
Conceptual Design Tools for Civil Engineering

Bodo Kraft

Department of Computer Science III, RWTH Aachen University
Ahornstrasse 55, 52074 Aachen, Germany

k raft@i3.informatik.rwth-aachen.de

Abstract. This paper gives a brief overview of the tools we have developed to
support conceptual design in civil engineering. Based on the UPGRADE frame-
work, two applications, one for the knowledge engineer and another for architects
allow to store domain specific knowledge and to use this knowledge during con-
ceptual design. Consistency analyses check the design against the defined knowl-
edge and inform the architect if rules are violated.

1 Introduction

Conceptual designin civil engineering is a vague and creative phase at the beginning
of the construction process. Whereas in later phases only a small part of the building
is the matter of elaboration, conceptual design considers thewhole building, its usage,
andfunctionality. Classical CAD systems give the architect less support in this early de-
sign, as they do not model conceptual design information, such asareasor accessibility
between them. As a consequence, architects currently still draw conceptual sketches
by hand without any support by a computer program. In a second step, they manually
transfer the conceptual design using a CAD system into the constructive design. The
drawback of this development process is not the creative and artistic way of designing,
but the informal way of information storage and the lack of consistency analyses [1].

In this paper we introducetwo graph-based toolsto support conceptual design.
Knowledge about a specific type of buildings can be inserted by aknowledge engineer,
using the so calledDomain Model Graph Editor. This editor allows toformally define
rules and restrictions about a specific type of buildings, in this paper an office block.
Using theDesign Graph Editor, architectsprofit from this knowledge while designing
an abstract sketch of anactual building. The Design Graph Editor imports the defined
knowledge and supports the architects byconsistency checks, design errors are found in
this early phase.

We use the graph based tools developed at our department to create new applica-
tions. Starting from an initial version, an UPGRADE prototype [2] can be extended
with new functionality and adapted to the needs of an application domain. As a result,
the PROGRES specification [3] can be executed in a problem oriented visual tool.

In this paper we concentrate on the provided functionality of the developed tools
and how they give support. The underlying PROGRES specification and discussions of
related work can be found in [4].

AGTIVE-2003 - Application of Graph Transformations with Industrial Relevance
LNCS 3072, eds. J. Pfalz, M. Nagl, und B. Böhlen, Seite 434-439, Springer



2 Tools for the knowledge engineer

Fig. 1 depicts a screenshot of theDomain Model Graph Editor, the tool used by the
knowledge engineer. It is used to define domain specific knowledge, like room types,
relations between rooms and room attributes. We call this knowledgebasic models.
Based on these models, the knowledge engineer defines a specific rule base, valid for
one building type. The domain model graph in the screenshot represents knowledge
about an office building, it can be used for each building project of this building type.

The editor is divided into two parts: On the left side two tree views represent relation
and attribute definitions. The main part of the application shows thedomain model
graph, the data structure which represents specific domain knowledge. The first step
of knowledge input is the definition of relations and attributes. In the upper tree view
in Fig. 1, two obligatory relations,accessto demand accessibility, andview to denote
visibility between two areas, have already been defined. Integer attributes likelengthor
width are used to demand size restrictions. Boolean attributes likenetworkare used to
demand or forbid an area to have a certain equipment installed, e. g. network sockets.

In the next step the knowledge engineer createsareas, in Fig.1 e. g. the secretariat’s
room, the chief officer’s room or the corridor. All room types that are needed for the
described building have to be represented by an area. For each area, a minimal and a
maximal number of occurrences in the building can be defined, to express that certain
rooms have to be existent, or that others have to be unique. The definition of knowl-
edge is refined through attributes, e. g.networkor electricity, and relations. To demand

Fig. 1.Domain Model Graph Editor, a tool for the knowledge engineer



e. g. twoareasto have an access relation, an edge-node-edge construct is established
between e. g. the corridor and the secretariat’s office.

The knowledge stored in the domain model graph describes rules on atype level,
and not for an actual building. Therefore the obligatory access relation between the
2PersonOffice and the Corridor expresses that in a building each 2PersonOffice has to
have an access relation to a Corridor. Forbidden relations in the domain model graph
express that a relation must not be established between two areas of a building. In the
same way, the attributes do not describe restrictions for an actual area, they describe
restrictions valid for all areas of the specified type in an actual building.

3 Tools for the Architect

The Design Graph Editoris the tool used byarchitectssupporting them during the
conceptual design phase. This tool allows the architect to concentrate on the coarse
organization and functionality of the building without being forced to think about exact
dimensions or material definition. If there exists adomain model graphas a knowledge
base for a specific type of buildings, the architect directly profits from the specified
rules.

Fig. 2.Design Graph Editor, architect’s tool to sketch buildings

The underlying building type of the domain model graph shown in Fig.1 is an office
building, it has been linked to the Design Graph Editor in Fig.2. The predefined basic
models are represented by the trees views on the left side of the screenshot. Using them,
the architect sketches abuildingby selecting a model from the tree and inserting it into



the sketch. In our idea conceptual design is based on rooms. Thus the architect initially
inserts the rooms of the future building in the design graph. He then creates attributes
and relations to further define the organization of the building.

The design graph, depicted on the right side of Fig.2 represents a part of an office
building, which has already been sketched by an architect. The corridor in the middle of
the graph has direct access to all areas except to the chief officer’s room, which is only
accessible from the secretariat’s room. Attributes define the existence of equipment in
corresponding area, in Fig.2, the chief officer’s room has electricity, network access
and a phone to be installed, furthermore some length and width restrictions.

The layout of the nodes does not represent the arrangement of the rooms in the
future building, it is optimized to provide a good readability. Even if this sketch does
not contain any geometric information about the sketch, the organization of the building
becomes clear.

4 Consistency Analyses

Fig. 3 depicts both tools, theDomain Model Graph Editorand theDesign Graph Ed-
itor next to each other. The knowledge definition ontype levelis depicted on the left
side, the conceptual design on thelevel of instanceson the right side. With the aid of
consistency analyses the actual design is checked against the knowledge. These checks
enclose the correct usage of the defined attributes and relations, as well further as inter-
nal consistency checks.

C
o

n
s
is

te
n
c
y

A
n
a
ly

s
e
s

Network Access Missing

Fig. 3.Consistency checks between the Domain Model Graph and the Design Graph

An example of a consistency analysis is depicted in Fig.3. As defined in the do-
main model graph each 2PersonOffice should have telephone, network, and electricity
attributes, and an access relation to the Corridor. To check the consistency, each 2Per-
sonOffice in the design graph is examined, if it has (a) access to the Corridor, (b) all
the demanded attributes, and (c) none of the forbidden ones. As shown in Fig.3, one
of the 2PersonOffices does not have a network access. This inconsistency is found and



marked by an error message. The architect can react to this inconsistency in different
ways. He is free to stay in an inconsistent state, he can fix the error in the design graph,
or he can change the knowledge definition in the domain model graph.

The consistency checks are realized by graph tests comparing the domain model
graph against the design graph. Notifications are created by transactions and produc-
tions, a layout algorithm ensures that they are drawn next to the inconsistent sub graph.
The implementation of the consistency analyses is described and illustrated on an ex-
ample production in [4].

5 Specification and Tool Construction

Both tools are the result of a tool construction process using PROGRES and UP-
GRADE. Based on a parameterized specification [4], the PROGRES system generates
C-code. This code is then compiled, together with the UPGRADE framework, to an
UPGRADE prototype. In this initial version, the prototype already provides the func-
tionality to execute productions and transactions, and to visualize the graph. Moreover,
some basic layout algorithms, filter definitions, and node representations can be used.
As UPGRADE prototypes are planned to become extended, further adoptions can eas-
ily be done [5]. The tools depicted in Fig.1 and Fig.2, are both extended UPGRADE
prototypes. Unparsers written in Java change the representation of sub graphs e. g. into
a table or a tree structure. New layout algorithms ensure that attributes are arranged next
to the corresponding area, and that the areas themselves are clearly arranged. New node
representations provide e. g. that an icon illustrating the attribute is drawn. A further
extension is an import/export interface with an automatically generated HTML based
documentation. Our goal is to give the user of our tools an abstract and more clear
view on graph structure, adopted to the need of the application domain. Even if the
screenshots do not look like graph editors, the underlying data structure is still a graph.

In a usual PROGRES specification, the domain knowledge, here area types, attribute
types and relation types are fixed in the schema and in the operational part of the spec-
ification. Node types for access or view, for each relation type, and for each room type
would exist. The disadvantage of the traditional specification method is the difficulty to
extend or change the knowledge. If the knowledge engineer wants to use a new room
type, e. g.Tea Kitchen, the specification has to be changed, new code has to be gener-
ated, and the UPGRADE prototype has be restarted. We want the knowledge engineer
to elaborate the knowledge, e. g. which area types are necessary. Using the traditional
specification method, the tool construction would have to be repeated several times.
Moreover, a graph technology expert would have to assist the knowledge engineer,
helping him to change the specification and to rebuild the tools. Therefore we intro-
duced a new parameterized specification method [4] which allows storing the specific
domain knowledge in the host graph.

We use the described prototypes as an experimentation platform, to elaborate ad-
equate data structures and functionality for conceptual design support. In the long run
our goal is to extend commercial CAD systems with functionality to semantically check
the architect’s sketch against formally defined knowledge.



References

1. Kraft, B., Meyer, O., Nagl, M.: Graph technology support for conceptual design in civil
engineering. In Schnellenbach-Held, M., Denk, H., eds.: Proceedings of the9th International
EG-ICE Workshop, VDI D̈usseldorf, Germany (2002) 1–35

2. Jäger, D.: UPGRADE - A framework for graph-based visual applications. In Nagl, M., Schürr,
A., Münch, M., eds.: Proceedings Workshop on Applications of Graph Transformation with
Industrial Relevance. Volume 1779 of LNCS., Kerkrade, The Netherlands, Springer, Berlin
(2000) 427–432

3. Scḧurr, A., Winter, A.J., Z̈undorf, A.: PROGRES: Language and Environment. In Ehrig, H.,
Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages, and Tools. Volume 2. World Sci-
entific, Singapore (1999) 487–550

4. Kraft, B., Nagl, M.: Parameterized specification of conceptual design tools in civil engineer-
ing, this volume (2003)

5. Haase, T., Meyer, O., B̈ohlen, B., Gatzemeier, F.: A domain specific architecture tool: Rapid
prototyping with graph grammars, this volume (2003)


	Conceptual Design Tools for Civil Engineering
	Bodo Kraft

