
Zuerst erschienen in: Nuclear Engineering and Design 206 (2001), Seite 151–166

LISA — a European project for FEM-based limit and
shakedown analysis

M. Staat a,*, M. Heitzer b
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Abstract

The load-carrying capacity or the safety against plastic limit states are the central questions in the design of
structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and
shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound
analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The
problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European
research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples.

Nomenclature

u displacement
body forceb

n outer normal vector
surface tractionp

P0,T0 reference load
t time
x coordinate vector

compatibility matrixCi

D, d, s, sp, sj dimensions of the pipe junction
number of Gaussian pointsNG

number of load verticesNV

F, f yield function and matrix
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actual and elastic pressureP, Pel, Pelastic

load and limit pressureP(t),Plimit

Pa, …, Pg actual stresses
actual and elastic temperatureT, Tel

load domainL
Dp plastic dissipation

structure and its boundaryV, (V
traction and displacement boundary(Vb, (VN

e; strain rate matrix
Lagrange functionL

Greek letters
a, alimit, aShake load, limit and shakedown factor

actual strain rateo

stress and yield stress matrixS,So

plastic strain and rateoP,o
parametersm,m1,m2

residual stressr,r
discrete fictitious elastic stress vectorri

actual stresss

sy yield stress
fictitious elastic stresssE

discrete fictitious elastic stress vectors i
E

l, l Lagrange factor and matrix

1. Introduction

In apparatus engineering, the design code route
to plastic analysis is to a large extent an extrapo-
lation from the elastic stress to structural failure
in the sense of limit and shakedown analysis.
Therefore, linear elastic calculations still form the
predominant part of finite element applications.
Due to fast computer development, inelastic
analyses of the plastic (time-independent) or vis-
cous (time-dependent) behaviour are increasingly
used to optimize passive components for safety
and for an economic operation.

Incremental analyses of the path-dependent
plastic component behaviour solve the problems
connected with stress assessment only partly. Be-
sides, they are connected with relatively high com-
puter times, personnel interaction and costs of
detailed material and loading data, which cannot
always be justified. The necessary data for the

analysis of the detailed evolution of plastic defor-
mations may be unavailable: the past load history
cannot be determined completely afterwards and
the future may not be foreseen in detail. The limit
and shakedown analysis offer a method, which
goes around a stress assessment and whose effort
corresponds rather to the elastic calculations.
Most importantly, it needs only very little key
information on material behaviour and loading.
Limit and shakedown analysis belong to the so-
called direct or simplified methods that do not
achieve the full detail of plastic structural be-
haviour, but instead achieve the practically essen-
tial safety margins (or load-carrying capacities) in
the load space. In the design rules, the limit load
concept for bending of beams has been accepted
since 1947 in Great Britain and since 1959 in the
USA. The concept is found in the new Eurocodes
(Zeman, 1997) and applies in ductile fracture me-
chanics (Miller, 1988). Limit and shakedown con-
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cepts form a basis of the stress assessment con-
cepts of all design codes for pressure vessels and
pipings (Ciprian, 1980).

In view of the obvious requirement, it must be
surprising that FEM-based limit and shakedown
analyses have been performed so far with only
few specialized university FEM programs. The
industrial application failed to a large extent be-
cause of large numerical problems, which limited
the method to small FEM models. In the past few
years, a promising implementation in PERMAS

(INTES, 1999) has been achieved at the Institute
for Safety Research and Reactor Technology of
Forschungszentrum Jülich GmbH. In January
1998, the 4-year Brite-EuRam project LISA was
started to develop a universal limit and shake-
down analysis module for the industrial FEM
program PERMAS. The development will consider
thermal loading, realistic material models, valida-
tion and application to complex safety and reli-
ability problems.

2. Formulation of the problem

2.1. Criticism of stress assessment

The local capacity of the material is measured
by the effective stress or yield function f(s); for
instance, according to the hypotheses after Tresca
or von Mises. Stresses s are plastically admissible,
if they fulfill the yield condition

f(s)5sy (1)

With equality in at least one point, the elastic
limit is achieved and the plastification can start
there. For the following considerations, the von
Mises function is preferred.

Local stress gives only restricted information
for the design or for the assessment of structures
with respect to plastic failure. An elastic rod with
a given maximum stress can still carry quite dif-
ferent loads up to plastic collapse depending on
the loading such as bending, torsion and tension.
The plastic capacity of the rod for combined
loadings can be demonstrated graphically by an
interaction diagram in the load space.

Obviously, fundamental differences exist be-
tween the capacity of the material measured by
stresses and the plastic failure of a structure.
There is no stress, which describes those limit
states within the plastic regime shown in the Bree
interaction diagram (Fig. 1). Therefore, in the
design codes of the equipment construction, stress
categories are defined so that different stresses can
be assessed differently. The mechanical stresses
leading to plastic collapse at limit load are called
primary. Usually, the thermally induced residual
stresses are called secondary. They are deforma-
tion controlled and do not influence the limit
load. Thermally highly stressed components de-
pend on this characteristic, because the possibili-
ties for stress reduction by construction are rather
limited. The increase of the wall thickness reduces
the primary stresses but increase the secondary
ones. Sometimes, from elastic considerations, an
optimal wall thickness is recommended, with both
types of stress of the same size (Smidt, 1971). This

Fig. 1. Bree interaction diagram for thinwalled pipes for
perfectly plastic material.
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is not a rational choice in plasticity, because
primary and secondary stress may have com-
pletely different consequences.

Stress calculations and stress assessments are
also problematic in other regards. Practically all
structures must be considered as being statically
indeterminate, so that stresses s can be calculated
only up to some residual stress r from a
boundary value problem. This is obvious from the
equilibrium conditions of a body V under the
volume loads q and under the surface loads p on
the traction boundary (Vs.

−divs=q in V
sn=p on (Vs

(2)

Residual stresses r are in equilibrium with zero
forces, i.e. they satisfy the homogeneous
conditions

−divr=0 in V
rn=0 on (Vs

(3)

Since the equations are linear, one can add
them and derive also that the stresses s+r are in
equilibrium with the same loads q and p. Inherent
residual stresses in welds and other residual
stresses introduced during production, operation
or over-loading can achieve considerable orders of
magnitude. Without their knowledge, stresses re-
main fictitious as assessment concept.

Also, with the stability problems (buckling), the
stress does not play any role in the calculation of
the critical load. For plastic failure (except by
instability of compression members), the critical
load is calculated directly without stress assess-
ment in the LISA approach. This could help
shorten the discussions of the difficulties in classi-
fying stress categories for complex structures
(Hechmer and Hollinger, 1998).

2.2. Limit analysis

The structure V is loaded monotonously by
load P= (q, p). The engineer is interested in the
load factor a\1, by which P can be increased up
to the collapse at aP. As long as local flow is
limited by surrounding elastic material (contained

flow), no collapse occurs. The limit load theory
analyzes only the collapse state, in which the
structure fails with unrestricted flow without any
load increase. These theorems answer the ques-
tion, when the structure from ductile material is
safe against collapse and when it fails with
collapse.

2.2.1. Static theorem of the safe load
A structure does not collapse under a load asP

if an admissible stress field s can be found, which
is in equilibrium with asP. In plasticity, a stress is
admissible if it satisfies the yield condition (Eq.
(1)).

f(s)5sy in V
−divs=asq in V
sn=asp on (Vs

(4)

For each stress field s, which fulfills the condi-
tions of the static theorem, as is a safety factor, so
that the load-carrying capacity of the structure is
not yet exhausted. One is interested in the largest
factor, for which the structure does not collapse.

If one assumes the associated flow rule, then the
plastic strain rates oP are calculated with the
indefinite plastic multiplier l]0 (with l=0 for
elastic points, i.e. for f(s)Bsy) in accordance
with

o; p=l
(f(s)
(s

(5)

The yield function f is positively homogeneous
with the degree one, so that Euler’s partial differ-
ential equation holds:

(f(s)
(s

:s= f(s) (6)

Thus, the (plastically) dissipated specific power
o can be calculated in the collapse state. The
structure collapses finally with constant stresses
and therefore, with Hooke’s law, the elastic
strains are constant. The elastic strain rates disap-
pear, so that o; =o; P applies. With Eqs. (5) and (6),
one obtains the dissipation density for the col-
lapse state (f(s)=sy):
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o; p:s=o; :s=l
(f(s)
(s

:s=lf(s)=lsy (7)

The collapse can be characterized by the situa-
tion that the internal (plastic) dissipation Dp(o; )\
0 is smaller than the power w; (akP)=akW: (P)\0
of the exterior loads akP :

Dp(o; )=&
V

o; :s dV=
&

V

lsy dV

Bak

�&
V

qu; dV+
&

V

pu; dA
n

=akW: (P) (8)

This yields to the formulation of the following
theorem.

2.2.2. Kinematic theorem of the exhausted
load-carrying capacity

A structure must collapse under a load akP, if a
kinematically admissible velocity field u; can be
found, such that the internal dissipation Dp(o; ) is
smaller than the power akW: (P) of the exterior
load. A velocity field is kinematically admissible if
it satisfies the compatibility conditions for the
strain rates and the kinematic boundary condi-
tions on the displacement boundary (Vu.

o; =1
2

[9u; + (9u; )T] in V (9)

u; =u; 0 on (Vu

Dp(o; )
W: (P)

Bak

For each load P and each velocity field u; , which
fulfill the conditions of the kinematic theorem, ak

is an overload factor, so that the load-carrying
capacity of the structure is already exhausted. One
is interested in the smallest factor, for which the
structure collapses.

Although both theorems are directly obvious,
for their proof it is needed that the yield function
f(s) is convex after Drucker’s stability postulate.
The classical theory is geometrically linear and
assumes associated flow. The extension to differ-
ent models for hardening or damaged materials,
temperature loads and temperature-dependent
mechanical properties is possible.

Due to the following theorem, the limit load
factor a can be calculated with the desired preci-

sion. Each safety factor and each overload factor
forms a lower and an upper bound of the limit
load factor, respectively.

2.2.3. Theorem of the uniqueness of the limit load
If as and ak are a safety and an overload factor,

which fulfill the conditions of the static and the
kinematic theorem, respectively, then the follow-
ing estimation applies to the limit load factor a.

asBaBak (10)

and

sup as=a= inf ak (11)

One calculates a lower bound of the limit load
factor a as the largest safety factor from

Maximize as (12)

such that the conditions of (4) hold

or an upper bound of a as the least overload
factor from

Minimize ak (13)

such that the conditions of (9) hold

Both are non-linear (infinite) optimization prob-
lems. The unknowns of the lower bound problem
are the static quantities as and s. The kinematic
quantities o and u; are the unknowns of the upper
bound problem. The complete solution of the
plastic structural behaviour must satisfy both the
constitutive equations as well as the static and
kinematic conditions. Limit load theorems solve
only one part of the complete problem of the
plastic structural analysis. Their prediction is re-
duced also to the accurate limit load.

The stresses in a (statically undetermined) struc-
ture depend on the elastic constants and they may
depend on the load history in the inelastic regime.
However, the elastic material constants do not
occur in the limit load theorems and, therefore,
there is no causal connection between the stresses
in a structure and the collapse load. It has been
proven theoretically and experimentally (Maier-
Leibnitz, 1928) that the stationary residual
stresses do not have any influence on the limit
load, if they do not modify the geometry and the
yield function. Only in this regard may they re-
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main unconsidered (as secondary stresses; this
distinction between primary and secondary stress
is only useful with respect to monotone loading).
Also, the load history preceding the collapse is
without influence. The described behaviour be-
comes physically understandable, if one remem-
bers that the collapse takes place from a statically
determined state.

The limit load problem is linear with respect to
the allowable stress. A rigid perfectly plastic mate-
rial model gives the exact limit load, because the
elastic constants do not enter the problem and
could be chosen arbitrary. For hardening mate-
rial, the yield stress sy can be replaced by any
higher admissible stress. Alternatively, an allow-
able stress may be chosen from some design codes
as it is been in the sample applications. Thus, the
stress assessment becomes part of the problem
formulation and is globally taken into account.
Local stress and local yielding can hardly be
connected to global structural failure.

2.3. Shakedown analysis

Depending on the magnitude of loading, a
structure can show the structural responses sym-
bolized in Fig. 1. In addition to the plastic col-
lapse, the structure can fail plastically with
time-variant loads through:
� incremental collapse by accumulation of plastic

strains over subsequent load cycles (also
termed ratchetting, progressive plasticity);

� plastic fatigue by alternating plasticity in few
load cycles (also termed low cycle fatigue
(LCF), plastic shakedown).
The structure does not fail plastically if, finally,

all plastic strain rates vanish and the dissipated
energy remains finite. One says that the structure
adapts to the load or it shakes down elastically.
After few initially plastic cycles, no difference to
the purely elastic behaviour can observed in struc-
tural mechanics quantities. The possible structural
responses are symbolically illustrated in Fig. 1.

The time history of a load P(t)= [q(t), p(t)] is
often not well known. It can, however, usually be
stated that the loads vary only within a certain
convex domain L. Typically, L is given by am-
plitudes or admissible bounds. If NL is the num-

ber of independent loads vertices P1, …, PN L
(e.g.

mechanical and thermal load), then all loads
P(t)�L can be represented by NL generating
loads:

P(t)=l1(t)P1+ … +lN L
(t)PN L

05lj(t)51

The load-carrying capacity is exhausted by en-
largement of L with the factor a\1 causing
ratchetting, LCF or collapse. The shakedown the-
ory analyzes only the shakedown state. The
shakedown theorems answer the question,
whether a structure from ductile material is plasti-
cally safe or not.

The same conditions as in the limit load theo-
rems must be satisfied simultaneously at all times.
Their examination in infinitely many instants is
impossible and, in addition, unnecessary. One can
show that it is sufficient to satisfy the shakedown
conditions only in the NL basis loads P1, …, PN L

of L since the shakedown theorems lead to con-
vex optimization problems. It is not sufficient to
examine the critical load cases independently, be-
cause the shakedown analysis of L and the limit
analysis of the critical load cases (vertices of L)
give different results.

Generally, a structure under a load domain L
shakes down if, for each load in L, an admissible
stress field, which is in equilibrium with this load,
can be found. Different to limit analysis, the
shakedown theorems are more complicated for
hardening material. Therefore, we restrict our pre-
sentation to perfectly plastic material here.

2.3.1. Static shakedown theorem
A structure shakes down under a load domain

asL, if for any basis load asPj an admissible stress
field sj can be found, which is in equilibrium with
asPj.

f(sj)5sy in V j=1, …, NL

−divsj=asqj in V j=1, …, NL

nTsj=aspj on (Vs j=1, …, NL

(14)

2.3.2. Kinematic theorem on non-shakedown
A structure cannot shakedown under a load

domain akL, if a kinematically admissible veloc-
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ity field u; (t) can be found, so that the internal
(plastic) dissipation of the entire load is smaller
than the work of the exterior load akp(t)�akL,
i.e.

o; (t)=
1
2

[9u; (t)+9u; (t)T] in V (15)

u; (t)=u; 0(t) on (Vu&�
0

&
V

Dp(o; (t)) dV dt

Bok

&�
o

�&
V

q(t)u; (t) dV+
&
(Vs

p(t)u; (t) dA
n

dt

The shakedown factor a can be calculated exactly
with sup as=a= inf ak.

Limit and shakedown theorems have a much
wider application than what could be presented in
this paper. They have been generalized for the
Besseling overlay hardening model (Zhang, 1991),
for the two-surface plasticity model (Heitzer et al.,
2000), for damaged materials (Hachemi and We-
ichert, 1998), for specialized engineering problems
such as two-phase poroplastic solids with non-as-
sociated flow (Cocchetti and Maier, 2000) and for
other material models. The development of shake-
down theories for finite displacements is particu-
larly important for shell structures, but may need
further research (Weichert, 1990).

3. Objectives and intentions of LISA

3.1. Task

If one wishes to shift the design requirements
into the plastic area, then one must be able to
calculate safety margins to the different complex
failure modes (collapse, ratchetting, LCF). Figs. 1
and 3 show examples of different structural limit
states in a two-dimensional load space. Such in-
teraction diagrams are used for steel structures
and in the equipment construction (Ng and More-
ton, 1982), in order to estimate the shakedown or
collapse regime from an elastic calculation. They
are available, however, only rarely and the elastic
regime represents a strong restriction for the pre-
sented structures.

Safety against plastic failure can only partly be
calculated with incremental plastic FEM analyses,
by simulating the structural behaviour. It is possi-
ble to examine whether, for one load history,
shakedown occurs or not. However, safety would
have to be considered with respect to all possible
adjacent load histories. That is possible only if
one can conclude from the shakedown theory that
the safe load is independent of the details of load
history. Moreover, the incremental analysis is
very time consuming, because the structural be-
haviour stabilizes only asymptotically near the
safety limits. Ratchetting can be excluded often
only after 40–100 load cycles. The determination
of all details of the material law is hardly possible
for financial and practical reasons. In limit load
and shakedown analyses, the values for yield
stress (plus an admissible stress above yield for
hardening material) are sufficient.

For more than two decades, one has tried to
make use of the large advantages of the limit and
shakedown analyses with FEM discretizations of
the static or kinematic theorems (Cohn and
Maier, 1979). The outcome was many develop-
ments for academic research or for application to
special structures (Save et al., 1991). Reflecting an
obvious need for the design and assessment of
pressure vessels and piping, some users just began
to implement their own procedures for the static
or kinematic theorems into the industrial FEM
programs PERMAS (Staat and Heitzer, 1997a,b),
CASTEM 2000 (Plancq et al., 1997), CODE–ASTER®

(Voldoire, 2000), ABAQUS (Buckthorpe and
White, 1993; Ponter and Engelhardt, 2000), AD-

INA (Siebler, 1998), ANSYS (Hamilton et al., 1998)
and BERSAFE (Ponter and Carter, 1997). How-
ever, several practical limitations still need to be
resolved in addition.

These implementations show that it is about the
right time for a new development effort towards
large-scale limit and shakedown analyses. There-
fore, the first author initiated the Brite-EuRam
project ‘LISA: FEM based limit and Shakedown
analysis for Design and Integrity Assessment in
European Industry’, with the objective to develop
an industrially tested limit and shakedown analy-
sis module with general applicability on complex
engineering problems. The PERMAS implementa-
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tion was chosen as a starting point. The new
software will clearly go beyond the state-of-the-
art by combining important features not found
simultaneously elsewhere: non-linear kinematic
hardening, damaged materials, unified upper and
lower bound analysis, probabilistic analysis, and
an optimized implementation for large FEM
models. This will be achieved by the joint compe-
tence of a European consortium consisting of
university institutes (RWTH Aachen, Liège
(ULg)) and leading industrial companies (INTES,
Stuttgart; Siemens, Erlangen; Electricité de
France (EDF), Clamart; Bureau Veritas (BV),
Paris) coordinated by Forschungszentrum Jülich
(FZJ).

3.2. Limit and shakedown analysis as
optimization problems

The limit load and shakedown theorems formu-
lated for the continuum can be discretized with
the FEM or they can be deduced directly for a
discretized structure. The discretization of the
equilibrium conditions (Eq. (2)) read with the
matrix C, the matrix st= (s1

T, …, si
T, …, sNG

T ) of the
stresses in the NG Gauss points and the column
matrix P of the exterior loads:

Cs=P (16)

Similarly, the yield stresses in the Gauss points
are combined into s0. The static limit load theo-
rem leads to the optimization problem:

Maximize as (17)

such that f(s)5s0 Cs=asP

The discretization of the kinematic conditions
in Eq. (9) with NF degrees of freedoms is de-
scribed with the column matrices of the nodal
point velocities u; T= (u; 1

T, …, u; N F

T ) and of the
strain rates e; = (e; 1, …, e; N G

) by the linear set of
equations

CTu; =e; (18)

The kinematic limit load theorem leads then to
the optimization problem

Minimize lTs0 (=ak) (19)

such that l]0 u; Tp=1 CTu; =e;

These nonlinear optimization problems are dual
in the sense described in Appendix A, and one
formulation may be obtained from the other.
Moreover, duality proves that the limit load can
be calculated uniquely and with any desired accu-
racy (see Appendix A). The shakedown theorems
lead to similar optimization problems: static theo-
rem (Staat and Heitzer, 1997a,b), and kinematic
theorem (Yan and Nguyen, 2000). For von Mises
yield function, both theorems lead to non-linear
optimization problems, whereas the Tresca mate-
rial leads to the simpler linear optimizations
problems.

In the form already given, the optimization
problems cannot be represented in current FEM
programs because, for example, the matrix C is
used only on element level for the calculation of
the stiffness matrix and is generally not built as a
global matrix. Besides, large-scale optimization
problems are numerically hard problems; i.e. in
worst case analysis, the numerical effort explodes
exponentially with problem size. It is thus under-
standable that, so far, academic applications of
the limit and shakedown analysis have usually
been published.

3.3. Solution of the optimization problems in
LISA

The FEM discretization leads to a very large
number of variables and equality and inequality
constraints. Recently, some promising algorithms
have been developed for the static and kinematic
theorems, which may have the potential to solve
numerical problems of FEM-based limit and
shakedown analyses. The particular advantages of
the LISA project are based on the fact that expe-
riences with advanced algorithms are contributed
by different project partners and, for the first
time, the participation of an industrial FEM de-
veloper suggests an effective integration of the
new developments including the just as important
software quality assurance.

For the static theorems for the calculation of
lower bounds, so-called basis reduction methods
were developed (Zhang, 1991), extended to vol-
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ume finite elements and already implemented in
PERMAS (Staat and Heitzer, 1997a,b; Heitzer,
1999). So-called methods of fictitious elastic mate-
rials were developed for the kinematic theorems
for the calculation of upper bounds. Upper bound
methods are available to the LISA project in
CODE–ASTER® (Voldoire, 2000) and in a university
FEM program (Yan, 1999). From the already
executed comparisons, no unique conclusions on
effectiveness and robustness of the algorithms
could be made.

The static methods have the advantage that
they can supply safe solutions, because the numer-
ical method achieves the optimum from below up
to a termination error. Generally, these solutions
are only quasi lower bounds, because all indus-
trial FEM programs use a displacement approach
and thus only the kinematic conditions can be
fulfilled strictly. However, it is to be considered
that, with the FEM, all conditions can be checked
only in discrete points. Theoretically, one must
consider the constraints in each point of the con-
tinuum, so that the solutions have a character of
true bounds. That is impossible for any discretiza-
tion and could become a particular problem to be
considered with local failure by LCF.

The kinematic formulation leads to an objective
function that is not differentiable at the boundary
between the elastic and the plastic area. There-
fore, the plastic dissipation (objective function of
the kinematic approach) must be regularized
(Yan, 1999; Voldoire, 2000), or a solution with
less developed algorithms for non-smooth opti-
mization must be used (Zhang and Bischoff,
1988).

Regardless of this discussion, the LISA project
assumes that a lower and an upper bound for the
limit or shakedown load factor must be provided
to the user. This will be featured by the duality
between static and kinematic theorems, repre-
sented in Appendix A. Then the user can estimate
the numerical termination from ak−as.

The non-linear structural reliability analysis
likewise planned in LISA can only be performed
effectively on the basis of direct limit and shake-
down procedures (Heitzer, 1999; Heitzer and
Staat, 2000a,b). The extensions intended for the
material modeling for non-linear hardening

(Zhang, 1991) and for damage (Hachemi and
Weichert, 1998) is work still in progress. The
LISA project could be continued with the devel-
opment of a plastic structural optimization, which
can generate deviating results from the elastic
analysis view. This is hardly feasible today with-
out limit and and shakedown analysis (Yang,
1993).

4. Demonstration of the already implemented
static theorems

The static theorems have already been imple-
mented in PERMAS Version 4 (Staat and Heitzer,
1997a,b; Heitzer, 1999) (PERMAS Version 7 is the
current one). The application of the FEM module
called PERMAS-LISA is demonstrated with two
examples from the equipment construction. Fur-
ther examples are shown in Staat and Heitzer
(1997a,b) and Heitzer (1999). The comparison
with implementations of the kinematic theorems
have been performed as internal benchmarks of
the LISA. In addition, examples from ductile
fracture mechanics (Heitzer and Staat, 2000a,b
Staat et al., 2000) and from reliability analyses
(Heitzer and Staat, 2000a,b) have also been per-
formed. For validation purposes, extensive cata-
logs with limit load solutions are available
(Miller, 1988; Save, 1995). On the other hand,
there are only few analytic or experimental results
to the shakedown theory. Lang et al. (2001) re-
ports on the shakedown experiments executed for
thermal loading in LISA.

4.1. Pipe junction

The PERMAS test example of a pipe junction is
examined first. The pipe junction is loaded by
internal pressure and axisymmetrical quasi-steady
cycles of the inner wall temperature Ti. The outer
wall temperature Ta corresponds to the ambient
temperature, which is set equal zero, so that the
temperature difference is Ti−Ta=Ti. We limit
ourselves to temperature-independent material
data (Young’s modulus, Poisson ratio and yield
stress).
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The junction is discretized by 125 three-dimen-
sional 27-node elements (PERMAS element type
HEXEC27). The element stresses are used in the
eight vertices of the finite elements, so that 1000
nodal stresses are available (later in the LISA
project, the stress will be checked at the Gauss
points). The FE mesh is shown in Fig. 3. The
geometrical dimensions of the junction are: inter-
nal pipe diameter, D=39 mm; internal nozzle
diameter, d=15 mm; wall thickness of pipe and
nozzle, s=3.44 mm.

The following load ranges are considered.
1. The pressure P and the temperature Ti vary

simultaneously with a proportionality factor
(one-parameter load):

05P5amP0 05m51

05Ti5amT0 05m51

2. The pressure P and the temperature Ti vary
independently (two-parameter load):

05P5am1P0 05m151

05Ti5am2T0 05m251

P0 and T0 are a reference pressure and a
reference temperature in each case.

Both load domains are considered for the two
cases T0]0 and T050. These correspond to the
cases of an increased inside and outside tempera-
ture. The collapse pressure is obtained as special
case at T0=0. It can be compared with the col-
lapse pressure after the AD Merkblatt B9 (Staat
and Heitzer, 1997a,b). The pressure at initial yield
is Pelast:0.0476sy. The collapse pressure is given
as Plimit:0.136sy=2.85Pelast. The design pressure
is obtained with the safety factor 1.5 through
Pdesign=Plimit/1.5=1.9Pelast= 0.0904sy. The limit
analysis by means of PERMAS-LISA results in
the limit load factor:

alimit=2.82 (20)

The corresponding collapse pressure is

Plimit=alimitPelast=0.134sy (21)

The safety against collapse is computed about
ten times faster with limit analysis than with the
conventional incremental analysis. The conver-

gence is represented in Fig. 2 as computing times
in relation to the elastic analysis step. The CPU
time additionally needed for the shakedown anal-
ysis with cyclic internal pressure amounts to ap-
proximately the double of the elastic calculation.
In this case, the shakedown analysis converges
faster than the limit analysis and compares fa-
vourable with the computing time of a elastic
calculation.

The results of the shakedown analysis are rep-
resented in Fig. 3. The dashed line in Fig. 3 limits
the elastic load range for one-parameter loading.
The corner in the elastic limit curve in the first
quadrant means that a small temperature load
enables an increase of the possible elastic pres-
sure. During two-parameter loading, the load
range reaches the elastic limit for the values 1 and
–1, respectively, on the abscissa and on the ordi-
nate to the elastic limit, so that the elastic load
range is cut off here. The possible elastic enlarge-
ment of the load range is then limited with the
purely elastic pressure and the purely elastic
temperature.

Thermal loads cause only self stresses and it
follows that the thermal load does not influence
the limit pressure of the junction. The limit load
represents a straight line parallel to the ordinate
in the interaction diagram. Abscissa and ordinate
are scaled with the elastic pressure and the elastic
reference stress resulting from the mechanical or
thermal load at first yield.

The dash–dotted line limits the shakedown
area for a one-parameter load. The shakedown
factor ashake related to the elastic solution is close
to 2 in the entire area (1.985ashake52). For
proportional loading, the elastic shakedown range
is obtained by a linear expansion of the elastic
operation range by the factor 2. This is caused by
the local failure of the junction in the connecting
piece edges by LCF. The point of first yield and
the local failure point coincide. In this case of
local failure, the shakedown loads do not increase
for linear and non-linear kinematic hardening ma-
terial, as shown theoretically in Zhang (1991),
Heitzer (1999). The full line limits the shakedown
area for a two-parameter load. The shakedown
factor with respect to the elastic solution varies
between 1.46 and 2. The example shows that the
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Fig. 2. CPU time for the pipe junction under internal pressure.

elastic area limits the operation of the component
strongly already under pure internal pressure.

4.2. Torispherical pressure 6essel head

In Japan, 16 teams executed a benchmark pro-
gram for the incremental limit load calculation
with different FEM programs and discretizations
(see Yamamoto et al., 1997; Table 2). The exam-
ined model is a pressure vessel consisting of a
cylinder and a torispherical head with a conical
transition under internal pressure. The problem
was chosen because the ASME code does not
strictly apply to such a vessel design. Elastic per-
fectly plastic material behaviour was assumed in
all limit load analyses. In the example, the struc-
tural steel SFVQ1A of the Japanese Industry
Standard (JIS) is selected (corresponding to the
heat-resistant steel 20MnMoNi45 according to
DIN). The material data are calculated after the

MITI code for a temperature of 300°C. The di-
mensions and material data for the benchmark
example are summarized in Table 1. The reduced
(by a factor 2) material parameter Sm:0.5sy is
used instead of the yield stress sy.

The elastic analyses of the Japanese teams re-
sult in a pressure at yield initiation (yield pres-
sure) of 8.6 N mm−2 for 1.5 mm−2Sm=27. The
Japanese teams performed the limit analyses with
the help of the Double Elastic Slope Method for
1.5Sm for perfectly plastic material behaviour (see
ASME code, Section III, NB-3213,25). FE pro-
grams and the most important characteristics of
the used FE nets are listed in Table 2. Seven FE
programs were tested with different FE nets with
up to 2435 nodes.

The vessel has been discretized by 208 rotation-
ally symmetric nine-node elements (PERMAS ele-
ment type QUAX9) for the limit analysis with
PERMAS-LISA. The elastic analysis results in a
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Fig. 3. Interaction diagram of the pipe junction.

yield pressure of 8.5 N mm−2 for the discretiza-
tion represented in Fig. 4 and corresponds well
with the results of the Japanese teams (see also the
elastic stress shadings in Fig. 4). The theoretical
yield pressure and the limit pressure for the closed
cylinder 1.5Sm are given by (Szabo, 1972):

P elast
z =

1.5Sm


3

�
1−

Rz
2

(Rz+s)2

�
=21.46 N mm−2

(22)

P limit
z =1.5Sm

2


3
ln

Rz+s
Rz

=23.05 N mm−2

(23)

Therefore, the limit load factor alimit for the cylin-
der is alimit=1.074. The limit load calculated with
PERMAS-LISA is 23.00 N mm−2. This means a
deviation of 0.2% from the limit load of the

cylinder, so that the crown, the transition and the
vessel head do not have considerable influence on
the limit load. A comparison of the loads of the
vessel and the limit load after limit analysis, ob-
tained by the Japanese teams, is represented in

Table 1
Dimensions and material data of the vessel (Yamamoto et al.,
1997)

Length of conical transitition l=658.2 mm
L=3000 mmLength of shell
Rb=4500 mmInterior radius of crown
Rk=360 mmInterior radius of knuckle

Interior radius of shell Rz=3000 mm
s=225 mmVessel wall-thickness

Young’s modulus E=1.75×105 N mm−2

Poisson’s ratio n=0.3
sy=370 N mm−2Yield stress
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Table 2
List of applied codes and limit pressures (Yamamoto et al., 1997), except PERMAS-LISA

Number of Number ofCode Number ofElement type Limit pressure (N
elementsnodes mm−2)elements/thickness

569 160MARC 4Eight-node Quad. 20.8
MARC Eight-node Quad. 725 210 5 21.0

628 405 5 21.4ABAQUS Four-node Quad.
579 156Eight-node Quad. 3FINAS 21.0
579 156FINAS 3Eight-node Quad. 22.0

1388 405Eight-node Quad. 5ADINA 20.6
Four-node Quad.STAX 343 288 6 21.9

315 248Four-node Quad. 4PC-FEAP 21.0
Eight-node Quad.MARC 681 192 4 21.0

849ABAQUS 240Eight-node Quad. 4 22.0
492 405Four-node Quad. 5ABAQUS 21.0
350 96FINAS 4Eight-node Quad. 21.0

2435 744Eight-node Quad. 8ABAQUS 21.5
ANSYS 492Four-node Quad. 405 5 21.8

310 244Four-node Quad. 4FINAS 22.9
PERMAS-LISA 832Nine-node Quad. 208 4 23.0

Table 2. With the vessel examined in Yan (1999),
the collapse takes place with the limit load of the
spherical vessel head.

5. Summary and conclusions

Limit and shakedown analyses are simplified
but exact methods of plasticity, which do not
contain any restrictive prerequisites apart from
sufficient ductility. The simplifications concern
the details of material behaviour and of the load
history. This implies that less data is needed for
such analyses — an important advantage if such
data is expensive, uncertain or unavailable in
principle. Differently to the classical handling of
non-linear problems in structural mechanics, the
methods lead on optimization problems. The
large size of the FEM models for realistic prob-
lems has delayed the industrial application of the
limit and shakedown analyses.

In the Brite-EuRam project LISA, a procedure
for the direct calculation of the load-carrying
capacity of ductile structures is developed on the
basis of the industrial FEM program PERMAS.
The operation range of passive components and
of buildings can be extended to the plastic

regime, without increasing the efforts in relation
to elastic analyses substantially. The computing
time permits parameter studies and the calcula-
tion of interaction diagrams, which give a fast
overview on the possible operation ranges. It is
shown that, dependent on the component and its
loads, important safety gains can be obtained for
the extension of the operation ranges. The non-
linear reliability analyses likewise developed in
LISA are only possible on the basis of direct

Fig. 4. Dimensions and von Mises stresses for the FEM model.
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methods. A clear lack of experiments for the
proof of the limits between elastic shakedown and
the failure by LCF or by ratchetting must be
stated.
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Appendix A. Lagrange Duality

The minimum and maximum problems derived
from the static and kinematic theorems for the
discretized structures are dual. In the case of limit
analysis, we give proof of this statement. More
detail on Lagrange Duality may be found in
Bazaraa et al. (1993).

Let the lower bound problem be the primal
one:

Maximize as (A1)

such that f(s)−s050 Cs−asP=0

The inequality constraints of the NG Gauss
points were collected to the vectors f, s and s0.
The unknowns are the limit load factor as and the
stresses s. The minimum problem with restrictions
is transformed into an unrestricted problem by
the Lagrangian L(as, s, u; , l), such that the opti-
mality conditions for unrestricted problems hold.
With the Lagrange factors l]0 and u; , it holds
that

L(as, s, u; , l)=as+u; T(Cs−asP)−lT(f(s)−s0)

(A2)

In the minimum, the Lagrangian L(as, s, u; , l)
has a saddle point, so that the optimal value is the
solution of

min
u; , l

max
a s, s

L(as, s, u; , l) (A3)

The necessary optimality conditions of the maxi-
mum are

(L
(as

=1−u; TP=0 (A4)

(L
(s

=u; TC−lT (f
(s

=0 (A5)

Eq. (A4) means a normalization of the external
power of loading W: ex=u; TP=1 of the discretized
structure. By substituting Eq. (A4) in the dual
objective function max

a s, s
L(as, s, u; , l), with the

Euler PDE for the homogeneous function f(s):

sT (f(s)
(s

= f(s) (A6)

and with l]0, it follows that

l(l)=max
a s, s

L(as, s, u; , l)=lTs0=W: in(e; ) (A7)

Eq. (A3) is derived by Eqs. (A4), (A5) and (A7)
such that the dual problem is defined by the
non-smooth mathematical program:

Minimize lTs0 (=ak) (A8)

such that l]0 u; TP=1

CTu; −lT (f
(s

=0

Because of the normalization W: ex=u; TP=1, it
holds that ak= l(l)=W: in(o; ).

The Lagrange factors of the primal problem are
the unknowns of the dual problem and vice versa.
The dual problem is formulated in the kinematic
terms u; and l. With

e; p=lT(f(s)
(s

(A9)

Eq. (A5) could be reformulated for the associated
flow rule and e; p=e; in the collapse state

CTu; −e; =0 (A10)
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which is automatically satisfied in a displacement
FEM discretization. Equation Eq. (19) shows that
l may be replaced by the collection of effective
strain rates o; eq, and always l=o; eq]0. Then the
dual problem reduces to

Minimize o; eq
T s0 (=ak) (A11)

such that u; TP=1

The saddle-point properties of the Lagrangian
show that the maximum problem is concave and
the minimum problem is convex, such that both
problems have the same optimal value:

max as=a=min ak (A12)

Because of the convexity of the problem, the
obtained local optimum is a global one, such that
the limit load factor is unique.
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