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Abstract 

 

The minimum dissipation requirement of the thermodynamics of irreversible processes is 

applied to characterize the existence of laminar and non-laminar, and the co-existence of 

laminar and turbulent flow zones. Local limitations of the different zones and three different 

forms of transition are defined. For the Couette flow a non-local “corpuscular” flow mechanism 

explains the logarithmic law-of-the-wall, maximum turbulent dimensions and a value 𝜒 = 0,415 

for the v. Kármán constant. Limitations of the logarithmic law near the wall and in the centre of 

the experiment are interpreted. 
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1. Introduction 

1.1 Fluid flow experiment, an irreversible process 

 

Distinguishing reversible and irreversible processes is a significant element of 

thermodynamics. Non-equilibrium, irreversible processes require a minimum condition for the 

production of entropy. I. Prigogine detailed that in his Nobel-lecture 1978 in Stockholm /1/. 

 

We apply that statement to distinguish laminar and turbulent flow. Any flow experiment in the 

laboratory starts with minimum (or zero) flow speed. That situation, near (or at) an equilibrium, 

can be described by a laminar flow mechanism. Any turbulent experiment requires significant 

higher flow speeds, requiring a higher input of energy, accompanied by higher dissipation 

rates. Without an increase of external energy input the transition laminar-to-turbulent does not 

exist. 

 

The Chapters 3.1 – 3.4 describe three different types of transition and the resulting 

consequences. 

 

 

1.2 The minimum dissipation requirement 

 

The theorem of minimum entropy production of the thermodynamics of irreversible processes 

states that non-equilibration thermodynamic processes proceed in a manner in which the 

entropy production/dissipation becomes minimal /1/. 

 

The theory of irreversible thermodynamic processes is associated with the names of Onsager 

(Nobel Prize 1966), Casimir, Eckart, Meixner, de Groot, and Prigogine (Nobel Prize 1977). The 

minimum requirement is mentioned as “Prigogine-Prinzip” in the German Brockhaus 

Enzyklopädie /2/ and as the “Rayleigh-Onsager principle of least dissipation or principle of 

minimum entropy production” in the British Encyclopaedia Britannica /3/. 

 

In fluid dynamics theory the minimum principle has not always been accepted. Malkus and 

Busse /6/ concluded that dissipation is maximum in turbulent flow conditions: “The realized 

turbulent shear flow represents the flow with maximum dissipation at a given Reynolds number 

among all possible solutions of the Navier-Stokes equations.” This statement fully contradicts 

the theorems above and later results. Klimontovich /7/ verified the minimum condition for 

turbulence, his consequence is interesting but not complete. 
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The dissipation minimum has not only to be discussed for the total integrated dissipation of the 

experiment, but also for the local minimum at different flow positions. For turbulence the 

statements of Malkus/Busse /6/ postulate a general maximum dissipation, the statement of 

Klimontovich /4/ a general minimum dissipation. Both statements do not comply. 

 

The physical principle of minimum entropy production/dissipation is not to be disputed. Every 

flow experiment is a dissipative, non-equilibrium process requiring a continuous input of 

mechanical energy, balanced by a corresponding dissipation rate. Any change or transition can 

be identified by a change of the dissipation rate. 

 

There is a unique and important feature of the turbulent Couette flow, the shear stress  is 

constant along the turbulent flow profile 

𝜏 = const.      (1) 

but the dissipation 𝐸̇ is not. With     𝐸 ̇ ~ 𝜏 ∙
𝑑𝑢

𝑑𝑦
       (2) 

a resulting logarithmic turbulent flow profile leads to a gradient and a dissipation becoming 

continuously lower with greater wall distance. The logarithmic flow profile depends on a non-

local turbulent mechanism, describing the transport of mechanical energy input from the wall to 

the locus of dissipation inside the flow. Any form of transition can be identified by the dissipation 

rate. 

 

In a steady state experiment the established laminar and turbulent flow zones are stable, 

characterized by the minimum dissipation condition. 

 

The calculated dissipation rates in the following chapters identify three completely different forms 

of transition. The results show that a laminar solution does not exist above a special 

dimensionless wall distance y+ and a turbulent solution does not exist below another y+ value. 
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1.3 Local and non-local flow forms, transition 

 

The minimum dissipation requirement does not model the different flow mechanisms. It 

characterizes their limits and restrictions by the important thermodynamic parameter – the 

entropy production/dissipation. 

 

A rough distinction of local/non-local character can be used for laminar/turbulent flow forms. It is 

evident that the behaviour of a local position in a laminar flow can be described by local 

parameters like velocity, gradient, shear stress, dissipation. That is completely different in a 

turbulent flow. Especially the dissipation depends on non-local parameters at varying distance. 

 

Interesting in that context is the transition. It is scarcely conceivable that a transition with a 

significant change of parameters is governed by an identical flow mechanism, which can be 

described by an identical fluid dynamics model. The turbulent zone with the logarithmic law of 

the wall is governed by the non-local parameter “wall distance”, but not by the viscosity µ. The 

near-wall laminar zone is mainly influenced by the local parameter “viscosity”. The shear stress 

is constant for both. 

 

Further flow mechanisms are to be considered. The thermodynamics of irreversible processes 

are not restricted to special physical descriptions. A fluid can also be considered as a system 

of discrete mass points (Prandtl’s mixing lengths hypothesis, kinetic gas theory, Lattice-

Boltzmann method), and its mechanical behaviour can be addressed by methods of the 

mechanics of point systems. Classical, theoretical mechanics describe extreme minimum 

properties of mechanical point systems. (1747 Maupertuis “Prinzip der kleinsten Wirkung”, later 

justified by Euler, Lagrange and Hamilton, 1829 Gauss, 1842 Jacobi “Prinzip des kleinsten 

Zwanges” /4/ /5/). Such models lead to a non-local description of fluid flow. 

 

In Chapter 2 the Couette flow is described as an example. As a result three different fluid forms 

are identified and described as laminar, turbulent and “transition form”. The third flow form is not 

known in detail, but it is evident that it is different. Especially the dissipation rate has to be lower 

than in the laminar zone and higher than in the turbulent zone.  
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2. Couette flow 

 

For fluid flow between parallel walls, Couette flow, the Navier-Stokes equations give a simple, 

one-dimensional, linear, stationary velocity profile /8/. Fig. 1 shows different turbulent flow 

profiles for Re = 2900 and 34000. Very important and unique to Couette flow, there is a constant 

shear stress along the complete flow profile, which can be laminar, turbulent or both. 

 

 

 

Fig. 1: Velocity profiles of Couette flow /8/ 

 

 

One can simplify the Couette flow profile into three zones, shown in Fig. 2. 
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Fig. 2: Model assumption for the Couette flow 

 

 

Zone 1: The turbulent zone, logarithmic flow profile 

Zone 2: The transition zone 

Zone 3: The linear (laminar) near-wall-zone 

 

The description of zone 1 can be based on the “universal law of the wall” which is based on 

Prandtl’s and v. Kármán’s hypotheses /8/ with 

 

𝜏 =  𝜌𝜒2𝑦2 (
𝑑𝑢

𝑑𝑦
)

2
     (3) 
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Fig. 3, Fig. 4 show the theoretical formula and the empirical data for the logarithmic flow profile, 

given by Schlichting /8/ and Durst /9/ for low and high Re-numbers and wall distances. 

 

The resulting logarithmic flow profile is fitted with experimental data to 

 

 𝜑(𝜂) = 2.5 ln η + 5,5 /8/       (4a) 

or  𝜑(𝜂) = 2,47 ln η + 5,17 /9/       (4b) 

 

with 

 𝜑 = 𝑢+ =
𝑢

√
𝜏0
𝜌

         (5) 

as dimensionless so-called shear stress speed and 

 

  η = 𝑦+ =
𝑦 ∙√

𝜏0
𝜌

𝜇

𝜌

        (6) 

 

as dimensionless wall distance /8/. 

 

Fig. 3: Universal logarithmic velocity profile (law-of-the-wall) Re < 106, Schlichting /8/ 

 

(1)  = , laminar 
(2) Übergang laminar-turbulent 
Re < 105 
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Fig. 4: Universal logarithmic velocity profile (law-of-the-wall) laser-doppler measurements, 

Re < 104, Durst /9/ 

 

 

The focus of the paper is the transition, thereby the limits of the validity of the “law of the wall”. 

Below the dimensionless wall distance y+  50 the logarithmic flow profile does not comply with 

experimental results. That is not surprising. The logarithmic law Eq. 4a, 4b is based on the 

constant shear stress  according Eq. 3. The integration to the final logarithmic formula 

includes integration constants which are fitted to the experiment /8/. At a wall distance y+ = 0 

on the wall  = -. Consequently, Eq. 4a, b cannot be extrapolated near to the wall. 

 

Zone 3: 

The viscous sublayer (and the linear profile of the laminar Couette flow) can be described by 

the Newton-Stokes friction within the Navier-Stokes equations. 

 

𝜏 = μ ∙
𝑑𝑢

𝑑𝑦
       (5) 
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exactly  𝜏𝑖𝑗 = μ (
𝜗𝑢𝑗

𝜗𝑥𝑖
+

𝜗𝑢𝑖

𝜗𝑥𝑗
)      (5a) 

 

The linear near-wall profile is presented in Fig. 3, Fig. 4 in the simple (but curved) 

dimensionless form 𝑢+ = 𝑦+. Fig. 3, Fig. 4 show that the linear Newton-Stokes friction does 

not describe experimental results above 𝑦+ ≈ 11.  

 

Zone 2: 

For the transition zone we have little information. Reliable experimental data exist but no 

theoretical model. 

 

The unique character of the Couette flow gives a marginal information. The shear stress 𝜏 =

𝑐𝑜𝑛𝑠𝑡. along the Couette profile and the dissipation rate 𝐸̇ is 

 

𝐸̇ = τ ∙
𝑑𝑢

𝑑𝑦
 

 

With 
𝑑𝑢

𝑑𝑦
 decreasing the dissipation becomes lower with greater wall distance. 

 

That monotonously decreasing character of the dissipation is mandatory for a steady-state 

turbulent profile complying with the minimum dissipation requirement. On the other hand the 

dissipation, being constant very near the wall, is mandatory for a stable linear Navier-Stokes 

profile near the wall. 
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3. Three types of transition 

3.1 The continuous near-wall transition 

 

The minimum dissipation requirement is applied to calculate the dimensionless thickness of the 

linear viscous sublayer near the wall of a turbulent Couette flow experiment. Fig. 2 shows basic 

model assumptions for the turbulent Couette experiment. 

 

The linear profile near the wall in the viscous sublayer is calculated with the Navier-Stokes 

equations. The profile of the turbulent zone is calculated by the empirical logarithmic equation 

4a. 

 

Near the wall we assume 

 

𝑑𝑢

𝑑𝑦
(𝑦 = 0) = 𝑓 ∙

𝑢𝑚

𝑦𝑚
        (6) 

 

with an unknown factor f. 

 

The linear layer near the wall is defined by a lower dissipation compared to the turbulent 

dissipation rate at a greater wall distance y. With Eq. 2, Eq. 3, Eq. 6 follows 

 

𝜌 ∙ 𝜒2𝑦2 (
𝑑𝑢

𝑑𝑦
)

3
> 𝜇 ∙ 𝑓2 (

𝑢𝑚

𝑦𝑚
)

2
       (7) 

 

For the Couette flow the shear stress over the profile, being laminar or turbulent, is constant 

 

𝜌 ∙ 𝜒2𝑦2 (
𝑑𝑢

𝑑𝑦
)

2
= 𝜇 ∙ 𝑓

𝑢𝑚

𝑦𝑚
       (8) 

 

Introducing Eq. 8 into Eq. 7 leads to 

 

𝜌 ∙ 𝜒2𝑦2 (
𝑑𝑢

𝑑𝑦
)

3
> 𝜒4 (

𝜌

𝜇
)

2
𝑦4 ∙ (

𝑑𝑢

𝑑𝑦
)

4
∙ 𝜇      (9) 

 

In Eq. 9 the factor f disappears. This leads to 

 

𝜇 > 𝜌 ∙ 𝜒2𝑦2  
𝑑𝑢

𝑑𝑦
       (10) 
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and 

1

𝜒2 >
𝑦2∙

𝑑𝑢

𝑑𝑦
𝜇

𝜌

        (11) 

We introduce the dimensionless wall distance 𝑦+ =
𝑦 ∙ 𝑢𝑥

𝜇

𝜌

 /8/ with the so-called shear stress 

speed 𝑢𝑥 = √
𝜏

𝜌
  

 

With 𝜏 = μ
𝑑𝑢

𝑑𝑦
(0) = 𝑐𝑜𝑛𝑠𝑡. Eq. (11) becomes  

1

𝜒
> 𝑦+ 

or 

𝑦+ ≤ 2,5       (12) 

 

Schlichting /8/ describes experimental values with y+ = 5, a calculation by Drescher /10/ gives 

y+ = 3,4. There are experimental results near the wall by Durst /11/, with a linear flow profile 

below y+  2. 

 

We should be careful with the interpretation of Eq. 12. We do not know details of the 

mechanism of the transition zone. Due to the constant shear stress of the Couette flow we only 

know that the gradient of the transition zone has to be lower than that of the viscous sublayer 

and higher than that of the turbulent zone. Therefore, we interpret the value in Eq. 12 in a 

manner that it is the upper limit for the dimensionless thickness of the linear sublayer. 

 

The situation at the limit of the linear viscous sublayer is stable. If the flow speed of the 

experiment (characterized by the Reynolds number) is modified the shear stress  of the 

experiment is changed, but the dimensionless wall distance y+ (including a factor √𝜏) remains 

constant, the geometrical thickness of the viscous sublayer varies with the change of the 

Reynolds number. 

 

 

3.2 The complete transition turbulent-to-laminar 

 

The minimum dissipation requirement is applied to characterize the transition of the turbulent 

flow experiment (including the viscous sublayer, described in chapter 3.1) to a complete laminar 

flow experiment by decreasing the flow speed. 
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The turbulent flow profile is flatter in the centre and steeper near the wall. Due to  = const. the 

dissipation of the turbulent logarithmic profile is lowest in the centre of the experiment. After the 

transition the final laminar profile is simply linear. The transition takes place when the turbulent 

dissipation in the centre is higher than the laminar dissipation at any position of the profile. That 

situation defines the “critical” number Recrit 

 

We use three parameters according Fig. 2. 

 

- The factor 𝑓 = 𝑓𝑚𝑖𝑛 as indicator of the change of the wall shear stress during transition 

- The dimensionless wall distance 𝑦
+
𝑚

 of the centre of the Couette flow as critical wall 

distance 

- The critical Reynolds number of the Couette flow 𝑅𝑒𝑐𝑟𝑖𝑡 =  
2 𝑢𝑚 ∙ 𝑦𝑚

𝜇

𝜌

 as minimum 

condition 

 

With 𝜏 according Eq. 8 the dimensionless wall distance 𝑦+ /8/ becomes 

𝑦
+
𝑚

=  𝑦𝑚  ∙  √
𝜇 ∙𝑓 ∙ 

𝑢𝑚
𝑦𝑚 

𝜌
 ∙  

1
𝜇

𝜌

  (13) 

 

and introducing the turbulent definition of 𝜏 in Eq. 8 

 

𝑦
+
𝑚

=  𝑦𝑚  ∙  √𝜌𝜒2 ∙ 𝑦𝑚
2 ∙

1

𝑓2 ∙ (
𝑢𝑚

𝑦𝑚
)

2 1

𝜌
  

1
𝜇

𝜌

    (14) 

 

Eq. 13 leads to  

𝑦
+
𝑚

=  √𝑓 ∙  
1

2
 𝑅𝑒𝑐𝑟𝑖𝑡      (15) 

 

and Eq. 14 to  

 

𝑦
+
𝑚

=  𝜒 ∙  
1

2 
 ∙  

1

𝑓
 ∙  𝑅𝑒𝑐𝑟𝑖𝑡     (16) 

 

Additionally Eq. 12 and the logarithmic flow profile lead to  

 

𝑦
+
𝑚

=  𝑓2  ∙ 2,5      (17) 
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The critical Reynolds number Recrit characterizes the transition turbulent-to-laminar. By 

decreasing the velocity of the flow experiment, thereby decreasing the Reynolds number, the 

transition takes place at Recrit. 

 

The viscous layer near the wall must have lower dissipation than the turbulent dissipation off the 

wall. 

 

According to Fig. 2 we assume 

 

𝑑𝑢

𝑑𝑦
(𝑦 = 0) = f ∙

𝑢𝑚

𝑦𝑚

 

and for the dissipation 

 

𝜌 𝜒2𝑦𝑚
2 (

𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚))

3
> 𝜇 (

𝑢𝑚

𝑦𝑚
)

2
    (18) 

 

and for the shear stress 

 

 𝜏 =  𝜇 ∙ 𝑓 ∙
𝑢𝑚

𝑦𝑚
= 𝜌 𝜒2𝑦𝑚

2 (
𝑑𝑢

𝑑𝑦
(𝑦𝑚))

2
   (19) 

 

Eq. 19 into Eq. 18 leads to 

 

𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚) >  

1

𝑓
  

𝑢𝑚

𝑦𝑚
      (20) 

and 

𝜇 ∙ 𝑓
𝑢𝑚

𝑦𝑚
< 𝜌 𝜒2𝑦𝑚

2 ∙
1

𝑓2 (
𝑢𝑚

𝑦𝑚
)

2
    (21) 

𝑓3 < 𝜒2    
𝑦𝑚 ∙ 𝑢𝑚

𝜇
𝜌

 

 

results 

2 ∙ 𝑓3 ∙
1

𝜒2 < 𝑅𝑒𝐶𝑜𝑢𝑒𝑡𝑡𝑒,𝑐𝑟𝑖𝑡     (22) 
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The definition of fmin in Eq. 22 contains two unknown variables, fmin and 𝑅𝑒𝐶𝑜𝑢𝑒𝑡𝑡𝑒,𝑐𝑟𝑖𝑡. To identify 

both variables independently we discuss the linear-laminar profile and the turbulent logarithmic 

profile according to Fig. 2. Both profiles must give the same value of the velocity 𝑢𝑚 in the 

centre of the Couette flow at the position 𝑦𝑚. 

 

To calculate the logarithmic flow profile, we use the dimensionless logarithmic velocity 

distribution as a function of the dimensionless wall distance. According to the experimental 

literature /8/ and Eq. 4a. 

 

 𝜑(𝜂) = 2.5 ln η + 5,5        (23) 

 

with 

 

 𝜑 = 𝑢 ∙
1

√
𝜏0
𝜌

         (24) 

 

as dimensionless so-called shear stress speed and 

 

  η = 𝑦 ∙
√

𝜏0
𝜌

𝜇

𝜌

         (25) 

 

as dimensionless wall distance. 

 

(The logarithmic function has a singularity near the wall 𝑢(𝑦 = 0) =  −∞). The calculation is 

corrected by adding the dimensionless thickness of the viscous layer (𝑦+ = 2,5, Eq. 12) to the 

dimensionless wall distance. 

 

The calculation of the turbulent flow profile with Eq. 23, the wall distance 𝑦𝑚 calculated with Eq. 

25 and the laminar value for 𝑢𝑚 (y = 𝑦𝑚) results in 

 

𝑓𝑚𝑖𝑛 = 5,2       (26) 

 

With Eq. 26 results 

 

ReCouette, Crit = 1750 
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Schlichting describes /8/ experimental critical values of ReCouette = 1500 (that would correspond 

to fmin = 4,95). 

 

 

3.3 The “forced” changeover laminar-to-turbulent 

 

The minimum dissipation requirement is applied to describe the significant difference of the 

near-wall transition (chapter 3.1) and of the complete transition turbulent-to-laminar (chapter 

3.2) to any transition in a flow experiment to turbulence. 

 

The change-over laminar-to-turbulent demonstrates significant differences compared to the 

transition turbulent-to-laminar (chapter 3.2). 

 

The flow experiment starts with low laminar flow rates. Increasing the flow rates it is 

demonstrated by experiment that the laminar flow can be maintained up to very high Reynolds 

numbers at least > 50000 (tube flow). 

 

Any “transition” to turbulence contradicts the minimum dissipation requirement. Consequently 

that “transition” does not take place. 

 

Landau (Nobel Prize 1961) suggested two different critical Reynolds numbers for both directions 

of transition but was not successful “because currently there is no evidence that such cases of 

instability really exist” /12/. 

 

Landau was right, there is no “instability”. Both flow forms, laminar, starting from low Reynolds 

numbers, and turbulent, starting from high Reynolds numbers, are stable at the same Reynolds 

number. Any “transition” has to be “forced” as demonstrated by experiment /13/. The experiment 

shows that any transition is “not triggered by the implication of disturbances” /11/. The transition 

can be triggered by “special features of the test section”. A critical triggering height of step-like 

obstacles has been quantified by Durst /11/. 

 

The preceding chapters show that a logarithmic turbulent flow profile is a significant basis for 

minimum local dissipation rates at sufficient great wall distance. On the other hand the 

logarithmic profile is always associated with higher local flow speeds and higher gradients near 

the wall, thereby with higher wall shear stress, higher flow resistance, higher total dissipation 

of the Couette experiment. The blended effect is an increase of the wall shear stress by a 

minimum factor 𝑓 (𝑓𝑚𝑖𝑛 ≅ 5 for the Couette flow), thereby the dissipation, thereby the additional 
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mechanical power input into the experiment. Without that required additional power input no 

changeover takes place. 

 

The minimum dissipation requirement is applied to describe the “forced” change-over. That 

means that at a given Reynolds number, reached by stable laminar flow, the “forced” 

manipulation of the profile requires a defined increase of the mechanical power input into the 

experiment by the factor f, given in Fig. 5. For completing the “forced” change-over the turbulent 

dissipation at maximum wall distance has to be lower than the original laminar dissipation. 

Inverting the signs in Eq. 18 to Eq. 21 leads to 

 

𝑑𝑢

𝑑𝑦𝑡
(𝑦 = 𝑦𝑚) ≤  

1

𝑓
  

𝑢𝑚

𝑦𝑚
     (27) 

μ (
𝑢𝑚

𝑦𝑚
)

2
≥ ρ𝜒2 ∙ 𝑦𝑚

2 (
𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚))

3
    (28) 

𝑓3 ≥ 𝜒2    
𝑦𝑚∙𝑢𝑚

𝜇

𝜌

      (29) 

𝑦𝑚
+ = 𝑓2 ∙ 2,5      (30) 

 

Fig. 1 shows to velocity profiles for Re = 2900 and Re = 34000. The slope of the flow profile 

near the wall becomes steeper with increasing Reynolds numbers. (This is also observed in 

the turbulent flow profiles of the tube flow and the boundary layer flow /8/). 

 

Contrary to Chapter 3.2 we are now interested in maximum f-values. 

 

The minimum dissipation requirement gives the answer. With 

 

𝜏 = const. 

and Eq. 1, 2 and 3 follows 

𝑑𝑢

𝑑𝑦
≅

1

𝑦
 

The dissipation is at its minimum at maximum conceivable y-values in the centre of the 

experiment at y = 𝑦𝑚. 

 

Fig. 5 shows the influence of increasing Reynolds numbers on the increase of the wall shear 

stress given by the f-value. The f-value is calculated with Eq. 29 and the wall distance 𝑦𝑚
+  at 

the centre of the flow experiment as dimensionless value with Eq. 30. That corresponds to a 

steeper profile near the wall, corresponding to a lower dissipation rate in the centre, compared 

to the original laminar flow profile. 
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The 𝑦𝑚
+ values at lower Reynolds numbers (Re  10000) show that a significant part of the 

profile at 𝑦+ < 70 /8/ is part of the transition zone. 

 

Re fCouette 𝑦𝑚
+

  𝜆𝑡𝑢𝑟𝑏

𝜆𝑙𝑎𝑚
 

1750 5,2 67,5   

2900 6,15 97   

4000 6,5 118   

10000 9,3 215   

20000 11,7 340  8,1 

34000 13,1 430  13,2 

60000 16,9 710  18,6 

Fig. 5: f-factors of Couette flow Fig. 5b: 
𝜆𝑡𝑢𝑟𝑏

𝜆𝑙𝑎𝑚
 pipe flow 

 

 

With increasing Re-numbers the turbulent flow profile near the wall becomes steeper, as 

shown with the increasing f-factor in Fig. 5. 

 

Experimental values for the Couette flow are not available. One can compare some results at 

higher Reynolds numbers Re > 30000 with experimental results for the tube flow. By 

comparing the laminar flow resistance (𝜆𝑙𝑎𝑚-value of the Hagen-Poiseuille formula /8/) with the 

experimental turbulent formula (𝜆𝑡𝑢𝑟𝑏-value of the Blasius formula /8/) one gets an indication 

of the change of the wall shear-stress between laminar and turbulent profile. In Fig. 5b 
𝜆𝑡𝑢𝑟𝑏

𝜆𝑙𝑎𝑚
 

can be compared with the f-value. At Re > 30000 these values are < 10 % different from the f 

values in Fig. 5. At lower Reynolds numbers there is a factor 2. 

 

To “force” the change-over an increase of the mechanical power input by a factor 5-17 is 

required. That consequence is compatible with the statement of Oertel jr. /18/, that “turbulence 

has nothing to do with instability”. 
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3.4 Results and consequences 

 

The experimental results and the application of the minimum dissipation theorem give the 

following consequences for the Couette flow. 

 

1. Consequence 

The Couette flow experiment shows three different flow mechanisms. 

 

− The turbulence, described by the empirical logarithmic “law of the wall” as non-local 

mechanism, limited above y+ > 70 (theory y+ > 67,5). 

− The local Navier-Stokes mechanism with the linear Newton-Stoke’s friction, limited below 

a dimensionless wall distance y+ < 2,5 (experiment < 2). 

− The transition mechanism, not known in detail. 

 

2. Consequence 

Experiment and theory show three different types of transition. 

 

− The continuous co-existence of laminar and turbulent flow above the laminar sublayer 

near the wall. 

− The turbulent-to-laminar transition of the complete flow at Recrit 

− The “forced” change-over laminar-to-turbulent, after increasing the input of mechanical 

power by a factor 5-17. Without increasing that input laminar and turbulent flow are stable 

at the same elevated Re-numbers and no transition takes place. 

 

3. Consequence 

The generalised statements that the dissipation of turbulent flow is maximum (Malkus, Busse 

/6/) or is minimum (Klimontovich /7/) do both not comply with experiment and theory. In Chapter 

2.1 the near-wall laminar, linear flow has a lower dissipation rate than the turbulent logarithmic 

flow at higher wall distance (otherwise laminar flow would not exist). At sufficient high wall 

distance, the turbulent dissipation rate is lower than the laminar dissipation rate (otherwise 

turbulent flow would not exist). 

  



 

- 20 - 

 

4. Consequence 

Unique to the Couette flow the shear stress is 

 = const. 

and the dissipation 

𝐸̇ = τ ∙
𝑑𝑢

𝑑𝑦
 

 

Dissipation and 
𝑑𝑢

𝑑𝑦
 becomes smaller with increasing wall distance. The s-shaped turbulent flow 

profile (Fig. 1) and both conditions do not comply with constant definition of the Newton-Stokes 

viscosity of the Navier-Stokes equations. 
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4. General conditions for turbulence, “µturb”  27 µ 

 

The preceding results are based on one theoretical element, the minimum dissipation theorem, 

applied to the Couette flow. 

 

The logarithmic flow profile (law-of-the-wall) is very important, but is only based on a hypothesis 

(Prandtl, v. Kármán) fitted to the experiment. It is used as a formula for experimental results. The 

advantage of using empirical and experimental results is the simplicity of the discussion. The 

disadvantage is a limited theoretical basis. 

 

Experiment and theory show the logarithmic “law-of-the-wall” for 

 

− turbulent flow forms 

− at high wall distance y+ > 67,5 

− at wall distance < 0,3 ∙  𝑦𝑚 (pipe experiment) /21/ 

 

For the linear laminar zone near the wall 

 

𝑑𝑢

𝑑𝑦
(𝑦 = 0) = 𝑓

𝑢𝑚

𝑦𝑚
 

with 𝑓 ≥ 5,2 

≥ 5,2 ∙
𝑢𝑚

𝑦𝑚
 

 

According Eq. 20 for the turbulent zone near the centre 𝑦 = 𝑦𝑚 

 

𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚) =

1

𝑓

𝑢𝑚

𝑦𝑚
 

 

With the result  
𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚) =

1

𝑓2  
𝑑𝑢

𝑑𝑦
(𝑦 = 0) 

with 𝑓 ≈ 5,2  ≤
1

27
 
𝑑𝑢

𝑑𝑦
 (𝑦 = 0) 

 

With the important and unique feature 𝜏 = 𝑐𝑜𝑛𝑠𝑡. of the Couette flow 

 

𝜏 (𝑦 = 0) = 𝜏(𝑦 = 𝑦𝑚) 
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𝜇 ∙
𝑑𝑢

𝑑𝑦
(y = 0) = 𝜇𝑡𝑢𝑟𝑏 ∙

𝑑𝑢

𝑑𝑦
(𝑦 = 𝑦𝑚) 

 

or 
"𝜇𝑡𝑢𝑟𝑏"

𝜇
≥ 27 

 

The same result is described in /15/ with a different approach, the minimum dissipation theorem 

implementing a non-local (corpuscular) model for turbulent structures and using Taylor’s formula 

for isotropic turbulent fluctuations. The approach is described by Drescher in /15/, resulting in a 

criterion for the existence of turbulence, defined by a minimum condition of the “apparent” 

turbulent viscosity “𝜇𝑡𝑢𝑟𝑏" ≥ 27 𝜇 

 

An empirical result is given by 𝜏 = 𝑐𝑜𝑛𝑠𝑡. (Couette flow), 

𝜏 ~ 𝑦2 (
𝑑𝑢

𝑑𝑦
)

2
 (logarithmic flow profile, Prandtl’s hypothesis), at 60 < 𝑦+ < 𝑦𝑚

+   /8/ 

 

An analytical result is given by 

𝜏 ~
𝑑𝑢

𝑑𝑦
 (Navier-Stokes Eq., Newton-Stokes viscosity), at 𝑦+ < 2,5 

 

For the Couette flow 𝜏 = 𝑐𝑜𝑛𝑠𝑡. is mandatory, and the minimum dissipation requires 
𝑑𝑢

𝑑𝑦
 

decreasing monotonously above y+ > 2,5. 
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5. Limitations of the logarithmic “law-of-the-wall” 

 

The logarithmic shape of the turbulent flow profile has been admired remarkably as an important 

and classical result. Marusic emphasizes: “The beauty of this classical result is its simplicity 

particularly given the complexity of the multi-scale non-linear problem at hand” /14/. Schlichting 

describes the “law-of-the-wall” (curve 3 in Fig. 3) as “excellent compliance” /8/. 

 

We shall review the enthusiasm of Marusic and Schlichting. At low Re-numbers the experimental 

data in Fig. 3 do not comply with Eq. 4a below 𝑦+ ≅ 50 (Fig. 4 uses Eq. 4b which is 10 % lower). 

The logarithmic law (curve 3 in Fig. 3, straight line in Fig. 4) includes a singularity near the wall. 

At 𝑦+ = 0 the value is 𝜑(0) = −∞. At 𝑦+ = 1 the value is only defined by the arbitrary integration 

constant (5,5 in Eq. 4a; 5,17 in Eq. 4b). There are further restrictions of the logarithmic law for 

the centre of the pipe flow and greater wall distances. M. Platzer has summarized and quantified 

these effects and described the possible corrections /19/. Restrictions are mentioned by K. 

Wieghardt /20/ and St. Pope /21/. 

 

K. Wieghardt summarizes experimental and theoretical results in Fig. 6 and states that the 

logarithmic law-of-the-wall is “valid nearly in the complete pipe area”, but not “near the wall and 

in the pipe centre” /20/. St. Pope doubts the logarithmic law above 0,3 ∙ 𝑦𝑚 /21/. F. Durst 

measured the differences at low Reynolds numbers Re < 9800 /9/ (see Fig. 4). 

 

 

Fig. 6: Turbulent flow profiles, K. Wieghardt /20/ 
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The reasons for the deviations of the logarithmic law are not discussed in detail. Important is that 

the formula is completely “local”, the derivation of Prandtl’s mixing length hypothesis is “non-

local”. 

 

One wrong result is the finite gradient of the logarithmic formula at the centre of the pipe. That 

includes a kink of the profile at the centre. 

 

The non-local character of turbulence is a second important feature to characterize turbulence. 

The following chapters focus on that feature by a “corpuscular” model of the fluid behaviour. The 

model confirms important parts of the logarithmic law but avoids the criticised result near the 

centre of the pipe. 
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6. An analytical model: non-local character, logarithmic flow 

profile, v. Kármán constant, Prandtl’s mixing length 

 

It is interesting to compare a “corpuscular” model for turbulent flow behaviour with the empirical 

results of Prandtl’s and v. Kármán’s “universal law of the wall”. 

 

We consider plane Couette flow, as shown in Fig. 7. Contrary to laminar Couette flow the flow 

profile is not linear but S-shaped and is indicative of later results. We consider a volume with a 

dimension D at a sufficient distance from the walls. The dimension D is macroscopic but 

unknown in detail. 

 

We assume that momentum exchange takes place in this volume element and that any 

dissipation takes place with delay. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Plane Couette flow 
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The origin of the coordinates is assumed to be at the centre of the D-element (Fig. 6). With a 

linear profile, 
𝑑𝑢

𝑑𝑦
 = constant, the kinetic energy EKin of all the mass points of the D-element is 

 

𝐸𝐾𝑖𝑛 = 𝐷2 ∫
1

2

𝐷/2

−𝐷/2
𝜌 (

𝑑𝑢

𝑑𝑦
𝑦)

2
𝑑𝑦 =

1

24
𝜌 (

𝑑𝑢

𝑑𝑦
)

2
𝐷5     (31) 

 

After momentum exchange, all the mass points may possess equal kinetic energy. Thus, the 

resulting mean value of the velocity given by |𝑉𝑞𝑢| is 

 

1

2
𝜌 𝐷3 𝑉𝑞𝑢

2 =
1

24
𝜌 (

𝑑𝑢

𝑑𝑦
)

2
𝐷5         (32) 

 

|𝑉𝑞𝑢| =
1

√12
 
𝑑𝑢

𝑑𝑦
𝐷 

 

 

 

Fig. 8: Momentum exchange within the D-element 
 

 

In this way, an averaged total momentum of the upper and lower half spaces is adapted. 

 

We now determine the momentum exchange p on the surface y = constant in the centre of the 

D-element as a measure of the “apparent” shear stress . 

 

Further calculation leads to the apparent “shear stress”  

 

D 
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𝜏 =
∆𝑝

∆𝑇
 (33) 

 

𝜏 =
1

6√3
𝜌 (

𝑑𝑢

𝑑𝑦
)

2

𝐷2       /15/ 

 

 

An equivalent calculation is given in /15/. We verify the result by adopting the “analogy to the 

kinetic theory of gases” described in Prandtl’s mixing length hypothesis /8/. According to the 

kinetic theory of gases the viscosity is 

 

μ =
1

3
 𝜌 𝑙 𝑐̅      (34) 

 

where 𝜌 is the density, 𝑙 the mean free distance, and 𝑐̅ the mean velocity of gas molecules. 

 

Replacing the mean free distance 𝑙 with 𝐷 and the mean molecular velocity 𝑐̅ with Vqu, the 

apparent “viscosity” 𝜇𝑡  is given by  

𝜇𝑡 =
1

3
 𝜌 𝐷 𝑉𝑞𝑢 

=
1

6 √3
 𝜌 

𝑑𝑢

𝑑𝑦
 𝐷2 (35) 

 

which confirms the mentioned result in Eq. 33. 

 

A question arises on the possible dimension of D. For this question, the condition of minimum 

dissipation gives a surprising result. 

 

The local dissipation 𝐸̇ can be expressed as 

 

𝐸̇ = τ 
𝑑𝑢

𝑑𝑦
 

 

or, with  according to Eq. 33, 

 

𝐸̇ =  ~ (
𝑑𝑢

𝑑𝑦
)

3

𝐷2 
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For any Couette flow profile, the shear stress is constant 

 

τ =  ~ 𝐷2 (
𝑑𝑢

𝑑𝑦
)

2
= 𝑐𝑜𝑛𝑠𝑡.       (36) 

or 

𝑑𝑢

𝑑𝑦
 ~ 

1

𝐷
         (37) 

Thus, 

 

𝐸̇~
1

𝐷
 (38) 

 

The dissipation decreases as D increases. For the dissipation to be at its minimum, D has to 

assume a maximum value – this characterizes the dissipation 𝐸̇ as “non-local”. 

 

The maximum possible D-values are limited by the fact that the D-volume must not approach 

the walls. From the condition of continuity and the assumed incompressibility of the fluid near 

the wall, it follows that the volume is displaced by transverse flow at a velocity that increases 

as the distance from the wall decreases and D increases. Excessive dimensions and close 

proximity to the wall would contradict the definition of the D-element (undisturbed momentum 

exchange). 

 

Proximity to the wall is a limiting factor for a maximum value of D. The approach below is chosen, 

where 

 

D = α y   y = wall distance    (39) 

 

The approach with a scaling factor  

 

α =
4

3
 

 

provides an idea of the maximum conceivable dimension of a D-volume with momentum 

exchange that is still “undisturbed” despite its proximity to the wall (Fig. 7). 
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Eq. 33, Eq. 38 and Eq. 39 lead to a logarithmic flow profile. The shear stress  is  

 

𝜏 =
16

9
∙

1

6√3
𝜌 ∙ 𝑦2 (

𝑑𝑢

𝑑𝑦
)

2
     (40) 

= 0,171 ρ ∙ 𝑦2 (
𝑑𝑢

𝑑𝑦
)

2

 

 

Comparison with Eq. 3 gives a value 

 

𝜒 = 0,415 

 

to be compared with the empirical v. Kármán constant 𝜒. 

 

The conclusion that the characteristic dimensions of turbulence assume maximum values results 

in a change in perspective: turbulence is not the result of “instable” laminar motion but a stable 

condition or, as argued by Klimontovich /7/, focusing the minimum condition, “turbulent flow has 

a greater degree of order than laminar flow”. Marusic et al. /14/ mentioned that there are “many 

unanswered questions in respect of very large scale motions (VLSMs)” or “superstructures” /14/. 

 

The question then arises of how far this can be observed in the free atmosphere. The spatial 

extent and the temporal course of the occurring flow events are of particular interest. We 

expect turbulence elements >100 m and exchange times of several minutes. 

 

For such an observation, the visible part of cooling tower plumes can be used. Such a plume 

is saturated with water vapour and becomes visible – similar to a cloud – through condensed 

water droplets. At a certain distance from the source, it can usually be observed that the plume 

“dissolves”. This “dissolution" is mainly caused by turbulent mass and heat exchange. Large-

scale exchange processes must therefore become visible on large structures of the plume 

image. The area where the plume has dissolved and only a few shreds remain is particularly 

interesting. Some of the distances between them show a very distinctive scaling (Fig. 9). 
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Fig. 9: Weisweiler power plant, 12/26/2009, 9.26 Uhr (1 min. time difference),  

temperature 4 °C, wind 230 °/7-10 m/s 
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Prandtl’s mixing length hypothesis is an important step in explaining turbulent flow behaviour. 

The hypothesis does not utilize the Navier-Stokes equations. 

 

Prandtl assumes that in turbulent flow, packets of fluid have independent motion and move both 

longitudinally and laterally over an average distance 𝑙, under conservation of their momentum. 

The resulting fluctuations are explained by fluid packets of different velocities encountering each 

other. Prandtl describes the mixing length by adopting an “analogy to the kinetic theory of gases” 

/8/. A further result of Prandtl and v. Kármán is the logarithmic shape of the turbulent flow profile. 

This has been admired as an important and classic result. 

 

The turbulent shear stress  and the mixing length 𝑙 are calculated as 

 

 
dy

du
 l  








=

2

2       (41) 

with 

𝑙 =  𝜒 ∙ 𝑦 

 = v. Kármán constant 

 0,4 

𝜏 ≈ 𝜌 ∙ 0,16 ∙ 𝑦2 ∙ (
𝑑𝑢

𝑑𝑦
)

2

 

 

Prandtl’s theory makes no statement on the size and form of the fluid packets. The dimension of 

the mixing length 𝑙 is determined empirically from the flow profile of the experiment. 

 

Some arguments in Prandtl’s mixing length hypotheses are noteworthy. 

 

− The mixing length is defined as a locus function of the wall distance. This is questionable 

because every location of the flow profile is reached and influenced by mixing lengths of 

different sizes and from all directions. 

 

− The mixing length gives no indication of the thickness of the laminar boundary layer near 

the wall and of the transition to turbulence. 
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− The definition of the mixing length is an exclusively empirical operand rather than a 

phenomenological measure for the range of turbulent mixing motion. Prandtl’s formulation 

lacks a factor of 1/3 if one considers 𝑙 as the physical measure for a “range” of convective 

momentum exchange (this factor of 1/3 is not important for the hypothesis because 𝑙 is 

determined empirically) /12/. 

 

For a comparison, we substitute 𝑙 = 0,4 𝑦 (𝑦 = wall distance) in Eq. 40 and  𝐷 =  
4

3
𝑦 in Eq. 33. 

As a result, 

 

Prandtl’s and v. Kármán’s empirical Eq. 41 becomes 

𝜏 =  𝜌 ∙ 0,16 ∙ 𝑦2 (
𝑑𝑢

𝑑𝑦
)

2

𝑛𝑒𝑎𝑟 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙  

compared with Eq. 40 

𝜏 =  𝜌 ∙ 0,171 ∙ 𝑦2 (
𝑑𝑢

𝑑𝑦
)

2

 𝑓𝑜𝑟 𝐶𝑜𝑢𝑒𝑡𝑡𝑒 𝑓𝑙𝑜𝑤 

 

Both equations can be compared despite different origin and background. 

 

 

  



 

- 33 - 

 

7. Numerical calculations 

7.1 A 1-dimensional equation for a turbulent profile 

 

The previous model assumptions describe the momentum exchange while maintaining the 

energy balance in a volume element D3. We apply these results to calculate the averaged flow 

profile in a shear flow. 

 

Fig. 7 shows the relations. To each wall distance y there is a volume element of the dimension 

D(y), in which a momentum exchange takes place with a defined frequency. This exchange leads 

to superimposed transverse flows, through which partial volumes are transported between 𝑦 +
𝐷

2
 

and 𝑦 −
𝐷

2
 (the boundaries of the D-element) transversely to the main flow direction. 

Mathematically, this results in an “acceleration” or a “delay” to the right or left of the main flow. 

 

Integration over all y, to which this range relationship applies, results in the resulting total 

acceleration, which is zero for the mean flow values in the stationary state. We determine the 

frequency of the momentum exchange in one of the many D-elements to be integrated. The 

average flow velocity is given by |𝑉𝑞𝑢| according to Eq. 32.  

 

We consider the momentum exchange in the D-element to be complete when D is “crossed” with 

this velocity |𝑉𝑞𝑢|. The “time” required for this is therefore, 

 

𝐷

|𝑉𝑞𝑢|
 ~

1

𝑑𝑢
𝑑𝑦

 

 

The frequency of the momentum exchange is the reciprocal of this 

 

~
𝑑𝑢

𝑑𝑦
 

 

With the integration limits ymin and ymax according Fig. 9 we obtain the following equation. 

 

𝑑𝑢

𝑑𝑦
(𝑦) ~ 

1

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
[∫ (𝑢(𝑦̃) − 𝑢(𝑦)) 

𝑑𝑢̅̅ ̅̅

𝑑𝑦
(𝑦̃)𝑑𝑦̃

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛
]   (42) 

 

= 0 

for stable conditions. 
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The values 𝑢(𝑦̃) and 
𝑑𝑢

𝑑𝑦
(𝑦̃) in the integral of Eq. 42 are not to be seen as point values, but as 

average values over the range of the D-element around 𝑦̃ and are therefore marked. 

 

The integration limits 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 result from 𝐷 =
4

3
𝑦, for the area near the wall with 

 

𝑦𝑚𝑎𝑥 = 3y 

𝑦𝑚𝑖𝑛 =
3

5
𝑦 

 

For the integration limits defined in this way, it applies that the D elements around ymin resp. ymax 

just reach the point y. 

𝑦𝑚𝑎𝑥 −
1

2
𝐷(𝑦𝑚𝑎𝑥) = 𝑦 

𝑦𝑚𝑖𝑛 +
1

2
𝐷(𝑦𝑚𝑖𝑛) = 𝑦 

 

Fig. 10 shows the geometric relationship. 

 

 

 

Fig. 10: Integration according to Eq. 42 

  

Integration 

area 
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The integration limits defined in this way correspond to the maximum property, but do not 

necessarily fulfil the minimum property. This applies in particular in the vicinity of the wall, i.e. for 

small y and thus small 𝑦𝑚𝑖𝑛. We therefore designate with 𝑦− the smallest wall distance for which 

the minimum condition 

"𝜇𝑡𝑢𝑟𝑏(𝑦−)" ≥ 27μ 

 

still applies. An integration of Eq. 42 in the direction of the wall is thus physically permissible for 

𝑦𝑚𝑖𝑛 ≥ 𝑦− −
1

2
𝐷(𝑦) 

≥
1

3
𝑦−      (43) 

 

The turbulent flow profile is calculated according to the integral Eq. 42 under auxiliary conditions 

for the maximum and minimum values of the integration limits. 

 

Parallel to this and especially outside the constraints, Newton's equation applies. 

 

 

7.2 Numerical examples for Couette and pipe flow 

 

Eq. 42 can only be solved analytically under simplified assumptions. We take a numerical 

approach, the flow profile u(y)  over the cross-section y is divided into a staircase function 

according to Fig. 11. 
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The step width is y, the respective step value ui corresponds to the average value of u in the 

interval y around the coordinate value y = i y. 

 

By analogous application of Eq. 42, each ui in each iteration step is changed by one ui according 

to the following calculation rule. 

 

∆𝑢𝑖 ~ 
1

(𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)
∑ (𝑢𝐾 − 𝑢𝑖)

∆𝑢𝐾

∆𝑦

𝐾𝑚𝑎𝑥

𝐾=𝐾𝑚𝑖𝑛

 

if "μturb" < 27𝜇  

~ 
𝜇

𝜌
(

𝑢𝑖+1 − 𝑢𝑖

∆𝑦
−

𝑢𝑖 − 𝑢𝑖−1

∆𝑦
)

1

∆𝑦
 

 

+ constant (44) 

 

𝑢𝐾  and 
∆𝑢𝐾

∆𝑦
 are analogous to Eq. 42 numerical average values over the range 𝐾 ∙ ∆𝑦 ±

1

2
D(𝐾∆𝑦). 

The summation in the first line is made for those 𝑢𝐾 for which the turbulence conditions from 

Chapter 4 are fulfilled. The summation interval results from the definition of Kmin and Kmax 

according to the definition of Eq. 42 with the constraints Kmin and Kmax. mentioned. 

 

 

Fig. 11: Stair function for profile calculation 

y 

i . y 
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The second line considers the Newtonian laminar friction. 

 

The step size ui is limited by a selectable factor (not specified in the above calculation rule). 

 

Furthermore, the calculated values ui + ui must be normalized to the total flow rate 

∑ 𝑢𝑖 = const. after each calculation run (except for the Couette flow). For this purpose, the 

quantity “constant” in the third line is used, which is determined after each calculation and added 

to the newly set values ui (“constant” corresponds to the element −
𝑑𝑝

𝑑𝑥
). The normalization is 

therefore part of the calculation (not with the Couette flow, since here 
𝑑𝑝

𝑑𝑥
= 0). 

 

The numerical results in Fig. 12 show the recalculation of the two empirical turbulent Couette 

profiles in Fig. 1. 
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Fig. 12: Numerical calculations for the turbulent Couette flow 
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Fig. 13 shows the pipe/channel calculations for the Reynolds numbers 4000, 25000, 105 and 

106. The iteration with 100 support points starts with a laminar profile (linear Couette profile, 

Hagen-Poiseulle pipe profile) and requires 500-1000 steps. For the values in the area of the first 

support point, limitations of the stability apply with large Re numbers. All curves show finite 

gradients near the wall. 
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Fig. 13: Numerical calculations for the pipe flow 

 

 

Infinitely high gradients near the wall are not applicable there, but are often found in the literature. 

The gradient is clearly determined by the flow resistance values for the pipe flow. 

 

  

ve
lo

ci
ty

 

 



 

- 39 - 

 

8. Summary 

 

The theorem of minimum entropy production/dissipation of the thermodynamics of irreversible 

processes is applied to experimental and theoretical results of the Couette flow. The physical 

principle indicates that every form of transition or change can be identified by a variation of the 

dissipation rate. 

 

The thickness of the viscous sublayer, of the transition zone, the near wall gradient and the 

critical Reynolds number are calculated based on the minimum dissipation criterion. 

 

Turbulence includes an increase of flow resistance thereby of the dissipation. At the first glance 

that contradicts the minimum dissipation requirement. The direct consequence is the 

logarithmic flow profile, leading to lower local dissipation rates at sufficient high wall distances, 

in spite of the increasing total flow resistance. 

 

The consequence of the logarithmic profile is a steeper flow profile near the wall, causing a 

higher local dissipation near the wall, and a flatter profile, causing a lower dissipation off the 

wall. The blended effect of higher near wall dissipation and lower dissipation at sufficient 

distance of the wall requires a local position at which the minimum condition is fulfilled. The 

critical Reynolds number is explained by that. 

 

With transition to turbulence a sudden increase of the wall shear stress by a factor f>5 is 

observed. That requires an increase of the input of mechanical energy into the experiment by 

that factor. Without that no transition takes place, the laminar flow remains stable up to 

elevated Reynolds numbers. That confirms experimental results of F. Durst and indicates that 

the transition to turbulence is “not triggered by the amplification of disturbances” /11/ but has 

to be “forced” /13/. H. Oertel jr. /18/ mentions the discussion that “turbulence has nothing to do 

with instability”. 

 

The “local” definition of the Newton-Stokes viscosity does not comply with the “non-local” 

character of turbulence. This question is discussed by Ph. Spalart as “fundamental paradox” 

between the local character of the Partial Differential Equations and the non-local character of 

turbulence /16/. Mishra describes a “lack of amenability to single-point turbulence modelling” 

/17/. 
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The logarithmic “law-of-the-wall” does not comply near the wall due to a mathematical 

singularity and near the centre of the pipe flow due to a finite gradient at 𝑦 = 𝑦𝑚. 

 

A “corpuscular” (non-local) model is discussed. Based on the condition of minimum dissipation 

maximum turbulent dimensions result and a calculated value = 0,415 of the v. Kármán 

constant. Numerical calculations respecting non-local features are presented. 

 

The s-shaped turbulent Couette profile and the constant Couette shear stress are not 

described by the Navier-Stokes equations. 
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Special parameters 

 

𝜏  shear stress 

𝐸̇ local dissipation 

𝑓 ratio turbulent/laminar of  

𝜇 viscosity 

𝜇𝑡𝑢𝑟𝑏 apparent “turbulent” viscosity 

𝜌 density 

𝜒 v. Kármán constant 

𝑙 Prandtl’s mixing length 

u speed 

𝑢̅ average speed 

𝑢′ speed fluctuation 

𝑢𝑥 so-called shear stress speed (dimensionless) (= 𝜑) 

𝑦 wall distance 

𝑦+ so-called dimensionless wall distance (= 𝜂) 
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