
RULE-DEPENDENCIES FOR VISUAL KNOWLEDGE

SPECIFICATION IN CONCEPTUAL DESIGN

Bodo Kraft1 and Daniel Retkowitz2

ABSTRACT

Currently, the conceptual design phase is not adequately supported by any CAD tool. Neither
the support while elaborating conceptual sketches, nor the automatic proof of correctness
with respect to effective restrictions is currently provided by any commercial tool.

To enable domain experts to store the common as well as their personal domain
knowledge, we develop a visual language for knowledge formalization. In this paper, a major
extension to the already existing concepts is introduced. The possibility to define rule
dependencies extends the expressiveness of the knowledge definition language and
contributes to the usability of our approach.

KEY WORDS

Knowledge formalization, Conceptual Design, Graph Transformation

INTRODUCTION

A conceptual sketch describes in a coarse grained way the organization and functionality of a
future building. Architects use this form of representation to get a first idea about the
building and to better understand the requirements of its later usage, construction, and
management. In contrast to conceptual design in civil engineering, the architectural
conceptual design mainly regards the functional entities of the building, i.e. the rooms and
areas, their function within the building and the relationships between them. The high level
of abstraction enables the architect to rapidly evaluate different building sketches, to analyze
the given alternatives, and to finally choose the best fitting sketch.

There are many restrictions that are already effective in the early design phase. Different
domains, e.g. economy, law, functionality as well as the parties involved, like the building
owner, the architect, the user, or the building contractor, prescribe restrictions and
requirements to the future building. The conceptual relevant parts of the restrictions prescribe
e.g. room and area sizes, room equipment, access and reachability relations.

In the ConDes project (Conceptual Design) at Aachen University of Technology we
elaborate new concepts for tool support within the early phase of architectural design. We
therefore develop a conceptual CAD tool as an extension of the industrial CAD tool
ArchiCAD (GRAPHISOFT 2006, Kraft and Schneider 2005). Furthermore, we research how

1 Dept. of Computer Science III, Aachen, University of Technology, Aachen, Germany, Phone +49/241/80-

21314, FAX +49/241/80-22218, kraft@cs.rwth-aachen.de
2 Dept. of Computer Science 3, Aachen, University of Technology, Aachen, Germany, Phone +49/241/80-

21310, FAX +49/241/80-22218, retkowitz@cs.rwth-aachen.de

conceptually relevant knowledge can be easily formalized in a visual representation. In our
idea, the formalization has to be done by a domain expert, i.e. by an architect or a civil
engineer. Finally, we provide a way to use the defined knowledge to check a conceptual
sketch by discovering restriction violations.

This paper is structured as follows. To give the reader an idea of the ConDes project, we
firstly introduce our knowledge formalization approch, consisting of a domain ontology and
predefined design rule types. All concepts are illustrated using hospitals as example for one
class of buildings. Based on the fundamentals of our language for knowledge formalization,
we introduce the new concept of rule dependencies in the main part of the paper. The
provided tool support gives an idea about the implementation. Finally, we discuss related
work and finish with a conclusion.

CONCEPTUAL DESIGN SUPPORT
In our approach, the support of conceptual architectural design is based on formalized
knowledge which is represented by a set of design rules. These design rules impose certain
restrictions on the future building and thus define a special class of buildings, namely the
class of buildings that conform to the specified rules. The rules regarded in our case are of
conceptual nature, i.e. they cover aspects like the internal organization of a building, e.g. the
equipment and arrangement of rooms, the aggregation of rooms to cohesive areas, or the
allowed respectively restricted traffic flow inside a building. Constructive details of the
future building remain unconsidered in the conceptual phase as they are worked out in the
later phases of the design process. The architect is supported by our tools in checking
conceptual sketches of buildings against the specified design knowledge. This way the
architect can find out whether there are any rule violations with respect to the requirements
for the corresponding building class. In this paper we focus on the knowledge formalization
part, especially on dependencies between individual design rules contained in a knowledge
specification.

KNOWLEDGE FORMALIZATION
The formalized knowledge is not fixed inside our tool but instead the formalization is done
dynamically at tool runtime by a domain expert, i.e. an architect or civil engineer with
expertise in a special domain. In a static approach, all the relevant domain knowledge would
have to be specified by the tool developers, which is neither feasible nor desirable. There are
uncountable aspects that might be relevant in the design of a special class of buildings.
Therefore it is not possible to take all these aspects into account at tool development time.
Instead the specific domain knowledge has to be specified by domain experts as it is needed.
In our approach the knowledge specification comprises two parts. The first part is the domain
ontology. The domain ontology is used by the knowledge engineer to define the basic
concepts that are needed to specify requirements of a class of buildings. The second part of
the knowledge specification is a set of design rules. As already stated above, the design rules
constitute the conceptual relevant knowledge that defines the restrictions that have to be
obeyed in building designs of the respective class of buildings.

 2

The structure of the domain ontology is predetermined by three basic elements, which
can be further refined by the knowledge engineer:

• Semantic objects represent the conceptually relevant functional entities for the
knowledge definition and the conceptual design,

• Attributes define properties of semantic objects in a conceptual design,

• Relations describe connections between semantic objects in a conceptual design.

Figure 1: Definition of semantic objects in an example ontology

In Figure 1 an example design ontology is depicted. The knowledge engineer is supported in
the definition of an ontology by several predefined semantic objects that are specific to the
architectural domain, but still general and not related to a special class of building. These
predefined concepts are building site, building, storey, area, room, and section. In the
example of Figure 1 we can see the predefined concepts room and area. These are
specialized by semantic objects that are specific to a certain class of buildings, in this case
the class of hospitals.

After defining the domain ontology, the knowledge engineer proceeds with the
formalization of design rules for the respective class of buildings. For this purpose, different
types of design rules are offered by our tool. The most fundamental ones are attribute rules,
relations rules, and cardinality rules:

• Attribute rules demand or forbid a certain property of semantic objects in a
conceptual design, e.g. a size restriction or the demand respectively the forbiddance
of certain equipment.

• Relation rules demand or forbid a certain connection between semantic objects, e.g.
the access between two rooms.

• Cardinality rules restrict the number of occurrences of semantic objects in the
building design.

There are several further rule types like aggregation rules, complex path rules, etc.
Additionally we support advanced concepts like multiplicity restrictions, complex and
runtime dynamic expressions, etc. These advanced rule types and concepts are beyond the
scope of this paper. For further details we refer to (Kraft and Wilhelms 2004; Kraft and
Wilhelms 2005).

 3

min = 10
max = *

AttrRule

Figure 2: Example attribute and relation rule

In Figure 2 an example for an attribute rule and a relation rule is depicted. The upper part of
the figure represents an attribute rule that demands a surface area for one-bed rooms of at
least 10 sqm. The lower part represents a relation rule that demands a view connection
between corridors and patient rooms.

Figure 3: Example context relation rule

Figure 3 shows an example for a context relation rule. This rule type is an ordinary relation
rule, but it is only evaluated when the concerned semantic object of the relation rule is
aggregated within a semantic object of the specified type. In the above example, a view
connection from nurses’ stations in a paediatric department to a patient room is demanded.

CONSISTENCY ANALYSES OF CONCEPTUAL SKETCHES
To support the user in specifying an ontology, formalizing design rules, and creating a
conceptual design we developed graph-based tools using the graph-rewriting system
PROGRES (Schürr 1991) and the UPGRADE framework (Böhlen et. al. 2002). The
operations to build up ontologies, design rules, and conceptual designs are implemented
using graph-transformations that produce the respective nodes and edges in the run-time
graph. The UPGRADE framework is used to provide an adequate visual representation and a
user-friendly interface.

The tools used by a knowledge engineer to formalize conceptual knowledge are called
Domain Ontology Editor and Domain Knowledge Editor. These tools allow the user to
specify the required ontology concepts for a certain domain and to define respective design
rules. The architect uses the Design Editor to create a conceptual sketch. The design editor is
a graph-based CAD tool that allows for creating instances of semantic objects from the
ontology, to assign properties to these instances and to define relations between them. Both
parts, the conceptual design part and the domain knowledge part, can be checked
automatically by the tools. This functionality is implemented using PROGRES graph

 4

transformations. That way, an architect can perform design checks on conceptual sketches
and validate a sketch with regard to its conformity to the specified domain knowledge.

Figure 4: Consistency Analyses between a conceptual design and domain knowledge

Figure 4 shows an example scenario for consistency analyses between conceptual knowledge
and a conceptual sketch. On the left side of the figure, an ontology and some rules are
illustrated. A rough sketch of a conceptual design is depicted on the right side of the figure.
One can see several areas, represented by blue cuboids. Some of them – in this case the area-
objects – contain further functional entities like rooms. The interrelationships between these
elements are represented by differently colored arrows. After performing the design checks,
the user is informed about possible rule violations in the conceptual design. Inconsistencies
between a conceptual sketch and the formalized knowledge are visualized by notifications
and error messages. Since we do not intend to narrow the creativity of architects when
designing new buildings, we do not force the architect to solve all the inconsistencies. How
to react on notifications is up to the architect, who can still decide whether a notification can
be neglected or has to be solved at all costs.

RULE DEPENCIES

Although the expressiveness of the visual language already reached a comprehensive range, a
large part of conceptually relevant knowledge could not be considered, because a lot of
existing design rules did not only concern one semantic object in an atomic way. Many
design rules are only valid under certain circumstances, others are grouped, so that all of
them or just one have to be valid at the same time.

To bridge this gap, we introduced the concept of rule dependencies interrelating design
rules. The basic concepts of the visual language, i.e. attribute rules, relation rules and
cardinality rules, as well as the extended concepts like inheritance, aggregation and runtime-
dynamic expressions are combined and interrelated with operators of Boolean and
propositional logic (van Dalen 1997).

In the following, we will describe – considering some examples – the new elements of
our visual language for knowledge formalization. We therefore start introducing the use of
the unary operators all and exist and continue with the binary operators and, or and implies.
The formal semantics does not differ from the common semantics of the logical operators.
However their appliance in the field of knowledge formalization for conceptual design

 5

strongly improves the expressiveness of the visual language, especially in combination with
the existing design rules. The usability of the knowledge formalization approach by a
knowledge engineer is still presevered. The tool support is presented in the next section.

The formal concepts of rule dependencies in visual knowledge formalization are based on
propositional logic. The common unary operators constitute the first extension. Until now,
each rule was, apart from the context restriction (ref. Figure 3), valid for all concerned
semantic objects within a conceptual building sketch. Related to the propositional logic, the
design rules were implicitly all-quantified. Looking at the effective conceptual knowledge,
often restrictions or requirements are demanded that can already be fulfilled by one single
building element. Therefore, we introduced new concepts to allow an explicit quantification
of design rules. An all-rule allows defining that design rules have to be valid for all
occurrences of the corresponding semantic object. In case of atomic and not further
interrelated design rules, the semantics of the all-rule corresponds to that one of the existing
design rules. As we see later, in more complex composed design rules, the all-rule allows an
explicit linking to one certain semantic object. The semantics of the exist-rule differs. Here,
the design rule is already fulfilled if at least one of the concerned semantic objects in a
conceptual design meets the demands.

Figure 5: Boolean Attribute Rule with exist qantification

In Figure 5, a Boolean attribute rule demanding a fire drencher to be installed for any
room is depicted, further qualified by an exist-rule. In the object-oriented domain ontology
(ref. Figure 1) the semantic object Room is the root class. Thus, the attribute rule is implicitly
valid for all instances of all subclasses of the semantic object Room. In a conceptual sketch,
all rooms are demanded to have a fire drencher installed. The exist-rule changes the
semantics of the design rules so that it is already fulfilled if at least one room in the
conceptual sketch has the fire drencher installed. Again, because of the object-oriented
domain ontology, the design rule is fulfilled independently from the room’s type.

To further extend the expressiveness, we introduced the possibility to relate two design
rules with a subset of the binary Boolean operators. Until now, all defined design rules had to
be valid at the same time, i.e. there was no possibility to define alternatives or preconditions.
Using the and-operator, one can now explicitly define a group of design rules, which have to
be all valid at the same time. In contrast, the or-operator allows defining a set of design rules
from which at least one has to be fulfilled. Finally, the implies-operator offers the possibility
to express a precondition which has to be fulfilled before a design rules becomes effective,
i.e. the design rule is only evaluated if the precondition holds.

In Figure 6 an example of a complex design rule, composed of two simple relation rules
interrelated by an implies-operator, is depicted. The first relation rule expresses the
forbiddance of an access between the toilet and the patient room. This one serves as
precondition (assumption), i.e. only if this rule is fulfilled, the second design rule

 6

(conclusion) is effective. The second relation rule demands access between the toilet and a
vestibule. All together, the complex design in rule Figure 6 expresses that if the toilet has no
access to the patient room, it has to have an access to a vestibule. The design rule is part of
the German law, regulating the construction of hospitals (KhBauVO §29).

Figure 6: Implies rule with precondition

Of course, the new concepts of unary and binary operators to interrelate design rules can
also be combined and nested. The formal semantics of the Boolean operators are the same as
usual. Therefore the consistency analysis checking the complex design rules inductively
interprets each design rule and afterwards its context. All existing functionality to check the
atomic design rules is used unmodified. The evaluation of rule dependencies only operates on
their results, i.e. if they are fulfilled or not. Therefore, arbitrarily nested complex design rules
are (theoretically) possible.

Figure 7: Complex design rule with all-quantification and and-operator

An example of a combination of design rules by operators and quantifiers is depicted in
Figure 7. The complex rule is built-up from two context relation rules (ref. Figure 3), that
demand a possibility to provide the view from the corridor and the nurses’ station into the
patient room. Because it is sufficient that one of the design rules is fulfilled, they are
interrelated by an or-rule. Furthermore, for all patient rooms inside the conceptual building
sketch one of these view relations has to be existent. This fact is expressed by the all-rule.

 7

TOOL SUPPORT

The newly introduced concepts of dependencies between the existing elements of the visual
language for knowledge formalization are fully implemented. Furthermore, the semantics of
the consistency analyses checking a graph-based conceptual sketch against the defined
knowledge is formally defined (Kraft and Retkowitz 2005) and implemented (Kraft and
Retkowitz 2006). We use the graph-rewriting system PROGRES to specify a static graph
schema and graph transformations to describe the dynamic aspects of a purely graph-based
programm. The UPGRADE framework allows for generating visual graph-based tools which
can be extended to the needs of a certain application domain. The tools PROGRES and
UPGRADE are developed within a different project at our department. The complete tool
construction process is described in (Böhlen et. al. 2002).

The Domain Knowledge Editor is the tool used by the knowledge engineer to input his
domain knowledge. The provided tool support, using the basic elements of the visual
language, has already been demonstrated and described in further papers (Kraft and
Wilhelms 2005). These atomic design rules were defined within the so called Object-Based
View. For adequately inserting and arranging simple and nested rule dependencies, a new
view window called Rule-Based View was developed. The knowledge engineer uses this
editor window to relate design rules with the introduced logical operators. A layout
algorithm, optimized for tree structures, arranges the set of complex design rules in a consise
matter. Additionally, a table summarizes all top-level design rules in a textual form, together
with all associated documentation.

Figure 8: Screenshot displaying rule dependencies and atomic design rules

 8

In Figure 8 two overlapping screenshots of our graph-based visual tools for knowledge
formalization are depicted. In the background, the Object-Based View is depicted which
allows to create and display atomic design rules. The term object-based indicates that all
rules are grouped with respect to their concerned semantic object. Furthermore, all inherited
design rules are visualized in a concise matter. None of the design rules depicted in this
screenshot is part of a complex design rule, i.e. they are always effective. The design rules
for the patient room e.g. demand, as previously introduced (ref. Figure 2), a sanitary
installation, a minimum width and access to the corridor.

The second screenshot in Figure 8 depicts the Rule-Based View of the Domain
Knowledge Editor. This new view-window allows for interrelating atomic and already
interrelated design rules. The three previously introduced design rules are depicted in the
screenshots, each graph node represents an atomic design rule or an operator, respectively.

To define and modify the domain ontology (ref. Figure 1), another visual tool, the
Domain Ontology Editor exists. Furthermore, the visual tool Design Graph Editor allows for
developing conceptual sketches and checking them against the defined knowledge.

RELATED WORK
There are several projects that concern the support of the early phase of the architectural
design process. In (Gero 1990) the different semantics of the term design are discussed. It
describes the product of the architects work on the one hand, and the process of developing
the product on the other hand. We use the term conceptual design to describe the design
process, and call the corresponding result a conceptual sketch. Christopher Alexander
describes a way to define architectural design patterns (Alexander et al. 1977). Although
design patterns are extensively used in computer sciences, in architectural design this
approach has never been formalized, implemented and used. The SEED system (Flemming
1994) provides support for the early phase in architectural building design. In contrast to our
approach, the SEED system focuses on the generation of sketches and not on an interactive
design support. The importance of knowledge processing for architectural design is
comprehensively discussed in (Coyne et al. 1990). In (Schmitt 1993), different new
paradigms for a conceptual design support are proposed. Among other things, the top-down
decomposition and modularization of sketches and the use of object-orientation for
architectural design are introduced. Even if the work is neither implemented nor integrated
into a CAD tool, the ideas are fundamental for our research.

In (Mora et al 2004) a framework is presented that supports civil engineers while finding
the conceptual design of building structures. Different integration layers between the building
structure and the conceptual design are discussed and an interactive approach is motivated. In
contrast to this approach, we focus on the conceptual design in architectural design. In
(Meniru et al. 2002) a tool is presented that works like a CAD system but additionally can
identify the functional entities in a CAD sketch. Furthermore it is considered to check a
sketch against knowledge. However, the tool is not implemented yet and no idea for the
formalization and use of architectural knowledge is presented. Extracting all relevant
information, concerning legal restrictions, from a 3D CAD model is the aim in (Sulaiman et
al. 2002). This information should be used to check the model. However, none of that is
implemented and it is not explained how the knowledge should be structured.

 9

In (Steinmann 1997), an object-oriented approach for modeling architectural domains is
presented. These models are intended to organize the whole design process. Therefore,
Steinmann describes a generic process model for conceptual design. Like in our approach,
Steinmann proposes a multilayered model concept for implementing model-based CAD
tools. The generic process model is subdivided into several different phases. To each of these
phases an atomic design action is assigned. The idea is to define the functionality of phase-
specific tools this way. The atomic design actions are classified into control actions,
synthesis actions, analysis actions, evaluation actions, and communication actions. Each of
these action classes constitutes one phase, for which specific tools are to be built. We follow
a different approach in our project. Our tools integrate the functionalities for conceptual
design and are not split up into multiple phase-specific tools. We do not subdivide the
conceptual design process into predefined sub-processes, because this would impose too
strict limitations on the creative work of an architect in the early design phase.

In (Szuba 2005), another process model for conceptual design is proposed. At first,
functional requirements and the structure of design elements are identified. For this reason,
use cases and functional graphs are defined. The goal is to derive a prototypical design
automatically from these use cases and functional graphs. In contrast to that, our tools do not
generate conceptual designs automatically, because in our intention the architect’s creative
and artistic work should be supported by intelligent tools rather than be replaced, which in
our view is not even possible in realistic complex scenarios.

CONCLUSIONS

In this paper, we described a knowledge-based support for the early phase of architectural
design, called conceptual design. The main part of the paper is concerned with a major
extension of our visual language for knowledge formalization. By providing the possibility to
express interrelationships between design rules, the expressiveness of our knowledge
formalization approach has been augmented.

The rule based definition and processing of design rules has contributed to the usability
of our knowledge formalization approach. A survey of the German texts of law, design
manuals and further sources has shown that a reasonable part of the conceptually relevant
knowledge can be formalized using our visual language. Thus the expressiveness of our
visual language for knowledge formalization matches the requirement.

With respect to the rule dependencies, it turned out that too deeply nested design rules
sometimes become difficult for humans to understand. Even when the semantics of these
constructs are clearly defined, they can be hard to retrace by humans. In practice however,
most of the currently effective conceptual knowledge is built-up less complicated. Using two
or three encapsulations of design rules, even the more complex regulations can be
formalized. It also turned out that the visual definition of design rules is easy to understand
and clearly readable if the knowledge base is not too big. Instead, if there are too many
design rules displayed at the same time, the navigation through the defined knowledge
becomes difficult.

Currently we are developing a support for different knowledge modules. Using them,
base knowledge which has been formalized once can be used by different knowledge

 10

engineers to define more specialized knowledge. These knowledge modules can be
developed separately, reused and integrated to a complex knowledge base. We expect that
sectioning different knowledge modules will also solve the problem of navigating through
large knowledge bases and improve the readability of the formalized knowledge.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of this project by the German Research
Foundation (DFG) within the scope of the priority program ”Network-based Co-operative
Planning Processes In Structural Engineering” (Meissner et al. 2006).

REFERENCES
Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language: Towns,

Buildings, Construction. Oxford University Press.
Böhlen, B., Jäger, D., Schleicher, A. and Westfechtel, B. (2002). “UPGRADE: A Framework

for Building Graph-Based Interactive Tools”. Proc. 1st Intl. Conf. on Graph
Transformation (ICGT’02), LNCS 2505, pp. 270–285. Springer.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and Gero, J. S. (1990).
Knowledge-Based Design Systems. Addison Wesley.

Flemming, U. (1994). “Case-Based Design in the SEED System”. Knowledge-Based
Computer-Aided Architectural Design. pp. 69–91. Elsevier.

Gero, J. S. (1990). “Design Prototypes: A Knowledge Representation Schema for Design”.
AI Magazin, 11(4), pp. 26–36. AAAI Publisher.

GRAPHISOFT. (2006). GRAPHISOFT Homepage. www.graphisoft.com.
Kraft, B. and Retkowitz, D. (2005). „Operationale Semantikdefinition für konzeptuelles

Regelwissen“. Proc. Forum Bauinformatik 2005, pp. 173–182. Department
Bauinformatik BTU Cottbus, Germany.

Kraft, B. and Retkowitz, D. (2006). “Graph Transformations for Dynamic Knowledge
Processing”. Proc. of the 2006 Intl. Conf. on System Sciences (HICSS 2006), pp. 1–10.
IEEE Press.

Kraft, B. and Schneider, G. (2005). “Semantic Roomobjects for Conceptual Design Support”.
Proc. of the 11th Intl. Conf. on Computer Aided Architectural Design Futures (CAAD
Futures 2005), pp. 207–216. Springer.

Kraft, B. and Wilhelms, N. (2004). “Interactive Distributed Knowledge Support for
Conceptual Building Design”. Proc. of the 10th Intl. Conf. on Computing in Civil and
Building Engineering (ICCCBE-X), pp. 1-14. ASCE.

Kraft, B. and Wilhelms, N. (2005). „Visual Knowledge Specification for Conceptual
Design“. Proc. of the 2005 Intl. Conf. on Computing in Civil Engineering (ICCC 2005),
pp. 1–14. ASCE.

Meissner et al. (2006). “DFG - Priority Program 1103 Network-based Co-operative Planning
Processes”. www.dfg-spp1103.de.

Meniru, K., Bedard, C. and Rivard, H. (2002). “Early Building Design using Computers”.
Proc. of the Conf. on Distributing Knowledge in Building (CIB w78 2002). Aarhaus
School of Architecture.

 11

Mora, R., Bedard, C., and Rivard, H. (2004) ”A Framework for Computer-Aided Conceptual
Design of Building Structures.” Proc. of the 10th Intl. Conf. on Computing in Civil and
Building Engineering (ICCCBE-X). Bauhaus-University Weimar.

Schmitt, G. (1993). Architectura et Machina – Computer Aided Architecural Design und
Virtuelle Architektur. Vieweg.

Schürr, A. (1991). Operationales Spezifizieren mit programmierten Graphersetzungs-
systemen. Dissertation. Aachen, University of Technology.

Steinmann, F. (1997). Modellbildung und computergestütztes Modellieren in frühen Phasen
des architektonischen Entwurfs. Dissertation. Bauhaus-University Weimar.

Sulaiman, M. J., Weng, N. K., Theng, C. D. and Berdu, Z. (2002). “Intelligent CAD Checker
For Building Plan Approval”. Proc. of the Conf. on Distributing Knowledge in Building
(CIB w78 2002). Denmark. Aarhaus School of Architecture.

Szuba, J. (2005). Graphs and Graph Transformations in Design in Engineering. Dissertation.
Darmstadt University of Technology.

van Dalen, D. (1997). Logic and Structure. Springer.

 12

	ABSTRACT
	KEY WORDS
	INTRODUCTION
	CONCEPTUAL DESIGN SUPPORT
	Knowledge Formalization
	Consistency Analyses of conceptual Sketches

	RULE DEPENCIES
	TOOL SUPPORT
	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	The authors gratefully acknowledge the support of this project by the German Research Foundation (DFG) within the scope of the priority program ”Network-based Co-operative Planning Processes In Structural Engineering” (Meissner et al. 2006).
	REFERENCES

	Text1: Proc. of the 11th Intl. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI)
ed. Hugues Rivard, Montreal, Canada, Seite 1-12, ACSE (CD-ROM), 2006

