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E. Oñate, J. Oliver and A. Huerta (Eds)

A FACE-BASED SMOOTHED FINITE ELEMENT METHOD
FOR HYPERELASTIC MODELS AND TISSUE GROWTH

MINH TUẤN DƯƠNG∗,† AND MANFRED STAAT∗

∗ Aachen University of Applied Sciences Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany
e-mail: {duong, m.staat}@fh-aachen.de - Web page www.fh-aachen.de

† Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi, Vietnam
e-mail: tuan.duongminh@hust.vn - Web page www.hust.edu.vn

Key words: SFEM, FS-FEM, FEM, Hyperelastic Models, Nonlinear Problems.

Abstract. This paper presents a Face-based Smoothed Finite Element Method (FS-FEM)
using the 4-node tetrahedral elements (T4) (FS-FEM-T4) applied to nonlinear problems.
The FS-FEM can overcome and improve some existing problems which the standard Finite
Element Method using the T4 (FEM-T4) often faces, such as the well-known overly stiff
behavior, poor stress solution, and volumetric effects. The principal idea of the FS-FEM is
to formulate a strain field as a spatial average of the standard strain measure. In the field
of biomechanics, the FS-FEM is still relative new. We have implemented the FS-FEM into
the open source software Code_Aster for large scale biomedical applications. Numerical
results of the FS-FEM for linear and nonlinear problems show clearly its advantages in
improving accuracy particularly for the distorted meshes. A combination of the FS-FEM
with the growth models performed exhibits clearly good performances.

1 INTRODUCTION

The 4-node tetrahedral element can automatically be created according to the Delaunay
techniques, which are capable of producing a tetrahedral mesh for any geometry, however
complicated, such as human body and organs. If the FEM-T4 is used, then there are still
crucial shortcomings of the method for problems of solid mechanics existing such as the
well-known overly stiff behavior, poor stress solution, and volumetric locking in nearly
incompressible cases.

In order to overcome these disadvantages of using the T4, some new finite elements were
proposed. The mixed formulations (mixed-enhanced elements) can avoid such difficulties
[1, 2]. Average nodal pressure for tetrahedral elements was proposed by [3] and applied
with extensions for better handling of multiple material surfaces to surgical simulation
[4]. Nevertheless, the volumetric locking can be avoided or significantly reduced but the
performances such as accuracy are still not fully improved.
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Based on the work of Chen et al. [5] on stabilized conforming nodal integration Liu et
al. [6] introduced the Smoothed Finite Element Method (SFEM). The principal idea of
the SFEM is to formulate a strain field as a spatial average of the standard strain measure.
Specifically, four different smoothing domains created based on cells (elements), nodes,
edges, and faces are used to establish four different SFEM models: Cell-based SFEM
(CS-FEM), Node-based SFEM(NS-FEM), Edge-based SFEM(ES-FEM), and Face-based
SFEM(FS-FEM). Each of the four SFEM models has different advantages and disadvan-
tages. For heat transfer problems, the four-noded tetrahedral element was adopted [7].
The FS-FEM was used for 3D visco-elastoplastic problems [8] and employed for nonlin-
ear problems [9]. In biomechanics or biomedical applications, there is very few research
using the SFEM for biological soft tissues. The ES-FEM was applied to plate problems
(soft tissue membrane) [10]. Up to date, the FS-FEM was immersed into a complex FEM
model for fluid-structure interaction simulation of aortic valves [11]. Therefore, the SFEM
is adequate to be chosen for applications of biological soft tissue.

In this paper, the FS-FEM-T4 is presented in detail for problems raising in biomechan-
ics and biomedical engineering. A number of numerical results is presented to demonstrate
the efficiency and properties of the model. Moreover, a combination of the growth models
and the FS-FEM is made.

2 FACE-BASED SMOOTHING DOMAIN CREATION

A 3D domain Ω is discretized with ne tetrahedral elements and nn nodes such that
Ω = ∪nem=1Ωe

m and Ωe
i ∩ Ωe

j 6= ∅, i 6= j. The T4 element mesh has a total of nf = 4
faces. The virtual displacements uh(x), and the compatible strains ε = ∇su (∇s is the
symmetric part of displacement gradient) within any element can be computed as

uh(x) =

nd∑
I

NIuI = NIuI , εh(x) =

nd∑
I

BIuI = BIuI , (1)

where nd is the number of nodal variables of the element, NI is the linear shape function
matrix and BI is the standard displacement gradient matrix of the node I.
Based on the faces of elements, the smoothing strain technique [5] is applied to create
smoothing domains, such that Ω = ∪nfk=1Ωk and Ωk

i ∩ Ωk
j 6= ∅, i 6= j. The smoothing

domain Ωk associated with the face k is created by simply connecting three nodes of the
face to the centers of the adjacent elements as shown in Figure 1. The smoothed strain
on the smoothing domain Ωk associated with the face k is calculated as

ε̄ =

∫
Ωk

ε(x)Φk(x)dV =

∫
Ωk

∇su(x)Φk(x)dV, (2)

where Φk(x) is a given smoothing function which satisfies at least the unity property as∫
Ωk

Φk(x)dV = 1. (3)
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Figure 1: Smoothing domain created on interface of two neighboring elements.

The locally constant smoothing function is used as follows

Φk(x) =

{
1
V k
, x ∈ Ωk

0, x /∈ Ωk,
(4)

where the V k is the volume of the smoothing domain Ωk and is evaluated as

V k =

∫
Ωk

dV =
1

4

nksb∑
m=1

V e
(m), (5)

where nksb is the number of subsmoothing domains and is also exactly the number of
elements around the faces k (nksb = 1 for boundary and nksb = 2 for inner faces) and V e

(m)

is the volume of the mth element around the face k.
The trial function uh(x) in the FS-FEM is computed as the same as in (1) of the FEM,

which leads to the nodal force vector in the FS-FEM calculated in the similar way as in
the FEM. Substituting (1) into (2), the smoothed strain on the domain Ωk associated
with face k can be written in the following matrix form of nodal displacements:

ε̄ =
∑
I∈nkn

B̄I(xk)uI , (6)

where nkn is the total number of nodes of elements containing the common face k (nkn = 4
for boundary faces and nkn = 5 for inner faces) and B̄I(xk), which is termed the smoothed
strain matrix on the domain Ωk.

Thanks to the use of the tetrahedral elements with the linear shape functions, the
entries of the matrix Be are constants over each element, and hence the smoothed strain-
displacement matrix B̄I on the domain Ωk is numerically computed by an local assembly
process as

B̄I =
1

V k

nek∑
m=1

1

4
V e

(m)B
e
(m), (7)
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where Be
(m) is the strain-displacement matrix of the mth element attached to the face k.

If the divergence theorem is applied, the smoothed strain matrix B̄I(xk) can generally
be evaluated on the domain Ωk in an alternative way by

B̄I(xk) =
1

V k

∫
Γk

n(k)(x)NI(x)dS =


B̄I1(xk) 0 0

0 B̄I2(xk) 0
0 0 B̄I3(xk)

B̄I2(xk) B̄I1(xk) 0
0 B̄I3(xk) B̄I2(xk)

B̄I3(xk) 0 B̄I1(xk)

 , (8)

where Γk is the boundary of the smoothing domain Ωk with the volume V k, and n(k)(x)
is the outward normal vector matrix on the boundary Γk and has the form (based on
Voigt’s notation)

n(k)(x) =



n
(k)
1 0 0

0 n
(k)
2 0

0 0 n
(k)
3

n
(k)
2 n

(k)
1 0

0 n
(k)
3 n

(k)
2

n
(k)
3 0 n

(k)
1


. (9)

Theoretically, the FS-FEM also works for other types of elements, as long as a contin-
uous displacement field on the smoothing domain surface can be created.

3 FS-FEM FOR NONLINEAR ANALYSIS

In this section, the total Lagrangian formulation for the FS-FEM based on the standard
FEM is described for physically and geometrically nonlinear problems in solid mechanics.
Consider a body, which is subjected to a body force b0 on the reference configuration Ω0

and the external traction T on the boundary Γ0. By using δuh(x) =
nd∑
I

NIδuI the general

variation equation in the nonlinear FEM for the total virtual work can be evaluated as

δΠ(u, δu) = δuT ·

∫
Ω0

BTSdV −
∫
Ω0

NTb0dV −
∫
Γ0

NTT dS

 = 0. (10)

By invoking the arbitrariness of virtual nodal displacements and using load increments
with a load factor λ, the FEM-T4 formulation based on the total Lagrange formulation
[12] and the discrete system of equations can be expressed as follows

Kt∆u = (KM +KG) ∆u = Fint(u)− λFext(u), (11)
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where the internal force vector and the external force vector can be introduced from the
first integral of the principle of virtual work as

Fint =

∫
Ω0

BTSdV, Fext =

∫
Ω0

NTb0dV +

∫
Γ0

NTT dS. (12)

Based on the FEM, the FS-FEM can be expressed as follows. All quantities need to be
smoothed and computed on smoothing domains. The smoothed material stiffness matrix
for the linearized portion can be written as

K̄M =

nf∑
k=1

K̄k
M , K̄k

M =

∫
Ωk

(
B̄k
M

)T DB̄k
MdV =

(
B̄k
M

)T DB̄k
MV

k, (13)

where K̄k
M is the smoothed material stiffness on the smoothing domain Ωk with its volume

V k associated with the face k, and D is the constitutive matrix. B̄k
M is the smoothed

strain-displacement matrix on the smoothing domain Ωk calculated as

B̄k
M =

1

V k

nek∑
m=1

1

4
V e

(m)B
e
(m), (14)

in which the Be
(m) of the m

th element is

Be
(m) =

[
B1 B2 B3 B4

]
, (15)

where

BI =


F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1

F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2

F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1

 (I = 1, 2, 3, 4),

(16)
in which, NI,J = ∂NI

∂XJ
and the FiJ (i, J = 1, 2, 3) are the entries of the deformation gradient

tensor F of the element. The second term on the left hand side in (11) is the material
stiffness matrix concerning the nonlinear constitutive relation and is evaluated as

K̄G =

nf∑
k=1

K̄k
G =

nf∑
k=1

(
B̄k
G

)T
S̄GB̄

k
GV

k, (17)

where matrix B̄k
G results from the geometrical nonlinearity of the linearization of variation

of the Green strain E. It is written in a form as

B̄k
G =

1

V k

nek∑
m=1

1

4
V e

(m)B
e
G(m). (18)
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In the foregoing equation, matrix Be
G(m) is for the m

th element, and is generally given by

Be
G =



N1,1 0 0 N2,1 . . . 0
N1,2 0 0 N2,2 . . . 0
N1,3 0 0 N2,3 . . . 0

0 N1,1 0 0 . . . 0
0 N1,2 0 0 . . . 0
0 N1,3 0 0 . . . 0
0 0 N1,1 0 . . . N4,1

0 0 N1,2 0 . . . N4,2

0 0 N1,3 0 . . . N4,3


. (19)

The stress matrix S̄G for the face-based smoothing domains is computed using

S̄G =
1

V k

nek∑
m=1

1

4
V e

(m)S
e
G(m), (20)

where SeG(m), see [12], is the hyper-diagonal matrix of the second Piola-Kirchhoff stress

components of the mth element, generally defined as

SeG =



S11 S12 S13 0 0 0 0 0 0
S21 S22 S23 0 0 0 0 0 0
S31 S32 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S21 S22 S23 0 0 0
0 0 0 S31 S32 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S21 S22 S23

0 0 0 0 0 0 S31 S32 S33


, (21)

in which the entries SIJ are derived from the second Piola-Kirchhoff stress tensor Se of the
element attached to the face k. In fact, there are no additional DOFs in the FS-FEM, so
the external force vector can be similarly evaluated as the one in standard FEM. However,
the internal force vector is now calculated based on the stress on the smoothing domain
(smoothed stress) and is represented as

Fint =

nf∑
k=1

fkint =

nf∑
k=1

(
B̄k
)T

S̄kV k. (22)

Alternative way to compute smoothed quantities
The convenient approach can be implemented into the open source programs by smoothing
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Table 1: Fitted parameters for HSF and proposed models

Model µ[kPa] k1H [kPa] k2H k4p k5p[kPa] α[◦]

Model 6 22.7223 0.0057 189.1230 274.6185 666.5237 50.7875

the deformation gradient tensor. The smoothed deformation gradient F̄k of the smoothing
domain V k is obtained by applying the divergence theorem

F̄k =
1

V k

∫
V k

[
∂u

∂X
+ I]dV =

1

V k

∫
V k

∂u

∂X
dV + I. (23)

After some simplification, the smoothed deformation gradient tensor can be calculated as

F̄k = B̄(xk)u+ I. (24)

4 FS-FEM APPLIED TO ANISOTROPIC HYPERELASTIC MODELS

In this section, the suggested strain-energy function [13] dealing with the instability of
the Holzapfel model [14] is used in numerical simulations by the FS-FEM and defined as

W =
µ

2
(I1 − 3) +Wani(Ī4, Ī6) +Winter(Ī1, Ī8),

Wani(I4, I6, J) =
k1H

2k2H

{exp[k2H(I4 − 1)2]− 1}+
k1H

2k2H

{exp[k2H(I6 − 1)2]− 1},

Winter(Ī1, Ī8) =
k5p

4k4p

{exp
[
k4p

(
Ī1 + Ī8 − 3− (c2 − s2)2

)2 ]− 1},

(25)

where the material parameters: k1H ≥ 0 (dimension of a modulus); k2H > 0 (dimensionless
coefficient); invariants: I1 = trC, I4 = a0 · Ca0 and I6 = g0 · Cg0; in which a0 =
[0 cos(α) sin(α)]T and g0 = [0 cos(α) − sin(α)]T , α is an angle between two fiber
families of soft biological tissues, C is the right Cauchy Green strain tensor, and µ is
equivalent to the small strain shear modulus. The material constants are achieved by
fitting the experimental data for the adventitia in [15], see Table 1.

4.1 A 3D rectangle plate and a 3D cubic cantilever beam

A 3D rectangle plate is subjected to a pressure on the lower face and its two side
faces are fixed. The plate is discretized with distorted elements (aspect ratio around 20),
see Figure 2a. The neo-Hookean model is used with µ = 190.6 KPa. The tip deflection
of the interested point A is shown in Figure 2. It is clear that the FS-FEM-T4 improves
significantly the distorted mesh and is even better than the FEM-T4 for the non-distorted
mesh (the same set of nodes). Both FS-FEM-T4 curves are above (larger magnitudes) the
ones of the FEM-T4 and are of course close to the results of using high order elements.

A 3D cubic cantilever beam with the dimension (2 × 10 × 2 [cm3]) is depicted in
Figure 3. The T4-mesh contains 3570 elements and 951 nodes, shown in Figure 3. The
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(a) (b)
Figure 2: A 3D plate with a distorted mesh (a); tip deflection of the point A (b).

(a) (b)
Figure 3: Deformed shape of the beam (a); Tip deflection of the beam (b).

cantilever bar is subjected to a distributed force of 400 kN/cm2 on the upper face. The
material constants are presented in Table 1. The result of the FS-FEM-T4 is very close to
the FEM-H8 with a similar number of nodes, see Figure 3. While the FS-FEM-T4 is much
more accurate than the one of the standard FEM-T4 with the same mesh and even better
than the FEM-T4 with a very finer mesh. Thus, the performance of the FS-FEM-T4 is
relatively equivalent to the FEM-H8 when the same set of nodes is used. This exhibits
the advantageous property of the FS-FEM as discussed before.

5 MODELING OF TISSUE GROWTH

Consider a body which grows induced by stress. The multiplicative decomposition of
the deformation gradient into its elastic part and the growth term is

F = Fe · Fg det(Fg) 6= 1; det(Fe) = 1. (26)
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eF

, ,g g gdV

(a) (b)
Figure 4: Multiplicative decomposition of F (a); stretch and growth stretch ratio υ (b).

det(Fg) 6= 1 since growth does not require volume preservation [16], see Figure 4a. The
following expression for the growth part of the deformation gradient due to isotropic mass
growth [17] in terms of a stretch ratio υ (the stretch due to isotropic volume mass growth)
is

Fg = υI, (27)

Evolution equations for stretch ratios
For density preservation [18], in the simplest case the rate of the stretch ratio depends
linearly on the trace of stress and strain in the intermediate configuration, such that

υ̇ = kυ(υ)tr(Se ·Ce). (28)

where, Ce and Se are the right Cauchy strain tensor and the second Piola-Kirchhoff stress
tensor caused by the elastic deformation. To prevent an unlimited growth at an arbitrary
non-zero state of stress, it is proposed that during the mass growth [17]

kυ(υ) = k+
υ0

(
υ+ − υ−

υ+ − 1

)m+
υ

for tr(Se ·Ce) > 0, (29)

where υ+ > 1 is the limiting value of the growth stretch ratio υ that can be attained
by mass growth, and k+

υ0 and m+
υ are the material parameters. In the case of the mass

resorption, the corresponding expression is

kυ(υ) = k−υ0

(
υ − υ−

1− υ−

)m−
υ

for tr(Se ·Ce) < 0. (30)

The elasticity tensor in this case is evaluated as

Ce = C + Cυ in which C = 2
∂Se
∂Ce

and Cυ = 2
∂Se
∂υ
⊗ ∂υ

∂Ce

. (31)
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Table 2: Materials for growth simulation

Model µ[kPa] k1H [kPa] k2H k4p k5p[kPa] α[◦]

Model 6 1.272 1.0 1.912 27.462 1.0 50.78

Table 3: Growth constants

k+
υ0

k−
υ0

m+
υ m−υ υ+ υ− 4t(time)

0.8e-3 0.8e-3 2.5 3 2 0.5 1

The fourth order constitutive component caused by growth Cυ is not symmetric.
FS-FEM applied to the growth model: The implicit Euler backward scheme was
adopted for solving these equations above for the increments of the growth stretch ratios
in parallel with smoothing the growth tensor Fg. Then, in each iteration of the Newton-
Raphson loop for each smoothing domain, the growth stretch ratio is updated in the
framework of the constitutive matrix as

υn+1 = υn + υ̇∆t. (32)

The constitutive matrix is therefore updated by the growth part and the elastic part.

5.1 Numerical test for growth-triaxial tension test of a cube

In this subsection, the FS-FEM-T4 is applied to the tissue growth in the triaxial tension
test. The Poisson’s ratio ν = 0.4 or even ν = 0.3 [18] was adopted. Consequently, the FS-
FEM-T4 can fully adopted for growth simulation without regarding volumetric locking.
The anisotropic material (25) is chosen with its parameters in Table 2 and the growth
constants in Table 3. The intermediate configuration (growth one) is incompatible. Thus,
loading can be applied to three directions. For five load increments of the monotonic
loading, each of them has a value of 0.08, the stretch ratio of the isotropic growth is
computed as shown in Figure 4b using the FEM-H8 and the FS-FEM-T4. Both methods
result in the same solution. The stresses vanish in biological equilibrium what can be
observed in the growth results, see Figure 5a. The grown cube has the volume V = 2.744V0

in which V0 is its initial volume. Furthermore, the limiting value for extension growth is
υ+ = 2 and is still larger than the final principal prescribed stretch 0.4, see Figure 4b.
Thus, the cube can grow further if it is stimulated with external loads until the stretch
ratio reaches a value of 2. After this limiting value, if the cube is still subjected to external
loading, then it induces corresponding stresses.

Even for the anisotropic materials used here, our results are qualitatively comparable
with the ones using an isotropic hyperelastic model of the work of Himpel et al. [18].

6 CONCLUSIONS

The FS-FEM is first implemented into Code_Aster [19] for large scale biomedical
applications. In the analysis of the 3D plate, the very important conclusion is that solutions
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(a) (b)
Figure 5: Stresses and density of the cube using the proposed model [13].

of the FS-FEM-T4 are less sensitive with the distortion of the meshes compared to those
of the FEM-T4. In addition, the nonlinear case of solving the 3D cantilever beam with
the anisotropic material model [13] can be considered the first application using the FS-
FEM for strong anisotropy (e.g. artries). The FS-FEM solution has higher accuracy and
its accuracy and convergence can be compatible to those of the standard FEM with 8-
node hexahedral element (H8) (FEM-H8) using the same number of nodes. Through the
growth simulation of the cube, the growth models [17] are first analyzed by the FS-FEM
with expected performances. To this end, internal variables of the growth models are
modified properly, the growth tensor is smoothed, and the implicit Euler integration is
implemented to solve the equation system. In conclusion, the computational efficiency of
the FS-FEM is found better than that of the FEM. The FS-FEM not only brings about
higher accuracy but also relative insensitivity to volumetric locking if it is combined with
a Node-based Smoothed Finite Element (NS-FEM) called FS/NS-FEM model. This is a
very promising trend for applying the FS-FEM in biomechanics in which soft tissues are
typically incompressible materials.
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