka's method has been contributed as an additional 
direct plasticity method, which estimates the plastic 
deformation prior to failure. 
The methods avoid any cyclic analysis and are therefore 

extremely effective for PD checks. A typical shakedown 
analysis needs only 2-3 times the computing time for one 
elastic static analysis [18]. With a computing time of about 
10-20 elastic analyses the limit analysis for the GPD check 
seems to be somewhat less effective. One of the main 
advantages of the LISA method is seen in the possibility to 
indicate convergence to the true limit and shakedown loads 
by comparing lower and upper bounds. 

All implementations of shakedown analysis in FEM 
codes have been checked against analyses of the LISA 
project partners, analytical solutions, and published results. 
Today only the basis reduction method has been implemented 
in the commercial FEM code PERMAS [10]. The 
implementation of some of the other methods in general 
purpose FEM codes is in preparation. 

This paper discusses some of the results obtained by 
Aachen University of Applied Sciences, Germany (AcUAS) 
for examples taken from the DBA Manual [3]. In particular 
the lower bound LISA which solves the optimisation problem 
with the basis reduction method and analytical cylinder 
solutions are compared to the following contributions to the 
DBA–Manual [3]: 
• Design by Formula (DBF) by Sant’ Ambrogio Servizi, 

Italy (St. A.), 
• DBA with the deviatoric map (DRS) by the Vienna 

Technical University, Austria (A&AB), [14], 
• Elastic compensation method (DRC) by the University 

of Strathclyde, UK, [11], 
• Nonlinear step-wise finite element analysis (NL) by the 

University of Strathclyde, UK, 



• Stress classification, stress categorization (SC) by the 
University of Strathclyde or by TKS, Sweden. 
Only two examples are chosen for comparison due to 

space limitations. The elastic compensation method and the 
basis reduction method have been used to compute load 
interaction diagrams. All the analyses have been performed 
with von Mises material. The design code EN 13445-3, [4] 
requires Tresca material for the GPD check. Therefore the 
DBA–Manual [3] suggests the correction by the factor 2/√3. 
The examples demonstrate that such a correction could be 
questioned. 

The DBA–Manual [3] is mainly restricted to 
mechanical loading, because the elastic compensation 
method could not deal with thermal loading. This restriction 
has been removed meanwhile [13]. The methods involving 
non-linear static analysis and superposition for non-
proportional loading in [12] have been developed also with 
the objective to overcome some restrictions of the elastic 
compensation method. All the optimization methods in the 
LISA project have been developed also for thermal loading 
[22]. The application to such problems has been 
demonstrated elsewhere [7], [18], [21], [22]. 

 

GPD DESIGN CHECK OF PIPE JUNCTION 
A thick–walled cylinder–cylinder intersection under internal 
pressure and a constant moment M=711.1Nm action (dead 
load) on the thin nozzle is considered (Fig. 1).  There is a 
strength mismatch between cylinder material P265GH 
according to EN 10028-2 with RM=Rp0.2 =234 MPa and 
nozzle material 11CrMo9-10 according to prEN 10216-2 
with RM=Rp0.2 =343 MPa. The FEM discretization of the 
structure consists of 4312 eight nodes volume elements 
(PERMAS element HEXE8). 
The limit load is independent from the load history. 
Therefore the same limit load interaction diagram (Fig. 2) is 
obtained for a constant moment or for any other loading. The 
diagram has been computed for von Mises material. It shows 
that the elastic compensation method did not converge to a 
good lower bound. This behaviour was generally observed 
with other examples in the DBA–Manual. The interaction 
diagram is used to discuss different ways to read a design 
pressure. 

 
 

 
Fig. 1: Thick-walled cylinder –cylinder intersection. 
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Fig.2: Limit load interaction diagram for thick-walled 
cylinder –cylinder intersection. 

 
In the DBA Manual the limit pressure for moment dead load 
711.1Nm has been determined by A&AB and by Strathclyde 
with only the partial safety factor γG=1.35  for the permanent 
moment action leading to the design moment 1.35⋅711.1Nm 
=960Nm. However, the partial safety factor γR=1.25 for the 
resistance should also be used such that the design moment is 
1.35⋅1.25⋅711.1Nm=1200Nm. The tabulated design pressure 
is obtained by reduction with the partial safety factor 
γR=1.25, the partial factor γp=1.2 for pressure loading, and 
with the factor √3/2. If possible, the results from the DBA–
Manual have been corrected accordingly for the Tresca 
material. They have been put in brackets in Tab. 2 to show 
that the tabulated values differ from the DBA–Manual. 

 
Project Member and Analysis Type  

Check St. A. A&AB Strathclyde AcUAS 
 DBF DRS DRC NL SC LISA analytic
Tresca limit 
load  
with safety 
factors 

 
14.09

 
(14.79) 

(11.5) 
10.57 

 
(15.1) 

 
14.25

 
14.34

 
15.62 

von Mises limit 
load  
without safety 
factors 

  
(25.62) 

(19.9) 
18.3 

 
(26.2) 

  
24.84

 
27.04 

A 14.09 17.65 12.7 - 14.25 17.15  Shakedown 
load C - - - - - 15.20  

Tab. 2: Comparison of the different approaches for the 
cylinder-cylinder intersection. 
 

Strictly the design moment has to be converted to Tresca 
material to satisfy the EN 13445-3 requirements, [4]. The 
DAB–Manual suggests 2/√3⋅1200Nm=1385.6Nm. This 
would reduce the elastic compensation (DRC) design 
pressure further to 8.5 MPa. The general use of a factor 2/√3 
may be not recommended here, because the bending stress in 
the nozzle is uniaxial. Then both yield functions give the 
same effective stress. 



The exact limit pressure of the large cylinder is used for 
the analytic solution although the collapse occurs in the 
nozzle. The elastic compensation gives very conservative 
results below the DBF values. 

GPD DESIGN CHECK OF NOZZLE IN SPHERICAL 
END 
A nozzle in a spherical shell with strength mismatch is 
considered under thermal and mechanical actions. The shell 
is made of 11CrMo9-10 according to EN 10028-2 with 
RM=Rp0.2=230MPa at 325°C. The nozzle reinforcement is 
made of 11CrMo9-10+Q according to prEN 10216-2 with, 
RM=Rp0.2=284MPa and the nozzle is made of P265 
according to prEN 10216-2 with RM=Rp0.2=147.5MPa  only. 

A&AB has performed the limit analysis with a reduced 
design strength √3/2⋅RM/γR=√3/2⋅RM/1.25 to obtain the limit 
pressure 17.91MPa. This was connected with a calculated 
maximum principal strain of 14%. The limitation to 5% is 
required in EN 13445-3, [4]. This requirement is satisfied 
already for a limit pressure 17.75MPa. This small difference 
is below the observed numerical errors of the FEM analyses. 
The tabulated value is 17.75MPa/γp =14.79MPa. 

 

 
 
Fig.4: Nozzle in spherical end. 

Without pressure the limit moment is 1993.6Nm which 
gives the design value 1993.6Nm/(1.35⋅1.25)=1181.4Nm 
with the partial safety factors. Conservatively converting to 
Tresca material the design moment would be 1023.1Nm. 

 

PD DESIGN CHECK OF PIPE JUNCTION 
The same thick–walled cylinder–cylinder intersection is 
considered in a shakedown analysis. No safety factors shall 
be used in a PD check. The von Mises yield function applies. 
The interaction diagram (Fig. 3) is calculated for a dead load 
by a moment on the nozzle. It is denoted case A in Tab. 2 and 
it is obtained for a load domain  with NV=2. It is 
compared to the elastic compensation method. The latter 
gives again generally very conservative lower bounds. 
Additionally independent pressure and moment cycles are 
considered for a load domain  with NV=4 (two parameter 
loading, case C in  Tab. 2). 

L

L

As no safety factor is involved the design pressure is 
found for a moment of 711.1 Nm. The elastic compensation 
(DRC) value is close to the operating pressure cycles 
Pop,sup=12.68MPa  so that the structure would be at the design 
limit. It is safe however with the other methods (A&AB and 
LISA). 

 
The limit analyses are collected in Tab.3. The values in 
brackets have been obtained indirectly by conversion 
between von Mises and Tresca yield function. The exact limit 
pressure of a spherical shell is given as the analytical 
solution. The exact solution holds for both, Tresca and von 
Mises Material. The FEM analysis shows that the spherical 
shell dominates the stress also in the nozzle region. Therefore 
A&AB has not used the conservative conversion from von 
Mises to Tresca yield condition in the DBA–Manual. This is 
not permitted formally by the code principle in EN 13445-3 
B.8.2.1 [4]. However, one can bring up hardly technical 
reason for the formal penalization of the von Mises yield 
function in the GPD check for this analysis example. 
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Fig.3: Limit load interaction diagram for thick-walled 
cylinder –cylinder intersection. 

Again, the elastic compensation is too conservative for 
most constant moment actions. For a smaller loading range 
the LISA optimisation approach needs also some 
improvement. All stepwise FEM analyses of perfectly plastic 
material suffer from some numerically induced kinematic 
hardening. This contributes only 2–3% excess strength This 
spurious kinematic hardening effect is absent in the LISA 
optimisation approach. 
 
 

 



St. A. A&AB Strathclyde TKS AcUAS  
Criterion DBF DRS DRC NL SC 

ANSYS 
SC 

BOSOR 
LISA 

PERMAS
anal.

Tresca 
limit load  
with 
safety 
factors 

 
13.01 

 
(11.30) 

 
11.1 

 
(11.43) 

 
12.8 

 
11.7 

 
(11.50) 

 
13.31

von Mises 
limit load  
with 
safety 
factors 

  
13.04 

 
10.14 

 
13.2 

 
 

 
 

 
13.27 

 
13.31

von Mises 
limit load  
without 
safety 
factors 

  
19.56 

 
17.57 

 
19.8 

 
 

 
 

 
19.91 

 
19.96

Numerical 
hardening  
correction 

  
1.027 

 
1.021 

    
1.00 

 
- 

Tab. 3: Comparison of the different approaches for the 
nozzle in spherical end. 
 

CHOICE OF THE YIELD FUNCTION 
Design codes for pressure vessels use different yield 
functions depending on the considered design check. The 
material however, is considered to follow only one yield 
function independent of the application. Generally the von 
Mises rule is considered to be the more realistic choice. It is 
also used for the PD check. The GPD check with Tresca yield 
function leads to a non-homogenous increase of the safety 
factor by 0–15.47% depending on the dominating stress state 
in the relevant failure region. There is no reason why some 
structure should need an additional safety measure 
(cylindrical shell) and other do not (spherical shell). 

The recommendation of the DBA–Manual [3] to 
calculate with von Mises yield function and to convert 
always to Tresca yield condition afterwards, leads to a 
homogenous second hidden safety factor of 2/√3=1.155 for 
all GPD checks. If this should really be considered to be 
necessary, it would simplify the code application if the von 
Mises condition would be used for all design checks and the 
partial safety factor γR would be modified to 2γR/√3 to 
include the hidden safety factor for all structures in a GPD 
check. This very conservative approach has been applied 
only partly in the DBA–Manual. 

 

SUMMARY AND CONCLUSIONS 
This paper presents the direct route to Design by Analysis 
(DBA) of the new European pressure vessel standard in the 
language of limit and shakedown analysis (LISA). This 
approach leads to an optimization problem. Its solution with 
Finite Element Analysis is demonstrated for some examples 
from the DBA–Manual. This approach is particularly 
effective compared to cyclic non-linear analysis, because 
shakedown analysis needs typically the computing time of 2-
3 elastic analyses. One observation from the examples is, that 
the optimisation approach gives reliable and close lower 
bound solutions leading a simple and optimised design 
decision. In combination with an upper bound approach the 
convergence to the true limits can be indicated. Some 
application rules have been critically discussed. 
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