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Abstract. Safety and reliability of structures may be assessed indirectly by stress distributions.
Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety
factors directly in the loading space. These theorems may be used for a direct definition of the
limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the
limit state function is obtained from a nonlinear optimization problem. This direct approach
reduces considerably the necessary knowledge of uncertain technological input data, the com-
puting time, and the numerical error. Moreover, the direct way leads to highly effective and
precise reliability analyses. The theorems are implemented into a general purpose FEM pro-
gram in a way capable of large-scale analysis.
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1 Introduction

The elastic strain range of pressure vessels and piping is rather small already in normal oper-
ation. Severe thermal loads or other residual stresses may push stress further into the plastic
range locally. Therefore, all relevant design codes consider plastic deformation of ductile mate-
rials using the concepts of limit and shakedown analysis for design-by-formulae (DBF) or for
stress assessment. This current design practice rests on simplifying assumptions for geometry,
loading and constitutive equation.

A first improvement is achieved by inelastic finite element analyses. But stress assessment pro-
duces more questions than it can answer [6]. As a second more direct option the design-by-
analysis (DBA) route of the new European unfired pressure vessels standard proposes the use
of the direct methods of limit and shakedown analysis to compute the load carrying capacity
[17]. Plastic design cannot be based on stress assessment, because there is no stress to bound
the plastic range from failure domains. DBA considers the characteristic development of plastic
strains towards structural failure:

� Instantaneous collapse by unrestricted plastic flow at limit load (gross plastic deforma-
tion).

� Incremental collapse by accumulation of plastic deformations over subsequent load cycles
(ratchetting, progressive plastic deformation).

� Low Cycle Fatigue (LCF) by alternating plasticity.

� Plastic instability of slender compression members (buckling).

Limit and shakedown analyses deal directly with the first three of these failure evolutions, which
are iconized in the Bree-Diagram (see Fig. 1 and [3]). Although being simplifying methods,
they are exact theories of classic plasticity, which do not contain any restrictions or assumptions
other than sufficient ductility of the material. The direct limit and shakedown analysis approach
computes the load carrying capacity or the safety factor independently of the details of material
behaviour and of the generally unknown load history [7], [13], [8].

Design and assessment of engineering structures imply decision making under uncertainty of
the actual load carrying capacity of a structure. Uncertainty may originate from random fluctu-
ations of significant physical properties, from limited information and from model idealizations
of unknown credibility. Structural reliability analysis deals with all these uncertainties in a ra-
tional way. Direct DBA provides a well-defined limit state function for reliability analysis. In
a finite element approximation this definition of a limit state may be combined with first order
reliability analysis (FORM) for highly effective and robust computations of low failure proba-
bilities. A first theoretical basis of the probabilistic approach is based on the static theorems of
limit and shakedown analysis.
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Figure 1: Bree-Diagram of thin wall tube

2 Reliability analysis

The behaviour of a structure is influenced by various typically uncertain parameters (loading
type, loading magnitude, dimensions, material data,. . . ). All parameters are described by ran-
dom variables collected in the vector of basis-variables

� � �������	��
��
�������
. We will restrict

ourselves to those basis–variables
���

which could be described by densities � � , such that the
joint density � ��� � �
�
�
��������� exists and the joint distribution function � ����� is given by

� ��� �!� "#��� �%$ � � �
�
�
���	�&� $ �����
(1)

� '
()
*,+.-
-
-

'0/)
*1+ � ��2 � �
�
���0�	23���3452 � �
�
�64523��� (2)

The deterministic safety margin 798;: is based on the comparison of a structural resistance 7
and loading : (which is usually a local stress at a hot spot or in a representative cross-section).
With 7 � : function of

�
the structure fails for any realization with non-positive limit state
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function ���������
	���
�� (3)

The limit state ����������� defines the limit state surface ��� which separates the failure region �
from the safe region. The failure probability ��� is the probability that ������� is non-positive, i.e.

� � � � �����������
����� �!#"%$ ��&'�)(*&�� (4)

Usually, it is not possible to calculate �+� analytically. The computational effort of straight for-
ward MCS increases quickly with reliability. Therefore any effective analysis is based on First
and Second Order Reliability Methods [5] (FORM/SORM).

The basis-variables � are transformed into standard normal variables , , such that �.- is the
corresponding limit state function in , –space. In FORM, a linear approximation �*/ of the
failure region � is generated, such that the limit state surface ��� is approximated in a point 021
by

��� �43 065587:9 0<;>= �?�A@CB (5)

with D 7 D �FE . If the limit state function is linear in the , –space, then the failure probability �G�
is exactly given by H � � H � 7I9 , �J� = �A� KL�M� = � (6)

where K is the Gauss distribution function. The failure probability �2� depends only on the
safety index = . In limit analysis the limit state function is linear in strength and loading. This
favourable situation is preserved in , –space, if both are normally distributed.

The design point 0�N is the solution of the optimization problem

= ��OQPSRUT 0 9 0VD �*-8� 0 ���?��WX� (7)

Then � � may be computed from the minimum distance of the limit state surface ��� from
origin in this , –space. The design point is the point 0GN on ��� , which is the closest to the
origin. Failure is most probable for data near the design point. The limit state function �Y-Z� , � is
approximated by its linear Taylor series of a point 0 1C[ ��� to generate the iterative procedure

0'\M]_^ � ` -.�*-X� 0'\ �D ` - � - � 0 \ � Dbadc 0 9 \ ` -e�f-Z� 0'\ ���g�f-X� 0�\ �ihj� (8)

as a search algorithm for 0 N . This poses a nonlinear optimization problem which needs the
gradient of �*-�� 0 � . The derivates are determined by

` -e�f-X� 0 ��� ` -e����&A��� `lk ����&A� ` -m&j� (9)

If the deterministic structural problem is solved in a step-by-step iterative FEM analysis this
gradient information is obtained from a sensitivity analysis, which consumes much computing
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time. Extension of this type of reliability analysis to plastic structural failure faces several al-
ready mentioned problems which are not present in linear elastic analysis: local stress has no
direct relevance to plastic failure and structural behaviour becomes load-path dependent. No
straight-forward ������� is obtained from standard incremental analysis if failure is assumed by
plastic collapse, by ratcheting or by plastic shakedown (LCF). It is even more difficult to obtain
the gradient of ������� . Therefore, as an additional draw-back MCS (improved by importance
sampling or by some other means of variance reduction) is used in connection with incremental
nonlinear reliability analyses.

In FEM, limit and shakedown analysis are formulated as optimization problems. For these op-
timization problems the Lagrange multipliers of the solution are the strength and the load com-
ponents of the gradient vector �	� ����
�� . Thus, no sensitivity analysis is necessary.

3 Concepts of limit and shakedown analysis

Static theorems are formulated in terms of stress and define safe structural states by giving an
optimization problem for safe loads. The maximum safe load is the limit load avoiding collapse.
Alternatively, kinematic theorems are formulated in terms of kinematic quantities and define
unsafe structural states yielding a dual optimization problem for the minimum of limit loads.
Any admissible solution to the static or kinematic theorem is a true lower or upper bound to the
safe load, respectively. Both can be made as close as desired to the exact solution. If upper and
lower bound coincide, it could be stated that the true solution has been found.

3.1 Static or lower bound limit load analysis

The limit load factor is defined in (10) by 
������������ , where ����� ��� ����� � � and ����� ��� �!�"��� �
are the plastic limit load and the chosen reference load, respectively. Here we have supposed
that all loads (b body forces and p surface loads) are applied in a monotone and proportional
way. We look for the maximum load factor for which the structure is safe. The structure is safe
against plastic collapse if there is a stress field # such that the equilibrium equations are satisfied
and the yield condition is nowhere violated. We obtain the following maximum problem:

$&%(' 

s. t. ) � # �+* ,.-0/2143

5 /26 #7��89
 � � /:1;3 (10)

#�<=� 
>� �@? 14A�3+B
for the structure 3 , traction boundary AC3DB (with outer normal < ), yield function ) , body forces

 � � and surface loads 
 � � .

3.2 Static or lower bound shakedown analysis

The shakedown analysis starts from Melan’s lower bound theorem [10]. In the shakedown anal-
ysis the equilibrium conditions and the yield criterion for the actual stresses have to be fulfilled
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at every instant of the load history. We look for the maximum load factor for which the structure
is safe. The structure is safe against LCF or ratcheting if there is a stress field ������� such that
the equilibrium equations are satisfied and the yield condition is nowhere and at no instant �
violated. We formulate the next maximum problem:

�	��
 �
s. t. 
 ������������� ���������

� ��� �������"!$# �&%(' �����)���*� (11)
�������,+-! �/. ' �����102��34��5

for body forces �/% ' ���6� and surface loads �/. ' ����� , for all % ' ���6� , . ' ����� in a given initial load
domain 7 ' .
In the maximum problems (10) and (11), the actual stresses � and ������� are splitted into fictitious
elastic and residual stresses. The deduced problem is solved by a basis reduction technique [7],
[13], [15] in the residual stress space and by Sequential Quadratic Programming (SQP).

3.3 Pressurized pipe-junction subjected to additional bending load

The first example is a pipe-junction subjected to constant internal pressure 8 and an additional
bending force 9 . The bending force is originated by an additional weight at the end of the
nozzle operating in the shown direction.

0.5 F

(a) FEM-model (whole and part)

inner pipe radius : 22 ;	;
inner nozzle radius < 1.5 ;	;
pipe thickness = 2 ;	;
nozzle thickness > 3 ;	;
pipe length ? 250 ;	;
nozzle length @ 150 ;	;

(b) Dimensions of the pipe-junction

Figure 2: FEM-mesh and dimensions of the pipe-junction
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Because of the symmetry condition only one half of the junction (and the weight load) is
modeled. It is discretized with 924 solid 20-node hexahedron elements (PERMAS elements
HEXEC20). The simple FE-mesh with only one element across the wall thickness, the dimen-
sions and the material data of the pipe-junction are presented in Fig. 2(a) and 2(b). The material
data are yield stress ���������
	���
������ , Young’s modulus � ������������	
����
������ and Poisson
ratio � ��	 �"! .

The pipe-junction subjected only to internal pressure starts to yield at a constant pressure of# �$�%�&!��'� MPa and a numerical lower limit of the collapse pressure is obtained as
#�(*)'+ ����!��'�

MPa. The corresponding undisturbed pipe has an analytical limit pressure of
#-,(.)'+ ���
� MPa

(see [16]). This means that the junction has only a weakening effect of 6 %, such that the failure
of the large pipe dominates the failure of the pipe-junction subjected to internal pressure.

If only the bending force / is acting, simple beam theory predicts first yield at / �0���
�213�"4�� .
The analytical limit load factor of a tube is

5 (.)'+ � ��6
!
7 � �98;: ,=<,=>�?A@�98;: ,=<,=>�?AB � (12)

With inner and outer tube radius C ) � C and C&D � C$EGF for the nozzle 5 (*)"+ �H���"6��
� and the
limit load is / (.)'+ �I�&J�	��'�3� . The numerical limit load is / (*)'+ �K��1�� �"� . The difference could
be addressed to the weakening effect of the geometrical discontinuity of the pipe-junction or to
the coarse mesh.

If a constant internal pressure of 7 MPa is applied as a dead load and the bending force / is
monotonically increased, the pipe-junction starts to yield at the nozzle corner at a bending force
of / �$�MLNJ �"��� or the additional weight of 4.9 O�P . The limit load for the applied bending force
calculated by PERMAS-LISA is / (.)'+ �Q�&6�!��'63� (16.7 O3P ), such that the limit load factor is5 (*)'+ ��! �"!2L .

In shakedown analysis the bending force varies between 0 and the maximum magnitude 5 / .
The computed shakedown factor is 5SR&TU��� �"��� , such that the maximal varying bending force is
/ R&T �%�&�
! �VL�� (12.6 O�P ) (see Figure 3). The shakedown calculation becomes stationary after a
few iteration steps. The shakedown pressure is twice the elastic pressure in good correspondence
with an analytic solution see [7].

4 Implementation and test of reliability analysis

The present contribution uses lower bound theorems of limit and shakedown load to define a
limit state function P :XW ? for reliability analysis by FORM. Y and Z are respectively defined
by the limit or shakedown load factor and the applied load factor. The commercial general pur-
pose FEM code PERMAS [11] is used for discretization. The resulting large-scale optimization
problem is transferred to a relatively small one by a basis reduction method [15], [13].

The solution of the limit load or of shakedown analysis (10) is a linear function of the failure
stress � � or �\[ if a homogeneous material distribution is assumed. If the structure has a het-
erogeneous material distribution we obtain in different Gaussian points ] ) eventually different
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Figure 3: Interaction diagram of the pipe-junction under constant pressure and varying bending force

failure stresses ���������
	 or �����
���
	 . Then the limit load is no more a linear function of the failure
stresses. In this case the derivates of the limit state function may not be computed directly from
the linear function of the failure stresses. The Lagrange multipliers of the optimization problem
(10) yield the gradient information of � ����	 without any extra computation. This is derived from
a distribution theory of ���������
	 as the right hand side of (10) see [7].

It is most important for the analysis under uncertainty that limit and shakedown analyses are
based on a minimum of information concerning the constitutive equations and the load history.
This reduces the costs of the collection of statistical data and the need to introduce stochastic
models to compensate the lack of data. Due to the so-called tail sensitivity problem there is
generally insufficient data to analyze structures of high reliability which are e.g. employed in
nuclear reactor technology. Probabilistic limit and shakedown analyses were pioneered in Italy
[1]. Further work seemed to remain restricted to stochastic limit analysis of frames based on
linear programming [2]. The present contribution extends plastic reliability analysis towards
nonlinear programming, shakedown, and a general purpose large-scale FEM approach.

Typical structural components demonstrate that reliability analysis can be performed for realis-
tic model sizes at very low computing times compared to incremental analyses. Note, that the
latter cannot be used in a quantitative comparison because incremental nonlinear analysis fails
to give a sharp evidence for plastic failure.
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Figure 4: Flowchart of the probabilistic limit load analysis

4.1 Reliability calculations for limit analysis

In case of a square plate of length
�

with a hole of diameter � (see Figure 5) and ��� �����	��

subjected to uniaxial tension the exact limit load is given by � ��
���� ��� ������� with the yield
stress

���
(see [4], [14]).

Thus the limit load � depends linearly of the realization
� �

of the yield stress basic variable X.
The load � is a homogeneous uniaxial tension on one side of the plate. The magnitude of the
tension is the second basic variable Y. The limit load ��� of every realization � of Y is

� � 
 � �!�"
#�$� ��� �%� � � (13)

The limit state function is defined by
& 
('*) � �!� � � � � �"
#�$� ��� ��� � �+',�

(14)

As examples for non-linear distributions, log-normally distributed loads X and failure stresses Y
are investigated. The density of log-normally distributed random variables with the parameters- )/.

is given by

0 
('1��� �
'12 
43*.6587

�:9<;>=@?A
(' � - �(B 5 � 
@. 5 , with -DC �	)/'FEG�	�
(15)
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Figure 5: Finite element mesh of plate with a hole

The log-normal distribution has the expectation � and the variance ��������	��

��������� ������� � � � Var ��
������ � ��� � ����� ���! � (16)

For the comparison of the different random distributions the same expectation ��"$# % and vari-
ance �&�"$# % must be chosen, such that the values of �'"$# % and � "$# % have to be transformed to the
parameters � "$# % and � "$# % :

�("$# %)�*��"$# %+� � � �"$# % �,� and � "$# %)� log

- � �"$# %� �"$# %
.  0/	1 (17)

If X and Y are log-normally distributed the random variables 2
 = log (X) and 23 = log (Y) are
normally distributed with means 2��"$# %�� log �4�5"$# %$� and deviations 2� "$# %�� � "$# % , such that the
following transformation holds687:9 �<;��=� >?" 2� " . 2��"@��>?" � " . log �4�5":� (18)

687:9 �4AB�=� >?% 2� % . 2��%C�*>?% � % . log �<�(%$� (19)

The transformation from X-space to U-space is nonlinear. The failure domain D is given by

D �FE �  G�IH �:J � 3
 K  ML ��N log �  )�IH �:J � . log (Y) � log (X) KPORQ (20)

with the limit state functionS ��
 � 3 �T� log �  )�IH �:J � . log (Y) � log (X) 1 (21)
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With the transformation we derive

���������
	���
���������
�������� log ����� �"!$#�	%� log �'&(�)	%� log �*&+�,	-� (22)

such that . is given by

. � log ������� �"!$#�	/&+�,	%� log �*&+�,	0 �$1� �2�31� (23)

In Table 1 it is shown that the results of the reliability analysis correspond very well with the
analytical values.

Limit load analysis 465 ��798:��; 5 , 4�< ��768=��; <; 5 !); < >@? (num.) >A? (anal.) >B? (anal.-3%)
0.3 9.593E-12 1.790E-12 8.091E-12
0.4 1.409E-06 4.473E-07 1.316E-06
0.5 1.009E-03 4.315E-04 9.172E-04
0.6 3.485E-02 2.071E-02 3.412E-02
0.7 2.409E-01 1.719E-01 2.324E-01
0.8 5.936E-01 5.000E-01 5.854E-01
0.9 8.575E-01 7.981E-01 8.533E-01
1.0 9.648E-01 9.431E-01 9.638E-01
1.1 9.935E-01 9.880E-01 9.933E-01
1.2 9.990E-01 9.979E-01 9.989E-01
1.3 9.998E-01 9.997E-01 9.998E-01
1.4 9.999E-01 9.999E-01 9.999E-01
1.5 9.999E-01 9.999E-01 9.999E-01

Table 1: Numerical and analytical results for C95'D <%E�FHGJI-K�5'D < (Log-normal distributions)

4.2 Reliability calculations for shakedown analysis

In the shakedown analysis a convex load domain L is analyzed [9]. The tension M cycles between
zero and a maximal magnitude of M6N . Only the amplitudes but not the uncertain full load history
enters the solution.

7�O M O PRQ M6N � 7�OSQTOU�V8 (24)

In the first simple reliability analysis the maximal magnitude M N is a random variable, but the
minimum magnitude zero is held constant. the random variables are both normally distributed.
The results of the FORM calculation are compared with an analytical approximation of the
shakedown load in Table 2. For comparison the reliability analysis of limit analysis for normally
distributed variable is also shown in Table 2.

Because of the local failure of the plate in the ligament points of the hole, the shakedown factorP%WYX corresponding to the initial yield load M9Z is equal to 2 (see [7], [18]). Therefore, from the
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Limit load analysis Shakedown analysis��������� �
	 (num.) ��	 (anal.) �
	 (anal.-2%) �����
��� ��	 (num.) ��	 (anal.)
0.2 2.643E-13 1.718E-13 2.640E-13 0.2 1.943E-10 1.943E-10
0.3 3.843E-09 2.426E-09 4.063E-09 0.3 5.964E-06 5.963E-06
0.4 6.112E-06 3.872E-06 6.416E-06 0.4 3.877E-03 3.877E-03
0.5 1.093E-03 7.364E-04 1.128E-03 0.5 1.227E-01 1.229E-01
0.6 3.049E-02 2.275E-02 3.118E-02 0.55 3.108E-01 3.111E-01
0.7 2.067E-01 1.734E-01 2.112E-01 0.59 5.000E-01 5.000E-01
0.8 5.550E-01 5.000E-01 5.567E-01 0.6 5.485E-01 5.485E-01
0.9 8.305E-01 7.969E-01 8.344E-01 0.65 7.538E-01 7.538E-01
1.0 9.544E-01 9.408E-01 9.554E-01 0.7 8.858E-01 8.858E-01
1.1 9.900E-01 9.863E-01 9.903E-01 0.8 9.828E-01 9.828E-01
1.2 9.981E-01 9.972E-01 9.981E-01 0.9 9.980E-01 9.980E-01
1.3 9.996E-01 9.995E-01 9.996E-01 1.0 9.997E-01 9.997E-01
1.4 9.999E-01 9.999E-01 9.999E-01 1.1 9.999E-01 9.999E-01

Table 2: Comparison of numerical and analytical results for � ��� ��������������� � (Normal distributions)

yield load ��� �"!�#%$'&)(�&'*�+ resulting from the deterministic FEM-computation follows that the
FEM–approximation of the shakedown load is !,#.-0/'&213*2+ . The implemented shakedown analysis
with the basis reduction technique gives very good results for the reliability analysis of the plate
(listed in Table 2), because the deterministic shakedown factor 2 is reached in 3 to 5 steps nearly
identically.

Additionally, the shakedown reliability analysis needs less computing time than the limit load
reliability analysis. The results of the shakedown reliability analysis show a decrease in reliabil-
ity in comparison with the limit load reliability results. For a load level of !,#4( ��� the reliability
decrease by 3 orders of magnitude. This means that the reliability of the structure depends very
strongly on the loading conditions, such that the assessment of the load carrying capacity has to
be done very carefully.

5 Conclusions

As limit and shakedown analysis deals directly with the failure modes, the results give better
insight for the designer into the structural behaviour under all possible mechanical or thermal
actions. These direct methods of plastic structural failure analysis provide direct definitions of
limit state functions. In combination with FEM and with FORM, low failure probabilities of
passive components are obtained with sufficient precision at low computational efforts. Sen-
sitivities need no extra FEM analysis, because the gradient of the limit state function is also
obtained as a by-product of FEM limit and shakedown analysis. The remaining numerical error
may be estimated or reduced by the additional use of upper bound theorems. Further research
is also addressed to more realistic material modeling including non-linear hardening and con-
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tinuum damage.
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