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Abstract. The CellDrum provides an experimental setup to investigate the electromechanics of 
a cardiac tissue construct and particularly the effect of drugs. Experimental data were used to 
develop a respective computational electromechanical model. Until now, the experiments have 
been performed with a thin tissue construct. Mechanically, it was modeled as a materially and 
geometrically nonlinear shell. Future experiments with thicker tissue are planned. Thus, the 
mechanical model needs to be modified. This study aims to predict the outcome of such exper-
iments using a nonlinear 3D continuum formulation. Here, the action of one drug, verapamil, 
was taken into account.   
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1 INTRODUCTION 

A human heart is divided into four chambers, two atria and two ventricles, connected by four 
valves. The right atrium receives oxygen-poor blood from the body and pumps it to the right 
ventricle from where it is pumped to the lungs. The left atrium receives oxygen-rich blood from 
the lungs and pumps it to the left ventricle from where it is pumped back to the body. Both the 
filling and ejection processes are controlled by electrophysiological processes. At the cellular 
level the main components in the heart are cardiomyocytes, cardiac fibroblasts, endothelial cells 
and vascular smooth muscle cells [1]. Cardiomyocytes are subdivided into two types, namely 
the pacemaker-conduction and the contractile cardiomyocytes. Each cardiac cycle is initiated 
by sinoatrial cells located in the upper wall of the right atrium. Sinoatrial cells are pacemaker 
cardiomyocytes that can generate spontaneous action potentials, i.e. a rapid change in the mem-
brane potential. Over a conduction system the action potential propagates throughout the whole 
heart so that the contractile cardiomyocytes in the atria and ventricles are electrically excited. 
Cardiomyocytes are composed of myofilaments enabling the cells to contract. Even pacemaker-
conduction cardiomyocytes are able to contract but by far not as strong as the contractile cardi-
omyocytes. In a process called excitation-contraction coupling the action potential results in a 
release of Ca2+ from intracellular stores which activate the sarcomeres so that tension can be 
created and the cells can contract. 

Computational cardiac models have been developed with the motivation to investigate the 
physiology and pathologies of the heart and ultimately to optimize therapies. In 1952, Hodgkin 
and Huxley published the first electrophysiological model of an excitable cell [2]. For a squid 
giant axon they linked the kinetics of ion channel conformation change with ion currents 
through the cell membrane and the change of the membrane potential. Ten years later, this 
groundbreaking work was extended by Noble to model the electrophysiology of cardiac myo-
cytes [3]. Since then, the understanding of cellular mechanisms and the experimental potential 
has increased. This has led to the development and improvement of models for different types 
of human cardiomyocytes [4-7]. Since the models are already at a mature stage, they can serve 
as a basis to investigate the effect of various drugs on the cardiac electrophysiology [7, 8]. When 
these models are applied to tissues the action potential propagation from one cell to its neigh-
boring cells needs to be taken into account. For this, the monodomain and bidomain reaction-
diffusion equations are used. Bidomain equations account for the different electrical conduc-
tivities of the intracellular and extracellular spaces whereas only one conductivity is used in the 
monodomain equations. Differences between monodomain and bidomain results were reported 
to be extremely small [9] so that the monodomain equations with a much lower computational 
cost is widely preferred. Solving them with the Finite Element Method (FEM) gives the mem-
brane potential averaged over a set of myocytes in each element.  

While many questions can be addressed with electrophysiological models, others e.g. re-
garding the dilated cardiomyopathy necessitates a complete representation of the electrome-
chanics. Improved computer performance has made it possible to develop FEM models where 
the electrophysiology is coupled with the mechanics. Electromechanical coupling is based on 
the relationship between the electrical activation of the tissue, the respective active tension gen-
erated by the sarcomeres and the resulting deformation [10]. Here, the electrophysiology is 
modeled on the cellular level [11-15] or is simplified using eikonal equations [16] and the  
FitzHugh-Nagumo model [17,18]. There exist a wide range of electromechanical models from 
the cell [10,12] over the tissue [14] to the organ level including left ventricular models [11,15], 
models of both ventricles [12-15,17], and whole heart models [18]. They feature a varying de-
gree of complexity with respect to the anatomical representation, associated mesh fineness, 
boundary conditions, material models, underlying electrophysiological models and coupling 
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models depending on the research objective. Different from the electrophysiological models 
electromechanical models are still in a maturing phase. Magnetic resonance imaging makes it 
now possible to create patient-specific highly resolved anatomical models [13], ventricle mus-
cle fiber directions can be determined and assigned with a rule-based algorithm [19] and the 
orthotropic electric [20] and mechanical properties [21, 22] of the ventricular myocardium are 
well studied. However, there are still many tasks towards a highly sophisticated whole heart 
computer model. Examples include the model parametrization and validation procedures [23].  

For thin cardiac tissue constructs these tasks have been addressed with a device called 
CellDrum [24, 25]. The CellDrum is a multiwell with circular wells, each having a diameter of 
16 mm and a bottom formed by a 4 μm thin silicone membrane. Human-induced pluripotent 
stem cell-derived cardiomyocytes (hiPSC-CM) are seeded and cultivated on top of the silicon 
membrane which is coated with fibronectin. The tissue consists of a mixture of ventricular, 
atrial, and nodal hiPSC-CM as well as fibroblasts (Cor.4U®, Axiogenesis AG, Germany).        
Together with the silicon membrane the tissue construct has a thickness of up to 19 μm. The 
hiPSC-CM live within a culture medium and beat autonomously. Clamped in a fixed ring the 
tissue construct can be inflated by a syringe pump and the contraction-dependent deflection can 
be measured using a laser sensor. From the time function of the deflection more parameters can 
be derived including the beating frequency, contraction duration, activation time, relaxation 
time and resting time. Microscopic analyses have shown that the cardiomyocytes are randomly 
distributed and thus a global electrically and mechanically isotropic behavior can be assumed 
[13]. Goßmann et al. [25] used the CellDrum to study the effect of various drugs and observed 
significant changes in the mentioned parameters. Motivated by the idea to complement experi-
ments and to get a more detailed insight, Frotscher et al. [14, 26, 27] developed an electrome-
chanical model of the thin cardiac tissue construct. The mechanical part of the thin tissue 
construct is modeled as a materially and geometrically nonlinear shell whereas the electrical 
part is modelled as a three-dimensional nonlinear continuum. On the basis of experiments the 
model could be parameterized, verified and validated. Simulations including the action of var-
ious drugs were in good agreement with respective experiments.  

Future experiments are planned to be performed with a much thicker tissue. This study aims 
to roughly predict their results. For this purpose, the two-dimensional shell formulation for the 
mechanical part has been replaced by a three-dimensional nonlinear continuum formulation. 
Simulations were carried out with the focus on the time function of the deflection including the 
action of the drug verapamil which is most widely used for the treatment of cardiac arrhythmias.  

2 ELECTROMECHANICAL MODEL 

2.1 Electrophysiological model 

Sinoatrial pacemaker cells located at the center of the circular tissue generate an action po-
tential which then propagates throughout the entire tissue and trigger other autonomously de-
polarizing sinoatrial, ventricular and atrial cells. In the presented model it is assumed that all 
cells are homogeneously distributed. Action potential propagation is modelled using the 
monodomain equation [28]. This reaction-diffusion type parabolic partial differential equation 
is known as the 3D cable-equation and reads in a modified form 
 

���� = ∇ ∙ ��∇�	 − ��
������∗ , ��∗ , ��∗	 (1) 
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with the diffusion tensor 
 

� = �� (2) 

 
in the case of isotropic propagation and the no-flux condition at the boundaries of the tissue 
construct 
 

���∇V	 = 0. (3) 

 � denotes the macroscopic potential [mV], � is the diffusion coefficient which was chosen to 
be 35 mm2s−1, � is the identity matrix, � is the outward normal of the tissue construct and ��
� 
is the source current density [mA(mF)−1]. The source current density 
 

��
� = �������� + ������� + ������� 	�1 − �!" (4) 

 
originates from the homogenized microscopic total cellular membrane current densities ����∗  
[mA(mF)−1] where the membrane capacity ��∗  is already included. Here, �∗ (∗= #, $, %, &) are 
volume fractions of the nodal cells (#), atrial cells ($), ventricular cells (%) and fibroblasts (&). 
The volume fractions in Cor.4U® hiPSC-CM are given by Axiogenesis AG as 0.05, 0.35, 0.60 
and 0.25, respectively.  

Hodgkin-Huxley based cell models for sinoatrial [5], atrial [6] and ventricular [4] cardiomy-
ocytes were employed, each having the general form  

 

����� = −���� , (5) 

�()�� = *)+���	�1 − ()" + *),���	() , (6) 

 
where �� is the microscopic cell membrane potential, ()  are the gate variables of each ion 
channel controlling the opening and closure and *)+ and *), are the opening and closure rates 
which depend on a threshold value of the membrane potential. Current densities related to the 
ion channel of the ion - depend on the respective gate variables and take the form 
 

�. = /. 0 ()��� − 1.	
�

)23
, (7) 

 
where /. is the maximum conductance and 1. is the reversal potential for the ion which flows 
through this channel. Summed over all # current densities and including a stimulus current den-
sity ���.� the total current of each cardiomyocyte type reads 
 

���� = ���.� − 4 �.
�

.23
. (8) 
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All cell models were parametrized according to the respective original works. However, in the 
particular sinoatrial pacemaker cell model the maximum ion channel conductance (63 was de-
creased from 0.0400 nSpF−1 to 0.0333 nSpF−1 resulting in an increase of beating frequency by 
0.06 Hz. 

Cellular interaction on the microscale level was taken into account with a simple homogeni-
zation approach. Once the total membrane current density of the sinoatrial model falls below a 
threshold value of 25 mA(mF)−1, the atrial and ventricular model receive a negative stimulus 
current of 50 mA(mm)−2 leading to a quick increase in membrane potential according to (5). 
Sinoatrial cells in turn are triggered with a stimulus current of 25 mA(mm)−2 whenever the 
macroscopic potential exceeds a threshold value of −40 mV. 

The employed cell models provide further ordinary differential equations for free intracellu-
lar sodium, potassium and calcium concentrations as well as for internal calcium stores that are 
not shown here. Electromechanical coupling is described by the following two ordinary differ-
ential equations for each cell model:  

 

��$7�� = &3��$., �$7 , 8	, (9) 

�9�� = &:�9, �$7	. (10) 

 
The calcium concentration �$7 that is bound to troponin C in the myofilaments depends on 

the freely available calcium concentration �$. and on the cellular stress 8 being a scalar. The 
freely available calcium concentration is controlled by the membrane potential. Based on the 
calcium concentration that is bound to troponin C the strain-dependent state of activation is 
expressed by the activation variable 9 ∈ �0,1	. Finally, the cellular stress for each cell model is 
computed according to Niederer and Smith [10] by 

 

8 = 8
<!�1 + =>�? − 1	"@ 99��A, (11) 

 
with 8
<! being the cellular reference stress at resting length, => is a scalar determining the 
length dependence of the isometric tension, ? is the one-dimensional cellular stretch in fiber 
direction, @ is a velocity dependent scalar and 9��A is the maximally available activation level. 
Due to a missing cell type specific parametrization an equal parametrization [10] was used for 
all cell types. For the whole tissue construct the cellular reference stress was determined to be 8
<! = 58.08∙10−5 MPa [26] which replaced the original model parameter [10]. 

2.2 Drug action 

The antagonistic drug potency of an inhibitor can be implemented in (7) using the conduct-
ance-block formulation where the maximal conductance of the ion channel - is reduced by the 
factor  

 

(. = (.,����
�B C1 + D ���E>.F
�G,3. (12) 
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Here, (.,����
�B is the drug-free maximal conductance of the ion channel -, � is the drug con-
centration and the ��E> value represents the half-inhibitory value, i.e. the concentration of a 
given drug that will cause the current density through the channel - to be reduced by 50%. The 
Hill coefficient was set to # =1, i.e. one molecule of the given drug is sufficient to block one 
ion channel.  

Several assumptions were made for the model of drug action including steady-state concen-
tration, a homogeneous distribution and no diffusion within the tissue. It has been shown that 
drug effects at steady-state concentration can be well represented by this model [29]. In this 
study, verapamil was used which is associated with blocking effects on the hERG-, L-type cal-
cium- and sodium-channels of the ventricular cardiomyocytes. Respective ��E> values and ef-
fective free therapeutic plasma concentrations (EFTPC) used for � can be found in [8]. No 
diffusion of the drug was considered and a homogeneous concentration was assumed. 

2.3 Mechanical model 

Cardiac tissue constructs using the CellDrum consist of a silicon membrane and the actual 
cardiac tissue which in turn includes various cardiomyocytes and fibroblasts. Stresses occur in 
two forms: passive stresses arise from the silicon membrane, the fibroblasts and the cardiomy-
ocytes and active stresses arise from contractions of cardiomyocytes. Voigt´s isostrain condi-
tion was applied and Hill´s muscle model [30] was employed to represent the mechanical 
response of the cardiomyocyte mixture. Hill´s model is constituted by an active element and 
two passive elements, one in series and one in parallel. The passive element in series reflects 
the passive stress in a contraction which, however, is small compared to the produced active 
stress and is thus neglected.  

The total mechanical response of the tissue construct can be derived by the active strain or 
the active stress approach. The active strain approach utilizes a multiplicative split of the defor-
mation gradient into passive HI and active deformation H� 

 

H = HJH�, (13) 

 
whereas in the active stress approach the total stress in the tissue is additively decomposed into 
the passive and active stress. Since the experimental parametrization was based on the level of 
stresses, the latter approach was used here. Viscoelastic effects were neglected and the incom-
pressible neo-Hookean strain energy function  
 

K = �3>��3 − 3	 (14) 

 
was used with a material parameter �3> and the first invariant �3 of M, the left Cauchy-Green 
tensor. Based on the volume fractions �∗ for the various components of the tissue construct (N: 
silicon membrane, �: cardiac tissue) the Cauchy stress reads  

O = OJ + O� = ��2Q,3M �K�
�M − R�

+ �� S�<2Q,3M �K!
�M + 4 �∗

∗2�,�,�
2Q,3M �K∗

�M + 8∗�t	�U. (15) 
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Q is the determinant of the deformation gradient, � is the time, 8 is the active stress described in 
(11), R is the hydrostatic pressure and � is the identity tensor,  

All passive parts were taken together and in pressure-deflection tests one passive mate-
rial parameter �3> = 0.0838284 MPa for the whole tissue was determined. Based on that the 
2nd Piola-Kirchhoff stress V is given as 
 

V = VJ + V� = 2 �K�W − RW,3 + 8��	W,3, (16) 

 
in terms of the right Cauchy-Green tensor W. 

2.4 Finite Element Models and Solution algorithm 

Finite element models were created for 19 μm and 100 μm thick cardiac tissue constructs. 
Model specifications are given in Table 1. Mechanical and electrical models are denoted with 
M and E, respectively. Due to symmetry only one quarter of the CellDrum was modeled.  

 
Table 1: Finite element models. 
     

Model Formulation Element type Element number
     

     

1: 19 µm 
M: 2D nonlinear shell   7-node quadratic triangular 120
E : 3D nonlinear continuum 10-node quadratic tetrahedral 7664

    

2: 19 µm 
M: 

3D nonlinear continuum 10-node quadratic tetrahedral 7664
E : 

    

3: 100 µm 
M: 

3D nonlinear continuum 10-node quadratic tetrahedral 7639
E : 

     

 
In the first step, the inflation process is simulated by applying a certain pressure to the 

clamped mechanical mesh. For the 2D-19 μm shell model, 1.8∙10−5 MPa is necessary to deflect 
the central point of the first model to 1.2 mm. This has been experimentally validated [14]. 
Displacements are then projected onto the 3D electrical mesh. Subsequently, the autonomous 
cell contractions are simulated using an algorithm to solve the electromechanical problem 
which is described in [14]. When using the same mesh for the mechanical and the electrical 
part, the displacements no longer need to be projected. The open source code Code_Aster was 
used to solve the nonlinear mechanical and electrical problem, whereas the cellular ordinary 
differential equations were solved internally using a fourth-order singly-diagonally implicit 
Runge-Kutta method. 

 

3 RESULTS AND DISCUSSION 

Figure 1 shows the central node deflection of both 19 μm thick cardiac tissue construct mod-
els as a function of time after the inflation process. For the inflation to 1.2 mm the same pressure 
of 1.8∙10−5 MPa was used for both models. The maximum central node deflection of the 3D 
model is 90% of the maximum central node deflection of the 2D shell model and the time course 
is similar in both models. The difference can be explained by a slightly higher stiffness of the 
continuum model. 

A five times higher pressure of 9.5∙10−5 MPa is needed to inflate the 100 μm cardiac tissue 
construct model to the same position. After the inflation both models exhibit similar deflection-
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time curves as shown in Figure 2. The higher geometrical stiffness seems to be compensated 
by the higher amount of contractile cardiomyocytes. 

 

 
Figure 1: Central node deflection of a 19 μm thick cardiac tissue constructs after inflation. The 2D shell model 

(solid line) and the 3D mechanical model (dashed line) are compared. No drug was added. 
 

 
Figure 2: Central node deflection of two differently thick tissue constructs after inflation. 3D-19 μm thick (solid 

line) and 3D-100 μm thick (dashed line) cardiac tissue construct models are compared. No drug was added.   
 
Verapamil was applied to the ventricular cell model [4] with a low (25 nM) and a high 

(81 nM) effective free therapeutic plasma concentration. The effect on the membrane potential 
corresponds to [8]: the duration of the action potential decreases with increasing drug concen-
tration. As distinguished from pure electrophysiology models the presented electromechani-
cally coupled models are capable of predicting the drug effect on the deflection. With increasing 
drug concentration the deflection of the tissue constructs decreases. That has already been 
shown experimentally using a 8 µm thick tissue construct with Cor.4U® hiPSC-CM [25] and 
using a simple model which contains only ventricular cells and is not based on the monodomain 
equation [27]. Simulations with 81 nM verapamil resulted for all models in a maximum central 
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node deflection which is 55% of the maximum central node deflection of the control study 
(Figure 3). 

 

 
Figure 3: Effect of verapamil on the central node deflection. Results of the control (0 nM, solid line) and high 
EFTPC (81 nM, dotted line) are shown for all models (top to bottom: 2D-19 μm, 3D-19 μm, and 3D-100 μm). 

 
The presented computational study shows that the time function of the deflection does not 

change in thicker tissue up to 100 µm. This is also true when taking into account the effect of 
verapamil. Experiments will be performed to derive a new parametrization and to validate these 
results. The aim of those models in combination with experiments is to investigate the impact 
of the tissue thickness on the time function of the deflection and the effect of drugs.  
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4 OUTLOOK 

Cardiomyocytes of the left ventricle are organized in sheets with collagen fibers in between. 
This layered organization can be characterized with a right-handed orthonormal coordinate sys-
tem with the fiber axis X>, the sheet axis Y>, and sheet normal axis �> (Figure 4). Throughout 
the ventricular wall, the sheet orientation change continuously. Orthotropic behavior has been 
shown for the passive mechanical response [20] and for the propagation of the action potential 
[20]. It has been shown that ventricular tissue is orthotropic in both electrical [20] and passive 
mechanical properties [21].  

 

 
Figure 4: Layered organization of myocyte sheets and collagen fibers in between. The layered organization is 

characterized by a right-handed orthonormal coordinate system with fiber axis X>, sheet axis Y> and sheet normal 
axis �>.  

 
Our ultimate goal is to develop tissue constructs and associated computational models whose 

results can be transferred to a certain extend to the left ventricle. So far, only tissues including 
a large volume of fibroblasts (25%) as well as atrial and sinoatrial cells (40% of the total cardi-
omyocyte volume) were available. Recently, a novel cardiomyocyte mixture has been released 
and thus new respective experiments are planned. The fibroblast-free mixture consists of 90% 
ventricular cells and just 10% atrial and sinoatrial cells (CorV.4U® Axiogenesis AG, Germany) 
which is a big step forward. On the basis of this novel cardiomyocyte mixture the aforemen-
tioned orthotropic nature of left ventricular tissue will be tried to take into account experimen-
tally and computationally. Our preliminary strategy to realize this idea is explained in the 
remainder of this section. 

So far, the cardiomyocytes have been randomly distributed on the silicon layer. Structured 
silicon layer should now be developed in order to align the cardiomyocytes during their culti-
vation. Knowing the orientation of the cardiomyocytes a computational model can be developed 
based on the orthotropic formulation of the action potential propagation and the passive me-
chanical behavior. Action potential propagation can be modelled by introducing an orthotropic 
diffusion tensor � for the monodomain equation (1). For the first instance, diffusion velocities 
for all three directions will be adapted from the study of Caldwell et al. (2009) [20] who exam-
ined pig left ventricular tissue. They found the maximum diffusion velocity to be in the fiber 
direction and the minimum diffusion velocity to be in the sheet normal direction. Unfortunately, 
it is not possible up to now to measure the action potential distribution within the tissue con-
struct. The only possibility to parameterize the diffusion tensor will thus be to perform param-
eter studies and compare the resulting deflection-time curves with experimental data. 
The orthotropic passive mechanical behavior can be modelled using the Holzapfel-Ogden strain 
energy function [21]: 
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KZ[ = $2\ exp`\��3 − 3	a + 4 $.2\. bexp`\.��c. − 1	:a − 1d
.2!,�

+ $!�2\!� eexp�\!��f!�: " − 1g, (17) 

 
where $, \, $!, $�, \!, \�, $!� and \!� are eight positive material constants which can be de-
rived from recent biaxial tension and triaxial shear experiments with human left ventricular 
tissue [22].  
However, the introduction of this strain energy function require the separation of the passive 
stress in the silicon layer and the tissue. The neo-Hookean strain energy function K�Z will be 
used to model the passive mechanical behavior of the silicon membrane. Active stress in the 
tissue is generated in the fiber direction and the cellular reference stress can still be determined 
according to Frotscher et al. [26]. Employing the active stress model the 2nd Piola-Kirchhoff 
stress reads 

 

V = VJ + V� = ��2 �K�Z
�W − RW,3 + �� D2 �KZ[

�W + 8�t	H,3X>⨂X>H,iF. (18) 

 

Cardiac tissue models whose validated results can be transferred to the heart to a certain extend 
would bring numerous advantages. Drug tests could be performed with human tissue in-vitro 
which may lead to a reduction of animal experiments in cardiac drug research. 
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